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Abstract: This paper presents a novel algorithm to address resource allocation and network-slicing
challenges in multiaccess edge computing (MEC) networks. Network slicing divides a physical
network into virtual slices, each tailored to efficiently allocate resources and meet diverse service
requirements. To maximize the completion rate of user-computing tasks within these slices, the
problem is decomposed into two subproblems: efficient core-to-edge slicing (ECS) and autonomous
resource slicing (ARS). ECS facilitates collaborative resource distribution through cooperation among
edge servers, while ARS dynamically manages resources based on real-time network conditions. The
proposed solution, a multiagent actor–critic resource scheduling (MAARS) algorithm, employs a
reinforcement learning framework. Specifically, MAARS utilizes a multiagent deep deterministic
policy gradient (MADDPG) for efficient resource distribution in ECS and a soft actor–critic (SAC)
technique for robust real-time resource management in ARS. Simulation results demonstrate that
MAARS outperforms benchmark algorithms, including heuristic-based, DQN-based, and A2C-based
methods, in terms of task completion rates, resource utilization, and convergence speed. Thus, this
study offers a scalable and efficient framework for resource optimization and network slicing in MEC
networks, providing practical benefits for real-world deployments and setting a new performance
benchmark in dynamic environments.

Keywords: multiaccess edge computing; reinforcement learning; network slicing; resource allocation

1. Introduction

Advancements in geospatial remote sensing technologies, driven by increased spec-
tral, spatial, and temporal resolutions [1,2], have revolutionized various fields, including
national economies, ecological protection, and national security. These technologies enable
precise observations and analyses for diverse applications, including Earth observation [3]
and the Internet of Things (IoT) [4], significantly improving the accuracy of information
collection and analysis. Real-time processing of high-resolution data is now crucial for ap-
plications such as climate change monitoring, natural disaster response, and infrastructure
management. This need for real-time analysis aligns perfectly with the capabilities of multi-
access edge computing (MEC), a transformative approach to handling time-sensitive data.

Recent breakthroughs in artificial intelligence, edge computing, and the IoT have
enabled more sophisticated analyses of geographic phenomena, earth science processes,
and intelligent decision-making. In particular, MEC [5] has emerged as a key technology,
enhancing real-time data processing and response times by bringing computation and
storage closer to the network edge. This shift has facilitated faster analysis of remote
sensing data, crucial for the sustainable development of nations and cities [6–8]. However,
efficient resource allocation in MEC networks, especially with high traffic and dynamic
user demands, remains a significant challenge.

MEC networks provide highly efficient, real-time computing services for smart de-
vice users (SDUs). By processing tasks locally at edge nodes (ENs) instead of relying on
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centralized clouds, MEC minimizes latency and conserves bandwidth [9], offering signifi-
cant advantages in environments with large-scale IoT deployments, such as smart cities,
autonomous vehicles, and industrial automation systems.

However, a major challenge in MEC architectures is the efficient allocation and man-
agement of the limited network resources. Network-slicing (NS) techniques address this
challenge by logically partitioning the network and allocating resources based on service
requirements, ensuring ultralow latency and high reliability. NS effectively virtualizes
physical infrastructure, enabling flexible adaptation to diverse user needs [10].

Beyond computational resources, spectrum and power allocation are critical aspects
of resource management in MEC networks. Effective power allocation optimizes energy
efficiency and mitigates interference, a particularly complex task in high-traffic environ-
ments. Additionally, spectrum allocation ensures efficient use of available bandwidth to
support diverse user requirements. Recent research, such as that by Ngene et al. [11], high-
lighted the importance of these factors, especially power allocation strategies, in resource
management frameworks for next-generation communication systems.

Reinforcement learning (RL)-based resource allocation and NS algorithms have at-
tracted considerable attention for their ability to dynamically adjust resource allocation
in response to network-state changes, effectively handling unpredictable traffic patterns
and user demands [12]. Various RL algorithms, such as Q-learning [13], deep Q-network
(DQN) [14], policy gradient [15], and proximal policy optimization (PPO) [16], have been
actively studied to optimize network-resource management.

This study proposes a novel approach to address NS and resource allocation challenges
in MEC networks, aiming to maximize the success rate of user-computing tasks in each
network slice through real-time monitoring and efficient network-resource allocation.
Specifically, these problems are decomposed into two subproblems, i.e., efficient core-to-
edge slicing (ECS) and autonomous resource slicing (ARS), and a multiagent actor–critic
resource scheduling (MAARS) algorithm is proposed to handle them. MAARS combines
MADDPG for ECS and SAC for ARS to optimize resource distribution and real-time
resource management, respectively.

This integration of MADDPG and SAC creates a unique two-tier optimization frame-
work tailored for MEC networks. MADDPG effectively manages multiagent coordination
in distributed environments, enabling precise core-to-edge resource allocation for ECS. SAC,
employed for ARS, provides stable and efficient real-time decision-making in scenarios
with continuous action spaces. The synergistic combination of these algorithms ensures
seamless resource management across the entire network.

To further enhance the performance of MADDPG, we introduce model-agnostic met-
alearning (MAML) for metalearning initialization. MAML pre-trains the MADDPG neural
networks with optimized meta-policy parameters, enabling rapid adaptation to dynamic
network conditions. This approach reduces training iterations and improves efficiency and
scalability, ensuring robust performance under fluctuating conditions.

This innovation is critical for addressing the challenges in MEC networks, where rapid
adaptation is essential. MAML equips MADDPG to handle diverse resource demands
effectively, ensuring lower latency, better resource utilization, and higher task completion
rates. Compared to traditional methods, this approach significantly reduces convergence
time and improves the adaptability of resource allocation strategies.

Extensive experiments demonstrates the superiority of the proposed approach. The
MAARS framework outperforms existing state-of-the-art methods, achieving higher user
task completion success rates, improved resource utilization, and reduced convergence time.
This is attributed to the integrated MADDPG and SAC framework, enabling independent
yet interconnected optimization of ECS and ARS tasks.

By effectively decomposing complex resource allocation problems and applying ad-
vanced multiagent RL techniques, MAARS significantly advances MEC network manage-
ment. The innovative integration of MADDPG, SAC, and MAML enhances computational
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efficiency and ensures robust and dynamic adaptation to evolving network conditions,
setting a new benchmark for MEC NS and resource allocation.

The remainder of this paper is organized as follows. Section 2 reviews the related re-
search in this field, and Section 3 presents the system model and mathematical formulation
of the problem. Section 4 describes the proposed algorithm and experimental conditions,
Section 5 presents the simulation results for evaluating the algorithm performance, and
Section 6 discusses them. Finally, Section 7 concludes the study and presents directions for
future research.

2. Related Work

NS and resource allocation in MEC environments have been extensively studied [17–28].
Researchers have explored various approaches to optimize these processes. For instance,
Tran et al. [17] proposed a mixed-integer nonlinear programming approach with heuristic
algorithms to optimize task offloading and resource allocation in MEC networks, improving
offloading utility under resource constraints. However, it faces challenges in adapting to
dynamic network conditions in real-time. To overcome this limitation, Cevallos et al. [18]
introduced a dueling double deep Q-network (D3QN) for 5G content delivery networks,
enhancing adaptability to network complexity and reducing operational costs.

Deep reinforcement learning (DRL) has also emerged as a promising solution. Huang
et al. [19] developed a DRL-based offloading algorithm to minimize energy consumption
in mobile devices while meeting real-time task deadlines; however, scalability remained a
concern when handling numerous simultaneous tasks. Similarly, Wang et al. [20] used DRL
for dynamic resource allocation and service time reduction, but encountered challenges
associated with learning speed and stability. Nduwayezu et al. [21] addressed subcarrier
allocation in non-orthogonal multiple access (NOMA) MEC systems using a DRL-based
task offloading algorithm, achieving significant improvements in resource utilization and
computation speed. Ning et al. [22] further extended this work by focusing on resource
allocation in multiuser environments, enabling dynamic MEC server–user interactions to
reduce computation costs.

Slicing frameworks have proven crucial for enhancing network scalability and perfor-
mance. Shah et al. [23] and Khan et al. [24] developed frameworks for scalable dedicated
networks and dynamic resource adjustments based on traffic criticality. Wu et al. [25] pro-
posed a two-tier constraint algorithm for resource allocation in vehicular-communication
systems to ensure reliable services in high-traffic conditions. Seah et al. [26] introduced a
latency-aware resource scheduler to minimize latency while maintaining system fairness.
Jin et al. [27] and Chiang et al. [28] applied deep RL techniques to resource slicing, reducing
latency and enhancing computational efficiency in MEC systems.

Building upon these advancements, this paper introduces the MAARS algorithm, a
novel two-stage slicing model designed to address NS and resource-allocation challenges in
MEC environments. MAARS employs multiagent RL techniques—MADDPG for ECS and
SAC for ARS—to enable dynamic and collaborative resource management. Additionally,
by integrating MAML for neural network initialization, MAARS accelerates learning and
enhances adaptability to network changes, thereby improving task success rates and overall
system performance.

This study contributes to the field by proposing an innovative two-stage slicing model
that effectively addresses NS and resource-allocation issues in MEC networks. The model
combines ECS and ARS to efficiently allocate network resources while adapting to real-time
demands. By leveraging RL for dynamic resource allocation, the proposed framework offers
better flexibility than existing methods, maximizing network performance and significantly
increasing the success rates of user-computing tasks.

3. System Model

This section describes the MEC-based network architecture, and the proposed system
model based on this architecture for handling tasks.



Sensors 2024, 24, 7760 4 of 28

3.1. System Architecture

Figure 1 illustrates an MEC network comprising numerous ENs and SDUs. SDUs
generate different types of computing tasks to fulfill the requirements of various services,
such as augmented reality, virtual reality, video streaming, and online gaming. Each EN
comprises a base station (BS) and an associated EN, which provide network bandwidth
and computing resources, respectively. Network function virtualization (NFV) abstracts
the network infrastructure into virtual resources to enable flexible resource management,
whereas software-defined networking (SDN) flexibly configures network functions to
provide optimal network performance.
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Figure 1. System architecture.

The MEC network provides logical access to all network-based SDUs. Each network
has a set of BSs and a corresponding set of associated ENs. Each BS has a certain amount
of network bandwidth, and each EN provides a certain amount of computing resources.
The network resources comprise the bandwidth and computing resources of all BSs and
ENs. Users generate W computing jobs with different service-delay requirements, which
are typically offloaded to the nearest EN based on the location of the user. Each computing
task can be offloaded to only one EN, and all ENs in the network exchange information to
ensure optimal resource allocation.

This system model leverages NFV and SDN technologies to provide high-quality
services to users through dynamic resource allocation and optimization. This increases
network flexibility and scalability and maximizes MEC network performance by efficiently
handling various service requirements. The notations employed in the mathematical
representation of the system model are listed in Table 1.

Table 1. Mathematical notations of the system model.

Notation Definition

Rm(t) Resource-allocation set for m-th logical network at time t
Bm(t) Allocated bandwidth for the m-th network at time t
Fm(t) Allocated computing resources for the m-th network at time t
Cm(t) Allocated caching resources for the m-th network at time t

Xm Resource-entity set for the m-th logical network
Ww, m(t) Allocated resource entity for the w-th service in the m-th network
Svrk, m(t) Server-selection indicator for task allocation

rk(t) Data-transmission rate for task k at time t
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Table 1. Cont.

Notation Definition

Γk, trans(t) Transmission delay for task k at time t
Γk, proc(t) Processing delay for task k at time t
Γk, total(t) Total delay for task k at time t
ρw,m,n(t) Completion ratio for service w in the m-th network slice at time t
ρm,total(t) Total task-completion ratio for the m-th network slice at time t

ρavg(t) Weighted average of task-processing ratio at time t
Bw, m, total(t) Total bandwidth allocated for w-th service in the m-th network at time t
Fw, m, total(t) Total computing resources allocated for the w-th service in the m-th network at time t

Bn(t) Allocated bandwidth for the n-th network entity at time t
Fn(t) Allocated computing resources for the n-th network entity at time t

Bnetwork, max(t) Maximum network bandwidth
Fnetwork, max(t) Maximum computing resources in the network

πECS Resource-allocation policy for enhanced cognitive scheduling
πARS Resource-allocation policy for adaptive resource scheduling
L(θi) Loss function for agent i

yi Target learning Q-value for agent i
om(t) Local observation vector for the m-th agent at time t
s(t) State vector for all agents at time t

am(t) Action vector for the m-th agent at time t
a(t) Joint-action vector for all agents at time t

rm(t) Reward function for agent m at time t
ϕ′i Updated policy parameters for agent i
ϕ∗i Optimal policy parameters for agent i
Θ Meta-policy parameters

Θ′new Updated meta-policy parameters
State(t) State vector representing the network condition at time t

Action(t) Action vector representing the resource allocation at time
reward(t) Reward function to optimize resource-usage at time t

ϑmax Maximum allowable delay
ϑactual, i(t) Actual delay for user i at time t

3.2. NS Model

At the network level, the computing and data resources are dynamically allocated
according to the real-time service demand of each logical access network. To achieve
this, we introduce the ECS and ARS slicing models. The ECS manages resources through
cooperation between the central management system of the network and ENs and is
responsible for optimization and resource distribution within the network. By contrast, the
ARS allocates resources based on the real-time service demands of ENs that are physically
close to users and aims to minimize latency. This model enables efficient network-resource
management by the central management system and edge-computing nodes, as resources
are dynamically allocated based on user demand, thereby optimizing the performance and
quality of network services. The resource-allocation set for each logical access network is
defined as follows:

Rm(t) = {Bm(t), Fm(t), Cm(t)}, (1)

where Bm(t) denotes the bandwidth allocated to the network at time t, Fm(t) denotes the
allocated computing resources, and Cm(t) denotes the caching resources. This resource-
allocation set illustrates the distribution of network bandwidth, computing resources, and
caching resources over time. It represents an efficient resource-allocation process aimed at
handling real-time changes in user demands. State information is dynamically collected
from each EN, and a virtual controller is assumed to manage this information. Network
resources are composed of individual network-resource entities, and the set of these entities
is expressed as

Xm = {Xm| m = 1, 2, . . . , M}, (2)
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where X is the specific resource entity assigned to the m-th logical network. Each network-
resource entity is periodically partitioned based on the current demands of user-computing
tasks such that resources are efficiently allocated for different user tasks. This process is
expressed as follows:

Zw(t) = {Bw(t), Fw(t), Cw(t)}, (3)

where Bw(t), Fw(t), and Cw(t) denote the bandwidth required for the w-th service, the
computing resources required for it, and the caching resources, respectively. Equation (3)
indicates that network resources are dynamically managed over time and appropriately
allocated based on real-time changes in user demands. The network-resource entities are
efficiently managed through a central management system and virtual controller, thereby
enhancing network performance and stability. This is defined as follows:

Xm = {Xw, m| w = 1, 2, . . . , W}, (4)

where Xm represents the m-th service-resource instance generated by the m-th network-
resource entity. These resource entities are dynamically adjusted according to network
demands, and network resources are efficiently allocated based on the predictive models
and real-time data. This enables continuous monitoring of network performance and
allows real-time adjustments to resource-allocation strategies to maintain optimal network
performance. For example, when the demand for a specific service increases, the necessary
resources are immediately allocated to maintain service quality. Conversely, when demand
decreases, resources are reclaimed and reallocated to other services, thereby maximizing
the overall efficiency of network resource utilization.

3.3. Resource Allocation in Network-Resource Entities

During resource allocation, the computational tasks of each service-resource entity,
Zw, are dynamically offloaded to the most suitable nearby BS. Specifically, when a user
generates a task uw, k(t), it is sent to the nearest BS that can handle it efficiently. At this
point, the network continuously monitors the status of computing resources in real-time to
ensure optimal resource allocation. This dynamic offloading mechanism enables efficient
resource management, thereby ensuring both task completion and network stability.

The BS allocates network-resource units (NRUs) to handle computing tasks and
transmits the task data to servers connected to the BS. An NRU comprises the bandwidth,
network links, and other network-related resources optimally distributed by the resource-
management system. The server then allocates a computing resource unit (CRU) to handle
the task. A CRU comprises computing resources, such as a central processing unit (CPU),
graphics processing unit (GPU), or memory, and the resource-management system of the
server allocates the appropriate resources to meet the task requirements.

The server utilizes its allocated CRUs to process computing tasks and sends the results
back to the user. During this process, resource usage is constantly monitored, and resources
are redistributed as required to maximize system efficiency. This resource-management
process ensures that network and computing resources are maintained under optimal
conditions, and users experience low latency and are provided with highly reliable services.

3.4. Delay Analysis in Network-Resource Management

The computational tasks of the user are dynamically offloaded to the network-slice
segment (NSS) and reconfigured to optimize overall system performance. The k-th comput-
ing task of a user is represented as a tuple, uw, k(t) =

(
Vk(t), Pk(t), respw,max

)
, where vk(t),

Pk(t), and respw,max denote the data volume, computational complexity, and maximum
allowable response time, respectively. Note that defining the performance requirements of
each task is essential for precise resource allocation.

The server-selection indicator, Svrk,m(t) ∈ {0, 1}, determines the MEC server to which
a specific task ϕwk(t) is offloaded. Skm(t) = 1 indicates that the task is offloaded to a
particular server, whereas Skm(t) = 0 indicates that it is not. To optimize performance, the
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computational tasks of each user are offloaded to a single MEC server, thus satisfying the
following constraint:

M

∑
m=1

Svrk,m(t) ≤ 1. (5)

This ensures each task is assigned to only one MEC server, thereby preventing redun-
dant resource allocation and promoting efficient resource usage. The number of network
resources allocated to task ϕwk(t) is denoted as Bk.w,m,n(t), and the transmission rate for the
task is defined according to Shannon’s formula as follows:

Rk(t) =
N

∑
n=1

[
Skm(t)·Bk.w,m,n(t)·log2

(
1 +

pk(t)hk,m(t)
N0 + Ikm

)]
, (6)

where pk(t) represents the transmission power, hk,m(t) denotes the channel gain, N0 is
the noise power, and Ikm denotes interference based on the network-resource state. This
equation plays a key role in optimizing the transmission rate for efficient network-resource
management. The transmission delay Γk, trans(t) is defined as a function of the data size to
be transmitted and the transmission rate, as follows:

Γk, trans(t) =
Vk(t)
rk(t)

, (7)

where Vk(t) represents the data size and rk(t) denotes the transmission rate. Equation (7)
indicates that a lower transmission delay implies higher performance. Next, the processing
delay Γk,proc(t) can be defined based on the task complexity and allocated computing
resources as follows:

Γk,proc(t) =
Wk(t)

Fk,w,m,n(t)·η(t)
+ ς(t)·

ρk, n(t)
Mk(t)

, (8)

where Wk(t) represents the amount of work to be processed and Fk,l,m,n(t) denotes the allo-
cated computing resources. Additionally, η(t) is a coefficient representing the processing
efficiency of the node, whereas ς(t) denotes for the additional computational overhead,
reflecting the extra time incurred during computation. Furthermore, ρk, n(t) represents the
task wait time based on the network conditions. Finally, Mk(t) indicates the number of
cores used for parallel processing or resource availability, thereby ensuring that process-
ing delays are managed according to the resource availability. The total service delay Γk
comprises several components and is defined as follows:

Γk, total(t) = Γk,prep, trans(t) + Γk, trans(t) + Γk, queue, trans(t) + Γk, prep,proc(t) + Γk, queue,proc(t) + Γk,proc(t). (9)

These include the transmission-preparation, transmission, waiting, computation-
preparation, computation-waiting, and processing delays. If the total service delay is
less than the maximum allowable response time, the task is considered successfully pro-
cessed. This allows for sophisticated performance evaluation that considers all possible
delay factors based on the network state and available computing resources. The ratio of
successfully processed tasks to the total number of processed tasks is defined as the success
rate and formulated as follows(Appendix A):

ρw,m,n(t) =
Usuccess,w,m,n(t)
Utotal,w,m,n(t)

·
(

1
1 + exp(−o·(Rw,m,n(t)−Rth

)
, (10)

where Usuccess,w,m,n(t) denotes the numbers of successfully processed tasks and Utotal,l,m,n(t)
those processed during the given time period. Rw,m,n(t) reflects the state of the resources
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allocated to the w-th task, Rth is the resource threshold, and o adjusts the impact of resource
status on the success rate. Finally, the success rate of each NSS is defined as follows:

ρm,total(t) =
∑W

w=1 ∑
Nw,m
j=1 αw,m,j·Usuccess,w,m,j(t)

∑W
w=1 ∑

Nw,m
j=1 Utotal,w,m,j(t)

, (11)

where αw,m,j is a weighting coefficient that reflects the importance of each resource and can
be adjusted based on the resource status or network load. By using this weighted system,
more emphasis can be placed on critical resources to enhance the resource-allocation and
task-processing efficiency. The weighted average of the success rate for the tasks in each
NS segment is defined as follows:

ρavg(t) =
M

∑
m=1

ρm,total(t)·βm(t), (12)

where βm(t) is the weighting coefficient for each NSS and is set to reflect the impor-
tance and priority of each segment. It provides critical information for comparing perfor-
mance across network slices and aids in establishing appropriate resource allocation and
optimization strategies.

3.5. Problem Formulation

This study aims to address NS and resource-allocation issues in MEC networks. The
objective was to maximize the weighted average completion rate of users’ computational
tasks based on the total number of network and computing resources. Thus, the tasks of
each network-slice entity are processed through NS and resource allocation while meeting
the service requirements of each user. To achieve this, it is assumed that the network-slice
entities are provided, and the focus is on the periodic resource-allocation problem for
different types of computational tasks. This problem can be formulated as follows:

P : max
B,F

lim
T→∞

1
T

=
T

∑
t=1

ρavg(t), (13)

and is subject to the following constraints:

ρk(t) ≤ ρmax, ∀k ∈ {1, . . . ,Uw,m.n}, ∀w ∈ {1, . . . , W}, ∀m ∈ {1, . . . , M}, ∀n ∈ {1, . . . , N}, (13a)

Bw,m(t) ≤ Bw,m,total(t), Fw,m(t) ≤ Fw,m,total(t), ∀w, m, (13b)

Bn(t) ≤ Bn,max, Fn(t) ≤ Fn,max, ∀n, (13c)

M

∑
m=1

Bw,m(t) = Bw, total(t),
M

∑
m=1

Fw,m(t) = Fw, total(t)∀w ∈ {1, . . . , W}, ∀m ∈ {1, . . . , M}, (13d)

N

∑
n=1

Bn(t) ≤ Bnetwork, max,
N

∑
n=1

Fn(t) ≤ Fnetwork, max, ∀n ∈ {1, . . . , N}. (13e)

These constraints include critical factors for ensuring the efficient allocation and
management of network resources:

• Constraint (13a) ensures that the service delay for each user task satisfies the delay
requirements of the network; thus, it is key to maintaining user experience and
network performance.

• Constraint (13b) ensures that each network slice operates efficiently with the resources
allocated to it, thereby preventing resource wastage and enhancing system efficiency.

• Constraint (13c) guarantees that resources are not overused by each network node,
thereby maintaining network stability and reliability.
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• Constraint (13d) balances resource allocation across network-slice entities, prevents
the concentration of resources at specific slices, and ensures fair resource distribution.

• Finally, Constraint (13e) ensures that total network-resource usage does not exceed
available resources and manages and optimizes the overall network performance.

These constraints effectively address the NS and resource-allocation issues in an MEC
network and play a key role in maximizing its performance and stability.

4. RL-Based NS and Resource-Allocation Algorithm
4.1. Overview

Because ECS and ARS operate on different time scales, solving the entire problem
using existing algorithms is challenging. Therefore, it is decomposed into two subproblems:
ECS (SP1) and ARS (SP2). SP1 periodically conducts ECS for each network-slice entity
to maximize the weighted average completion rate of users’ computational tasks. This
ensures the efficient use of network resources and optimizes the user experience and can
be expressed as follows:

SP1 : max
πECS

E
[

T

∑
t=1

αnew·υECS(t)

]
, (14)

where πECS represents the resource-allocation policy for conducting ECS within a network-
slice instance and υECS(t) denotes the reward calculated at time t based on the resource-
allocation efficiency and success rate of user computational tasks. This equation reflects the
essence of ECS and provides a direction for maximizing NS effectiveness.

By contrast, the objective of SP2 is to allocate resources for each computational task
such that network-resource utilization is maximized at the ENs associated with the service-
level slice instances. This problem can also be addressed using RL and is formulated
as follows:

SP2 : max
πARS

E
[

T

∑
t=1

υARS(t)

]
, (15)

where πARS represents the resource-allocation policy for conducting ARS at the ENs and
υARS(t) denotes the reward calculated at time t based on the network-resource utilization.
This equation aims to optimize resource utilization at the ENs, enhance overall network
performance, and minimize resource wastage.

Therefore, we propose two algorithms to solve the network slicing and computing
resource-allocation problems: MADDPG-based ECS and SAC-based ARS. The ECS al-
gorithm optimizes resource scheduling for each network-slice entity, whereas the ARS
algorithm implements adaptive resource allocation for each service-slice instance. The
integration of these algorithms constitutes the overall MAARS framework, which leverages
a multiagent system based on the actor–critic structure to efficiently manage network
resources, thereby optimizing overall performance. It aims to maximize resource utilization
while minimizing resource conflicts between network slices and services, enabling tailored
resource allocation and scheduling based on the characteristics of each instance. Thus, it
offers a robust solution that not only enhances network performance but improves overall
system quality (QoS) through efficient resource utilization.

4.2. MADDPG Algorithm

MADDPG is a multiagent RL algorithm that aims to learn the policy (πi) and Q-
function (Qi) of each agent. The algorithm employs centralized training and decentralized
execution, wherein a central controller trains an agent-network group based on global
environmental information, whereas the agents select and execute actions based on local
environmental information [29,30]. Decentralized execution mitigates the problem of the
joint-action space growing exponentially as the number of agents increases; therefore,
traditional single-agent RL algorithms are unsuitable for this task.

At each step of the MADDPG algorithm, agents first obtain local observations oj(t) of
the environment, select actions aj(t) based on oj(t), where j represents the agent index, and
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execute the selected actions to receive a reward r(t). After executing the selected actions,
the environment is updated, and the agents receive new local observations oj(t + 1) in the
next step. The central controller collects the new observations of all agents and stores the
experience (s(t), a(t), r(t), s(t + 1)) in a replay buffer, where s(t) and s(t + 1) denote the vectors
containing the observations of all agents at time steps t and t + 1, respectively. A batch of
experiences is then sampled from the replay buffer to train the networks for all agents in
the MADDPG algorithm [31].

MADDPG uses a set of agent networks and a central critic network to learn policy and
Q-function Qi(o,ai)

of each agent as follows:
Agent networks: These networks employ a DDPG structure, which includes both the

evaluation and target networks, and are used to learn the policies πi and Q-functions of
each agent. The input for the agent networks comprises the current observation oj(t), and
they output the action aj(t) or Q-value Qj(o,aj)

.
Central critic network: This network takes the observations and actions of all agents

as inputs and outputs the Q-value for the Q-function of each agent. Using this information
obtained from all agents, the central critic network computes the Q-values that allow each
agent to learn a better policy.

Similar to the DQN, MADDPG trains the parameters of all agent networks by mini-
mizing a loss function, which is defined as follows:

L(θi) = E(o,a,r,o′)

[
(yi −Qi(o, a1, . . . , aN ; θi )

2
]
, (16)

yi = ri + γQ′i
(
o′, a′1, . . . , a′N ; θ′i

)
, (17)

where Q′i and θ′i denote the target network and its parameters, respectively, θi denotes the
parameters of the evaluation network, and a′N is the action selected by the target network.

The MEC-network environment can be reflected by the current number of user com-
putational tasks, network state, and computing resources available for each network-slice
entity. The virtual controller of each network-slice entity can only observe the local envi-
ronment and manage its network-slice entity. Thus, the network model can be considered
a decentralized execution model. However, each network-slice entity is interdependent.
Because the total number of network and computing resources is limited across all ENs
and all M logical access networks share the same resources, ECS must be conducted using
a centralized training mode to obtain an optimal slicing policy.

Thus, the MADDPG algorithm, which employs centralized learning and decentralized
execution, is well-suited for solving SP1 to achieve an optimal policy. Compared to the
independent Q-learning (IQL) algorithm, MADDPG can enhance the relationship between
the policy πi and Q-function Qi(o,ai)

of each agent [32]. The IQL algorithm involves indepen-
dent learning by each agent, which can lead to poor performance in environments where
interaction is important. By contrast, the MADDPG algorithm considers agent interactions
through a central critic, thereby enhancing performance.

MADDPG-Based ECS Algorithm

The MADDPG-based ECS algorithm efficiently manages core-to-edge resource alloca-
tion in NS environments, optimizing resource utilization to maximize task success rates.
By leveraging MADDPG, the ECS layer effectively addresses the challenges of coordinat-
ing resource distribution across the network hierarchy, enabling a dynamic and adaptive
response to changing demands.

To accelerate learning and further enhance performance, we employ MAML for
initialization. This significantly reduces the convergence time of MADDPG, allowing the
ECS algorithm to adapt quickly to evolving network conditions and ensuring consistent
performance. Additionally, its integration with the SAC-based ARS layer ensures that
the outputs from ECS seamlessly guide real-time resource slicing, creating a cohesive and
efficient optimization loop that spans the entire network. This two-tiered approach ensures
coordinated resource management from the core to the edge.
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Compared to traditional single-agent or static optimization methods, our MADDPG-
based ECS algorithm offers significant advantages. It provides improved resource efficiency,
dynamic adaptability to complex and evolving demands, and higher task-completion rates.
Moreover, it offers a robust and scalable solution for optimizing resource allocation for
MEC NS. The agents, states, actions, and reward functions are defined as follows:

1. Agent: The agent acts as a virtual controller for each network-slice entity periodically
performing ECS. Each agent monitors the resource status of its respective slice instance
and makes optimal resource-allocation decisions.

2. State: The state is represented by a set of local observations of all agents. Each
observation includes the resource and task status obtained from the network-slice
entity and is defined as follows:

om(t) = {SEw,m,n(t), RNw,m,n(t), SRw,m,n(t), PUw,m,n(t)|n = 1, 2, . . . , Nm, w = 1, 2, . . . , W}, (18)

where SEw,m,n(t) represents the number of available NRU resources at the n-th BS
of the slice entity and RNw,m,n(t) indicates the number of available CRU resources
at the n-th EN. Additionally, SRw,m,n(t) denotes the task-completion rate at the n-th
edge node, PUl,m,n(t) represents the number of user computational tasks per time
unit, and Nm indicates the number of BS/EN. Based on the local observations of each
agent, the state is defined as follows:

s(t) = {om(t)|m = 1, 2, . . . , M}. (19)

3. Action: Each agent performs ECS within its respective network-slice entity. Specifi-
cally, it can choose to increase, decrease, or maintain the number of NRUs or CRUs in
each BS. The action space of each agent is expressed as follows:

am(t) = {SVw,m,n(t), SWw,m,n(t)|n = 1, . . . , Nm, w = 1, . . . , W}, (20)

where SVw,m,n(t) = 1 and SWw,m,n(t) = 1 represent increases in the NRU and CRU
resources, respectively, at the n-th edge server of the network-slice entity. Conversely,
SVw,m,n(t) = −1 and SWw,m,n(t) = −1 indicate decreases in the NRU and CRU
resources, respectively, whereas SVl,m,n(t) = 0 and SWl,m,n(t) = 0 signify no changes
in resources. The number of resource blocks that can increase or decrease at each step
is fixed. The joint-action vector of the MADDPG algorithm is defined as follows:

a(t) = {am(t)|m = 1, 2, . . . , M}. (21)

4. Reward Function: Because the goal of the algorithm is to maximize the long-term
weighted average of the task-completion rate, a penalty-based reward function was
designed. If the task-completion processing rate falls below a certain threshold, a
penalty is applied to reduce the reward. This reward structure encourages higher
performance by penalizing agents that lead to poor performance, thereby driving
them to achieve better results. The reward function is defined as

rm(t) =
{

ω2·χm(t) + ϖ2 i f χm(t) ≥ χthreshold
ω2·χm(t) + ϖ2 − Γ i f χm(t) < χthreshold

(22)

where, ω2 > 0 is a coefficient that determines the reward slope based on the task-
completion rate and ϖ2 sets the offset value of the reward. Additionally, χthreshold is
the threshold of the task-completion rate and Γ > 0 is the penalty applied when the
performance falls below the threshold.

Figure 2 illustrates the structure of the MADDPG-based MAARS algorithm, where
multiple agents interact with network-slice entities to optimize resource allocation. Each
agent utilizes actor and critic networks to collaboratively manage resources and ensure
efficient task processing across network slices. Algorithm 1 summarizes the main steps of
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the MADDPG-based ECS algorithm, which represents an approach wherein each agent acts
independently but cooperates with other agents through centralized learning to efficiently
allocate resources in an NS environment.

Algorithm 1: MADDPG-based ECS

1: Initialize policy networks πi and Q-functions Qi for all agents
2: Initialize target networks π′ i and Q′ i with the same parameters
3: Initialize replay buffer R
4: for episode = 1 to NPepis:
5: Initialize random exploration process
6: Initialize state s0
7: for step = 1 to NQstep :
8: for each agent i:
9: Observe local state oi(t) and select action ai(t) = πi(oi(t)) + noise
10: Execute joint-action a(t) = {a1(t), . . . , aM(t)}
11: Observe reward rm(t) and next state s(t + 1)
12: Store experience (s(t), a(t), rm(t), s(t + 1) in R
13: Sample mini-batch from R, for each agent i:
14: Compute target action ai(t + 1) and target Q-value yi
15: Update Qi by minimizing L( θi)
16: Update πi using policy gradient
17: Soft update target networks θ′ i and θ′Qi

18: Decay exploration noise for next episode
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The policy network and Q-function for each agent are initialized, and the same pa-
rameters are set for the target network. A random exploration process is initialized at the
start of each episode. In each step, the agent observes the local state and selects an action.
After executing the selected action, the agent receives a reward, observes the next state
and the reward, and stores the experience in the replay buffer. Next, the Q-function is
updated using a mini-batch sampled from the replay buffer, and the policy network is
updated based on the policy gradient. Finally, the target network is soft-updated, and the
exploration noise is reduced for the next episode. This algorithm aims to maximize the
efficiency of network-resource allocation and optimize the task-completion rate.
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4.3. MAML-Based Initialization Algorithm

For a given weight vector, the MADDPG-based ECS algorithm periodically performs
ECS to learn the optimal policy aligned with that vector. However, when the weight vector
changes, relearning the optimal policy can be time-consuming [33–35]. To address this, the
MAML-based initialization algorithm is introduced, which obtains a meta-policy a set of
optimal initialization parameters for the agent, mixture, and hyper-networks employed
in the MADDPG-based algorithm. This enables faster adaptation to new weight vectors,
thereby significantly reducing the time required to re-learn the optimal policy.

4.3.1. Meta-Policy of MAML-Based Initialization Algorithm

The meta-policy provides an initial optimized state that can quickly adapt to various
objectives with different weight vectors. This serves as an optimal initial policy that can be
effectively trained for diverse objectives [36]. The MAML-based initialization algorithm is
model-agnostic and can learn a meta-policy that swiftly adapts to different goals.

By providing a robust initialization, MAML accelerates the convergence of the MADDPG-
based ECS algorithm, ensuring better performance, even under dynamic network con-
ditions. The meta-policy allows agents to start from a well-optimized state, reducing
the iterations needed to achieve stable policies. This is crucial in MEC networks, where
rapid adaptation is essential for handling fluctuating resource demands and maintaining
service quality.

In this algorithm, the meta-policy parameters are updated based on the optimal policy
parameters for each objective. This algorithm comprises inner and outer loops. In the inner
loop, the policy parameters are trained for a specific objective to determine the optimal
policy, and gradient descent is employed to minimize the loss function of the MADDPG-
based ECS algorithm. In the outer loop, the gradients of each optimal policy parameter are
calculated to update the meta-policy parameters.

Integrating MAML into MADDPG enhances the algorithm’s ability to handle diverse
and dynamic network environments with improved efficiency and adaptability. This capa-
bility is crucial for optimizing resource allocation and enhancing the overall performance
of MEC networks.

4.3.2. MAML-Based Initialization Algorithm for Policy Optimization

The MAML-based initialization algorithm comprises the following three main stages:

• Adaptation: A set of weight vectors A = [a1, a2, . . . , ai ] is given, where i represents
the total number of elements and each vector contains a series of weighting coefficients.
SP1 determines the optimal policy for each weight vector. To achieve this, the policy is
periodically updated using each weight vector. In the inner loop, the policy parameters
ϕi are optimized for each weight vector ai through gradient descent as follows:

ϕ′i = ϕi −ω3∇ϕiLai (ϕi), (23)

where ϕ′i and ϖ3 denote the updated parameters and learning rate, respectively.
Through this process, the optimal policy parameters ϕ∗i for each weight vector are
obtained as follows:

ϕ∗i = arg min
ϕi

Lai (ϕi). (24)

• Meta-policy Training: In this stage, the optimal policy parameters ϕ∗i obtained in the
previous stage are used together to learn the optimal meta-policy parameters. In the
outer loop, the optimal policy parameters for various weight vectors from the inner
loop are used to update the meta-policy parameters as follows:

Θ = Θ− ι∑
i
∇ΘLai (ϕ

∗
i ), (25)
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where ι represents the metalearning rate. Through this process, Θ of the meta-policy
are optimized.

• Fine-tuning: To achieve the objective of SP1 with a new weight vector αnew, the
meta-policy parameters are used as the initial parameters for the agent, mixture,
and hyper-networks in the MADDPG-based algorithm. Subsequently, by iteratively
fine-tuning the initial policy using this algorithm, the optimal resource-allocation
policy πECS aligned with αnew can be obtained. This process aims to maximize ECS
performance by efficiently allocating resources within the network-slice instance while
maintaining or enhancing the completion rate of user computational tasks. This stage
includes updating the policy parameters by minimizing the loss function as follows:

Θ′new = Θ− µ∑
i

ΘLai (ϕ), (26)

where µ is the learning rate during the fine-tuning stage. The MAML-based initializa-
tion algorithm offers several benefits. First, it allows for rapid learning of an optimal
policy for new weight vectors through the meta-policy, thereby enabling quick adapta-
tion to various environmental changes. Second, it minimizes overall training time by
reducing the time required to re-learn the policy using initialized parameters. This is
particularly beneficial in scenarios that require repetitive learning. Third, it can create a
policy that works effectively across different weight vectors, thereby increasing system
generalizability. These advantages help improve overall system performance and
maximize efficiency. Algorithm 2 summarizes the key steps of the MADDPG-based
ECS algorithm, which aims to learn a set of initialized parameters that can be used to
quickly determine the optimal policy for various weight vectors.

Algorithm 2: MAML-based Initialization

1: Initialize meta-policy parameters Θ
2: for iteration = 1 to numiterations:
3: Sample a batch of weight vectors {a1, a2, . . . , aB} from A
4: for each weight vector ai perform:
5: Initialize policy parameters φi with Θ
6: Update φi using gradient descent on Lai

(
ϕ∗i

)
over K steps

7: Store the optimal policy parameters φi∗

8: end for
9: Compute meta-policy update: ∆Θ = −η∑i∇ΘLai

(
ϕ∗i

)
10: Update meta-policy parameters: Θ = Θ + ∆Θ
11: end for
12: Fine-tune policy parameters Θ using new weight vector αnew

In the first step of the algorithm, the initial meta-policy parameters are set. These
parameters are trained to provide optimal initialization across multiple weight vectors.
Subsequently, the meta learning loop begins, wherein the meta-policy is learned over
various iterations. In each iteration, various weight vectors are sampled, and the optimal
policy parameters are learned based on them. For each batch of sampled weight vectors, the
policy parameters are initialized based on a meta-policy. In the inner loop, these parameters
are optimized through gradient descent. The optimized policy parameters are then stored
and used to update the meta-policy.

Finally, when a new weight vector is provided, the algorithm quickly fine-tunes
the optimal policy based on the parameters initialized by the meta-policy. This process
continuously enhances the meta-policy, enabling rapid adaptation to new environments.

4.4. SAC-Based Resource-Allocation Management (RAM) Algorithm

The SAC-based RAM algorithm plays a critical role in efficiently managing network
resources at the edge, providing the flexibility and scalability required to meet diverse user
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demands. A policy-based optimization algorithm known for its high sample efficiency
and stability [37], SAC is particularly well-suited for the dynamic resource management
challenges inherent in MEC networks. Within the MAARS framework, SAC complements
the MADDPG-based ECS algorithm by focusing on real-time, fine-grained resource slicing
at the network edge, guided by the outputs of ECS.

This dual-layer approach combines the global coordination capabilities of MADDPG
with the precise local optimization of SAC. MADDPG handles the core-to-edge resource
allocation, while SAC refines this allocation at the edge, providing a comprehensive solution
to the challenges of resource management in MEC networks. This integration ensures
seamless and efficient resource allocation across the entire network hierarchy. Compared to
traditional methods, the SAC-based RAM algorithm offers significant advantages. It not
only improves resource utilization and task success rates but dynamically adapts to the
ever-changing demands of the network. The combination of MADDPG and SAC delivers a
robust and scalable solution for MEC network slicing, ensuring superior performance and
adaptability even in the most complex and dynamic environments.

The learning process of this algorithm comprises multiple iterations. During training,
experience replay and target networks are used to increase stability. Experience replay
improves sample efficiency and reduces data correlation by using a buffer to store the expe-
riences of each agent [38]. The target network is periodically updated, which contributes to
the stability of the learning process.

• Agent: The agent is responsible for making resource-allocation decisions and corre-
sponds to network nodes such as the BS or edge servers. Each agent allocates resources
based on the network state and learns resource-management policies while providing
services to users.

• State: The state comprises a set of parameters that represent the current network con-
ditions. This state information is essential for an agent to understand the environment
and optimize resources. The state variables are defined as follows:

State(t) =
{

ResourceUsage(t), QueueLength(t), DemandUser, DelayMax

}
, (27)

where ResourceUsage(t) represents the number of resources currently in use and indi-
cates the ratio of allocated resources to the total resources available in the network.
QueueLength(t) reflects the queue length, which indicates the number of tasks waiting
to be processed in the network. Additionally, DemandUser refers to the number of
resources that must be allocated to each user in the network and DelayMax repre-
sents the maximum allowable delay to deliver each service to the users. These state
variables play a critical role in network-resource management by providing essential
information for the agent to make optimal resource-allocation decisions.

• Action: The action of an agent involves determining the number of resources that must
be allocated for each user request based on the current state and is defined as follows:

Action(t) = {ai(t)|i ∈ {1, 2, . . . , CountUser(t)}}, (28)

where ai(t) represents the number of resources allocated to user i at time t. ∈
{1, 2, . . . , CountUser(t)} represents the total number of users connected to the network.
The agent makes resource-allocation decisions for each user. Therefore, Action(t) is
an action vector that represents the resource allocation for all users, thereby playing a
critical role in efficient network-resource management and meeting user demands.

• Reward: The reward function evaluates the resource-allocation efficiency and guides
the agent to learn better policies. It is defined as the difference between the actual and
target resource usage, as follows:

reward(t) = ∑CountUser(t)
i=1

(
ϑmax − ϑactual, i(t)

ϑmax
·I(ϑactual, i(t) ≤ ϑmax)− I(ϑactual, i(t) > ϑmax)

)
. (29)
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This function evaluates the resource-allocation efficiency at a specific time t. If the
actual transmission delay ϑactual,i for each user i, is within the maximum allowable delay

ϑmax, the reward is maintained as ϑmax−ϑactual,i(t)
ϑmax

. This encourages efficient resource allo-
cation by granting higher rewards for shorter delays. Conversely, if ϑactual,i(t) ≤ ϑmax, a
penalty is applied to that agent. The total reward is calculated by summing these values
across all users, thereby indicating the overall efficiency of network-resource allocation.
This reward structure aims to optimize resource allocation and guide the agent to minimize
delays during learning.

Learning Process of SAC-Based RAM Algorithm

The SAC-based RAM algorithm enhances learning stability by using experience replay
and target networks. Experience replay includes a buffer that stores user experiences,
enhances sample efficiency, and minimizes data correlation. The target network is only up-
dated periodically to further enhance the stability of the learning process. The pseudocode
of the learning process of this algorithm is presented in Algorithm 3.

Algorithm 3: SAC-based RAM

1: Initialize actor-network parameters θp and critic-network parameters ϕ
2: Initialize target-network parameters φ′ with φ

3: for episode = 1 to NPepis perform:
4: for t = 1 to NPepis perform:
5: Observe current state st
6: Select action at using policy π(θp|st)
7: Execute action at to receive reward rt and next state st+1
8: Store (st, at, rt, st+1) in replay buffer
9: Sample a random mini-batch from replay buffer
10: Compute temporal-difference error δt:
11: δt = rt + γ × Qφ′ (st+1, π(θp|st+1)) − Qφ(st, at)
12: Update critic network by minimizing:
13: L(φ) = (1/2) × ∑(δt2 )
14: Update actor network using:
15: JSAC(θp) = Et [min(ψt(θp), clip(ψt (θp), 1 − ϵ, 1 + ϵ)) ×δt]
16: Update target network ϕ′:
17: if t % target_update_interval == 0:
18: φ′ ←− φ

This algorithm focuses on maximizing the efficiency of network-resource allocation
and learning an optimal resource-management policy. It enables stable and flexible re-
source allocation under various network conditions and can adapt to network performance
fluctuations. The SAC-based approach is particularly effective in high-dimensional contin-
uous action spaces and offers robust performance for solving complex resource-allocation
problems. Moreover, the SAC algorithm provides high sample efficiency, allowing the
agent to quickly learn optimal resource-allocation policies, even with limited training data.
Consequently, it reduces the complexity of network-resource management while ensuring
optimal resource utilization and improving the QoS.

4.5. Computational Complexity

The computational complexity of the proposed MAARS framework is determined
by the operations in Algorithms 1, 2, and 3, each contributing to the overall efficiency
and scalability of the system. Algorithm 1, the MADDPG-based ECS algorithm, primarily
involves nested loops over tasks and resources. This results in a time complexity of
O(N ×M), where N represents the tasks and M represents the resources, with a space
complexity of O(N ) for task states. Algorithm 2, the MAML-based initialization algorithm,
incorporates matrix operations for optimizing the meta-policy parameters. This leads
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to a time complexity of O
(

N ×M + M2) and a space complexity of O
(

N + M2) for the
resource matrices. Algorithm 3, the SAC-based RAM algorithm, handles RL-based policy
updates for resource allocation. The time complexity of this algorithm is O(N ×M), where
N represents the number of slices and M represents the number of iterations in the learning
process, and a space complexity of O(N + P), where P represents the policy parameters. By
combining the complexities of these individual algorithms, the overall MAARS framework
achieves a time complexity of O

(
N ×M + M2) and a space complexity of

(
N + M2 + P

)
.

This analysis demonstrates that the proposed framework is designed for scalability and
efficiency, making it suitable for deployment in large-scale MEC networks with numerous
tasks, resources, and network slices.

4.6. Performance Evaluation

The performances of the proposed algorithms were validated through simulations.
First, to evaluate the SAC-based RAM algorithm, we compared its performance with that
of the random resource-allocation [39], proportional fairness (PF) [40], and centralized
resource-allocation (CRA) [41] algorithms. The random resource-allocation algorithm
randomly allocates resources to user tasks, whereas the PF algorithm allocates them fairly
based on both resource availability and user demands. By contrast, the CRA algorithm
manages all network resources centrally and aims to achieve optimal resource distribution.

Next, the proposed MAARS algorithm was evaluated by comparing its efficiency and
performance with those of heuristic-based, DQN-based, and advantage actor–critic (A2C)-
based resource-allocation algorithms. The heuristic-based algorithm allocates resources
based on predefined rules, the DQN-based algorithm allocates them based on the data size
and computation requirements of a task, and the A2C-based algorithm conducts periodic
resource allocation using the A2C algorithm.

To further assess the performance of the MAARS framework, we conducted a compre-
hensive analysis of the impact of MAML. By leveraging MAML to initialize the ECS neural
networks with pretrained meta-policy parameters, we observed a significant reduction in
the number of training iterations required for convergence. This advanced initialization
strategy enabled the ECS component to adapt more effectively to dynamic network condi-
tions and fluctuating resource demands, ultimately enhancing the overall performance and
scalability of the framework.

The evaluation metrics included the success rate for user tasks within the service-slice
entities and the weighted average of the success rates across all network-slice entities. To
comprehensively evaluate the contribution of MAML, we analyzed additional metrics, such
as convergence time and resource-allocation adaptability. The results demonstrated faster
convergence and more stable resource utilization, particularly under dynamic network
conditions, highlighting the effectiveness of MAML in enhancing the adaptability and
efficiency of the framework. The simulations were implemented using Python (version
3.12.4) and PyTorch (version 2.4), assuming that user-task arrivals followed a Poisson
process. The system configuration used for the simulations included an Intel Core i7-9700K
CPU (Santa Clara, CA, USA) running at 3.60 GHz, 32 GB of DDR4 RAM, and an NVIDIA
RTX 2080 Ti GPU (Santa Clara, CA, USA). The key simulation parameters are listed in
Table 2.

Table 2. Hyperparameters employed in the simulations.

Parameter Value

Number of ENs (N) 10
Number of network-slice entities (M) 4

Transmission power pk(t) 23 dBM
Noise power (N0) −95 dBm

CPU frequency 2.5 GHz
Bandwidth 5 MHz
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Table 2. Cont.

Parameter Value

Batch size 64
Learning rate (α) 0.001

Discount factor (γ) 0.99
Experience pool size 1000

5. Results
5.1. SAC-Based RAM Algorithm

Figure 3 compares the task-completion ratios at the BS within the service-slice en-
tity and the task-arrival rates for the SAC-based RAM and the adaptive and random
resource-allocation algorithms. As the task-arrival rate increased, the completion rates
of all algorithms gradually decreased. This is because as more computational tasks ar-
rive at the BS under a higher arrival rate, processing delays occur, leading to a higher
percentage of tasks failing to meet the maximum allowable service delay. However, the
proposed SAC-based RAM algorithm demonstrates a better task-processing rate than the
other two algorithms.
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The SAC-based RAM algorithm exhibits a higher task-completion ratio because it dy-
namically allocates both network and computing resources by simultaneously considering
the task demand and current resource state of the BS. This allows it to efficiently allocate
resources, even under heavy loads, thereby minimizing task-processing delays. Specifically,
by continuously monitoring network conditions in real-time and optimally readjusting
resource availability, unnecessary wait times are minimized, and the task-completion rate
is increased. Thus, the SAC-based RAM algorithm provides stable performance even if the
network load increases, thereby maximizing resource efficiency.

Figure 4 compares the task-completion ratios of the SAC-based RAM, adaptive, and
random algorithms at the BS based on the CPU frequency. As the CPU frequency increases,
the task-completion ratios of all algorithms initially increase before stabilizing. This trend
occurs because a higher CPU frequency increases the computing resources that can be
allocated to tasks, thereby enhancing the likelihood of processing tasks within the maximum
allowable service delay. Although the task-completion ratios of all algorithms increased,
that of the SAC-based RAM was the highest.
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This is because the design of the proposed RAM algorithm is based on the SAC
framework, which enables dynamic resource allocation and CPU utilization optimization,
ensuring that appropriate computing resources are allocated to each task in real-time. The
SAC-based RAM algorithm maintains resource efficiency by considering both CPU status
and user-task demands, even when the CPU frequency increases. This highlights that
merely increasing the CPU frequency has limitations in improving the task-completion
ratio, underscoring the importance of resource management and allocation optimization.

Figure 5 compares the task-completion ratios of the SAC-based RAM, adaptive, and
random algorithms at the BS based on bandwidth. As the bandwidth increased, the
task-completion ratios of all algorithms initially increased before stabilizing. This pattern
occurs because a larger bandwidth allows more spectrum resources to be allocated to
the tasks, increasing the likelihood of processing them within the maximum allowable
delay. However, once sufficient bandwidth is allocated, the processing capacity becomes
saturated, and additional bandwidth increases have a lower impact on performance.

Nevertheless, the SAC-based RAM algorithm maintains a higher task-completion ratio
than the other algorithms through real-time resource optimization and efficient allocation.
This is because the RL-based approach dynamically analyzes network conditions and task
demands to allocate resources appropriately.

Therefore, the proposed SAC-based RAM algorithm demonstrates superior perfor-
mance to the other algorithms under key resource conditions, such as arrival rate, CPU
frequency, and bandwidth, and maintains a higher task-completion ratio even under
resource-overload conditions. Owing to its dynamic optimization and real-time adapt-
ability, the SAC-based RAM algorithm can play a crucial role in more complex network
environments in the future. Consequently, it can be essential for maximizing network-
resource utilization and maintaining QoS.
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5.2. MADDPG-Based MAARS Algorithm

Figure 6 illustrates the relationship between the reward values and the number of
iterations for the MADDPG-based MAARS algorithm under conditions of both ample
and scarce network and computing resources. As the number of iterations increases, the
reward values converge in both environments, indicating that the algorithm progressively
learns to allocate resources more efficiently and reaches a stable performance level. In
environments with ample resources, the MAARS algorithm achieves higher reward values,
reflecting its effectiveness in optimizing resource allocation through efficient utilization.
The MADDPG-based distributed resource-management technique allows the MAARS
algorithm to cooperatively allocate resources across network slices, ensuring that the needs
of each slice are met optimally.
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Moreover, even in resource-scarce situations, MAARS maintains its performance
efficiency by adapting to network-state changes and implementing real-time resource
allocation. This helps prevent excessive usage or shortages of resources. Thus, the MAARS
algorithm demonstrated stable and high performance across various environments.

Figure 7 illustrates the relationship between the task-completion ratios and task-arrival
rate for the MAARS, DQN–PPO, PF, CRA, and heuristic-based resource-allocation algo-
rithms. Evidently, as the arrival rate increases, the task-completion ratios of all algorithms
decrease owing to increased wait times and service delays. However, both the MAARS
and DQN–PPO algorithms maintain higher task-completion ratios than the PF, CRA, and
heuristic algorithms. Specifically, MAARS leverages the MADDPG-based collaborative
resource-allocation technique to dynamically adjust the resources for each slice, thereby
maximizing performance.
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Figure 8 illustrates the task-completion ratio as a function of the CPU frequency. Ev-
idently, as the CPU frequency increases, the completion ratio of all algorithms increases
because a higher CPU frequency enhances the task-processing speed. However, the MAARS
algorithm exhibits the most significant performance improvement owing to its collaborative
resource-allocation feature, which efficiently distributes resources based on the require-
ments of each network slice. Additionally, although the performance of DQN–PPO also
increases with the CPU frequency, it does not reach the level of MAARS. By contrast, the
PF, CRA, and heuristic algorithms show relatively lower performance owing to limitations
in their resource-allocation optimization strategies, whereas MAARS maximizes efficiency
in this scenario.

Figure 9 illustrates the task-completion ratio as a function of the bandwidth. As the
bandwidth increases, the task-completion ratio of all algorithms improves before stabilizing
after a certain bandwidth threshold. MAARS and DQN–PPO exhibit higher performances
than the PF, CRA, and heuristic algorithms because MAARS offers more efficient and
collaborative resource management and allocation. At the same time, DQN–PPO benefits
from combining the strengths of both deep Q-networks and proximal policy optimization,
leading to more effective decision-making in dynamic environments.
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MAARS is designed to reflect the real-time requirements of network slices, ensure
timely resource allocation, and maximize resource utilization without wastage. By contrast,
DQN–PPO manages resources independently for each slice, which limits its optimization
compared with MAARS. Moreover, PF focuses on fairness, which restricts performance opti-
mization, whereas CRA struggles to adapt quickly to real-time changes owing to its central-
ized approach. Additionally, the heuristic-based algorithm uses fixed resource-allocation
rules, failing to adapt to complex network demands. Therefore, MAARS efficiently utilizes
resources even as the bandwidth increases, maintaining a higher task-completion ratio than
the other algorithms.

Figure 10 shows the utility-function values for three network-slice instances obtained
using the MADDPG-based MAARS algorithm with respect to various weight vectors. Each
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weight vector represents a specific objective function, with the “initial” value indicating
the utility before NS. The MAARS algorithm adopts a collaborative distributed resource-
management approach for each network slice, leading to more efficient resource allocation.
Assigning higher weights to specific network slices increases their utility-function values,
reflecting the capability of MAARS to intelligently adjust resource-allocation priorities
among network slices. By reflecting the real-time demands of each slice, MAARS can
allocate resources in a timely manner and maximize performance. Compared to traditional
algorithms, such as DQN–PPO, MAARS demonstrates superior performance owing to
its collaborative resource allocation, which minimizes resource wastage and ensures that
optimal performance is maintained.

Sensors 2024, 24, x FOR PEER REVIEW 24 of 29 
 

 

CRA struggles to adapt quickly to dynamic network conditions owing to its centralized 
approach. Finally, the heuristic-based algorithm relies on fixed rules and, therefore, can-
not effectively adapt to the complexity of real-time network demands. Consequently, 
MAARS consistently demonstrated superior loss-reduction performance over time than 
the other algorithms. 

 
Figure 10. Utility-function values vs. weight vectors. 

 
Figure 11. Loss ratio vs. number of iterations. 

6. Discussion 
This study introduced the MAARS algorithm to effectively address the challenges of 

resource allocation and NS in MEC networks. MAARS leverages collaborative resource 

Figure 10. Utility-function values vs. weight vectors.

Figure 11 illustrates the loss ratios as the number of iterations increases for various
resource-allocation algorithms, including MAARS, DQN–PPO, PF, CRA, and heuristic-
based. As the number of iterations increases, the loss ratio of MAARS decreases; thus, it
outperforms all other algorithms in terms of convergence speed and efficiency. DQN–PPO
also demonstrates significant loss reduction, but lags behind MAARS. PF and CRA show
more moderate loss reduction, whereas the heuristic algorithm exhibits the highest loss
ratio. MAARS achieves superior performance owing to its collaborative and adaptive
resource management, which ensures efficient task processing and resource allocation
across network slices. By contrast, DQN–PPO, although effective, allocates resources inde-
pendently for each slice, which limits its overall optimization performance. Furthermore,
PF focuses on fairness, which constrains its ability to optimize performance, while CRA
struggles to adapt quickly to dynamic network conditions owing to its centralized approach.
Finally, the heuristic-based algorithm relies on fixed rules and, therefore, cannot effectively
adapt to the complexity of real-time network demands. Consequently, MAARS consistently
demonstrated superior loss-reduction performance over time than the other algorithms.
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6. Discussion

This study introduced the MAARS algorithm to effectively address the challenges of
resource allocation and NS in MEC networks. MAARS leverages collaborative resource
allocation to achieve superior performance than existing algorithms, dynamically adapting
to network changes in real-time.

The simulation results validated the efficiency of the MADDPG-based resource man-
agement technique, which efficiently allocates resources based on the real-time demands of
each network slice. The integration of MADDPG and SAC creates a powerful dual-layer
optimization framework. MADDPG manages global resource coordination, while SAC
provides real-time adaptability at the network edge. This approach enhances scalability
and operational efficiency across a wide range of network conditions. Future research
should explore the potential of the MAARS algorithm in even more complex and heteroge-
neous network environments, further expanding its applicability for resource allocation in
challenging scenarios.

7. Conclusions

This study presented a novel two-stage resource slicing and allocation model to ad-
dress the critical challenges of NS and resource allocation in MEC networks. This model,
formulated as a long-term optimization problem, aims to maximize the completion rate of
user-computing tasks while effectively meeting the diverse service requirements of individ-
ual network slices. To achieve this, we decomposed resource management into two distinct
yet interconnected algorithms: ECS and ARS, integrated within the proposed MAARS
algorithm. To enhance the efficiency of the MADDPG-based ECS algorithm, we employed
a MAML initialization method. This approach provides optimal initial policies for the ECS
agents, significantly reducing learning time and enabling rapid adaptation to changing net-
work conditions. The integration of MADDPG and SAC establishes a powerful dual-layer
optimization framework, wherein MADDPG efficiently manages global resource slicing
across the network, while SAC ensures real-time adaptability and fine-grained resource
allocation at the network edge. This synergistic approach delivers superior scalability and
efficiency, outperforming existing methods in managing network slices under dynamic
conditions. Thus, the proposed MAARS algorithm offers a robust and effective solution for
optimizing resource allocation and network performance in complex MEC environments.
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Its adaptability to varying network conditions makes it a promising approach for managing
the evolving demands of next-generation networks. Future research should focus on further
enhancing the performance of MAARS and extending its applicability to more complex
and heterogeneous network scenarios.
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Appendix A

This appendix details the delay factors considered for the performance evaluations and
provides the equation used to calculate the task-completion rate. The total service delay for
a task comprises several critical components. These include the transmission-preparation
delay, which represents the time required to execute the processes, such as encoding and
packaging, and to prepare the data for transmission; transmission delay, which refers to the
time required for the data to travel across the network; and waiting delay, which is the time
a task spends in queue before being processed owing to factors such as network congestion
or high demand for computing resources. Additionally, computation-preparation delay is
the time required to set up the computational environment, including resource allocation
and initialization. Finally, computation-waiting and processing delays encompass the time
a task waits for available computing resources and the actual computation time once the
processing begins, respectively.

The total service delay is calculated by summing several delay components, including
the transmission-preparation, transmission, waiting, computation-preparation, and waiting
and processing delays during computation. This comprehensive metric accounts for the
total time spent handling a task, from start to finish. Thus, it reflects the total time required
to process a task and includes both the network and computational delays.

The system performance was evaluated based on the task-completion rate, which
indicates the effectiveness of task processing within the allowable delay limits. A task is
deemed to be successfully processed if its total service delay is less than or equal to the
maximum allowable response time Tmax.

The success rate ρw,m,n(t) is defined as the ratio of completed tasks to the total number
of tasks, adjusted by a function of the system performance relative to a threshold. It is
calculated as follows:

ρw,m,n(t) =
Usuccess,w,m,n(t)
Utotal,w,m,n(t)

·
(

1
1 + exp(−o·(Rw,m,n(t)−Rth

)
Usuccess,w,m,n(t) represents the number of tasks successfully processed at time t, where a
successfully processed task is that whose total service delay does not exceed Tmax. Addition-
ally, Utotal,w,m,n(t) denotes the total number of tasks processed up to time t, including those
processed successfully and those that failed to process. Rw,m,n(t) represents the current
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response time or system performance at time t, reflecting the observed task-processing
performance. Rth is the performance threshold beyond which the system performance is
deemed suboptimal, whereas o controls the sensitivity of the success rate to deviations
from this threshold; a higher value amplifies the effect of performance deviations on the
success rate.

This equation integrates the success rate with an adjustment factor based on the
response time. 1

1+exp(−o·(Rw,m,n(t)−Rth
is a sigmoid function that moderates the impact of

response-time variations on the success rate. As Rw,m,n(t) approaches or exceeds the value
of Rth, the adjustment factor reduces the success rate, reflecting poorer performance. This
comprehensive approach ensures a thorough evaluation of the system’s ability to satisfy
the response-time requirements and provides valuable insights into the effectiveness of
task-processing and resource-management strategies.

Abbreviations
The following abbreviations are used in this manuscript:

AR Augmented reality
A2C Advantage actor critic
ARS Autonomous resource slicing
BS Base station
BRB Bandwidth resource block
CRA Centralized resource allocation
CRU Computing resource unit
DDPG Deep deterministic policy gradient
DQN Deep Q-network
ECS Efficient core-to-edge slicing
ES Edge server
IoT Internet of Things
IQL Independent Q-learning
MADDPG Multi-agent deep deterministic policy gradient
MAML Model–agent–critic resource scheduling
MEC Multi-access edge computing
NFV Network function virtualization
NS Network slicing
NSS Network-slice segment
NRU Network resource unit
PF Proportional fairness
PPO Proximal policy optimization
PRS Processing resource block
SAC Soft actor–critic
SDN Software defined networking
SDU Smart device user
VR Virtual reality
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