

Article

An Interactive Virtual Reality Approach to Understanding Cultural Heritage Through Storyliving: A Case Study of Seoul City Wall (Hanyangdoseong) in South Korea

Jin Woo Choi D, Jong Jin Park D and Han Jong Jun *D

School of Architecture, Hanyang University, Seoul 04763, Republic of Korea; ccct64@hanyang.ac.kr (J.W.C.); ikaros79@hanyang.ac.kr (J.J.P.)

* Correspondence: hanjong@hanyang.ac.kr

Abstract: In this study, we developed and evaluated a nonlinear narrative virtual reality approach to enhancing the understanding of cultural heritage. The system was designed to convey the historical and cultural context of Seoul City Wall (Hanyangdoseong) while engaging users in a personalized experience. A novel "storyliving" structure was used, in which users choose the progress of the narrative. To achieve this, the methodology employed three key components: evaluating criteria to assess Hanyangdoseong's sense-of-place, clustering to create distinct scenario segments, and sticker mapping to identify spatial preferences. Our approach maximizes user immersion through selective pathways and branching stories. Initial validation results suggest that this virtual reality system can greatly deepen users' understanding of Hanyangdoseong and demonstrate the system's potential as an innovative tool for cultural heritage education. This study contributes to the digital transformation of cultural heritage and provides important direction for the development of virtual reality content with richer and more personalized educational experiences.

Keywords: cultural heritage; virtual reality; nonlinear narrative; storyliving; immersive experience

Citation: Choi, J.W.; Park, J.J.; Jun, H.J. An Interactive Virtual Reality
Approach to Understanding Cultural
Heritage Through Storyliving: A Case
Study of Seoul City Wall
(Hanyangdoseong) in South Korea.

Appl. Sci. 2024, 14, 11348. https://doi.org/10.3390/app142311348

Academic Editor: Yutaka Ishibashi

Received: 4 September 2024 Revised: 18 October 2024 Accepted: 18 October 2024 Published: 5 December 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Virtual Reality (VR), a relatively dormant technology for decades, has recently made rapid gains because of increasing demand from fields such as social networking, education, medicine, and gaming [1,2]. The establishment of Oculus VR and the release in 2012 of the Oculus Rift headset accelerated the mainstream adoption of VR [3]. VR has become a global phenomenon influencing various aspects of society and business [3,4]. The VR market is projected to reach USD 22.81 billion by 2024 and USD 131.93 billion by 2029 [4].

Digital narratives greatly enhance the immersive quality of VR experiences [2]. However, although hardware advances, such as affordable headsets and high data-processing capability, are actively studied, few studies address digital narratives [1,5,6]. VR digital narratives allow users to shape their experiences, which greatly increases user engagement [7–9]. As technology advances, the study of digital narratives is becoming increasingly important.

Digital narratives use two main approaches. The first is storytelling (ST), in which the narrative follows a predetermined structure. The second is "storyliving" (SL), in which users can manipulate the narrative [10,11]. SL provides users of VR environments with a richer and more personalized experience [12,13].

Various studies utilize the SL approach. For example, a French spa town uses digitalization to provide an emotional experience that attracts younger customers [14]. A virtual tour of the Canadian Parliament allows visitors to explore at their preferred pace through a nonlinear interactive format [15]. Additionally, a nonlinear VR adaptation of Shakespeare's plays provides deep immersion through multiple paths and choices [16].

Appl. Sci. 2024, 14, 11348 2 of 22

These studies demonstrate the effectiveness of SL in VR environments. However, they primarily focus on the theoretical aspects of SL and its direction rather than detailing methodologies and processes for its implementation. This study aims to address this gap through the proposal of a systematic methodology for implementing SL in spatially oriented destinations.

Hanyangdoseong, Seoul's historic city wall, represents the history and culture of the Joseon Dynasty. Located in the city's heart, it has excellent accessibility and harmonizes with the natural landscape, making it an ideal subject for the development of nonlinear SL-based VR content [17,18]. The wall preserves various landscapes, providing space for healing, leisure, and a glimpse into the past [19,20]. These characteristics provide valuable visual and experiential elements for exploration in VR research.

The objective of this study was to develop, using a nonlinear SL approach, an interactive VR system centered on Hanyangdoseong. The aim was to create a method through which users can experience narratives in a personalized manner while enhancing their understanding of cultural heritage.

2. Literature Review

2.1. Digital Narrative in Virtual Reality

Digital narrative refers to storytelling through digital media, an approach that is effective in conveying information and sharing experiences [7]. Through a combination of media types, it offers users a rich experience; in a VR environment, the narrative unfolds through user interaction, enhancing immersion [2,6]. In VR, digital narratives increase user presence, interactivity, and realism. This encourages users to engage in the story as part of the virtual space, thereby providing a deeper emotional connection and understanding [11]. The associated narratives may be classified as linear or nonlinear (Figure 1).

Figure 1. Types of digital narrative structures (Adapted from Yuel [21]). (a) Linear structure (story-telling, ST). (b) Nonlinear structure (storyliving, SL).

2.2. Storytelling

Linear ST (Figure 1a) progresses in a straight line, with a clear beginning, middle, and end. Users experience the narrative along a predetermined path. Traditional films, novels, and plays are examples of this category [10,11]. For example, Age of Sail (2018) is a linear ST case that induces immersion through a clear narrative structure centered on the rescue of the isolated sailor William Avery [22]. Similarly, Doctor Who: The Runaway (2019) unfolds in a straightforward manner; users experience the story by following the given path, accompanying the Doctor on an adventure [22]. However, with only simple visual interactions and a lack of personalized experience, user engagement may be low [12].

2.3. Storyliving

Nonlinear SL (Figure 1b) allows for multiple narrative directions based on user choices, with an emphasis on participation and interactivity. This structure is common in games, interactive media, and VR content, especially in open-world and sandbox games [12]. SL's user-driven narrative offers deep immersion and personalized experiences [10,11]. SL also plays an important role in cultural tourism. Cinematic VR can provide users with SL experiences in cultural tourism, enhancing cultural understanding and tourism satisfaction [23]. SL can also be used to enhance historical understanding and provide educational value [15]. SL-driven immersive tourism experiences contribute to greater tourist satisfaction and engagement in the tourism industry [14]. Interactive narratives that

provide nonlinear SL experiences based on the user's viewpoint also offer personalized experiences [5].

However, SL faces several technical challenges, especially in HMD (head-mounted display) VR environments. As user interaction increases, more resources may be required for development. Further, VR sickness is a major drawback, affecting user experience as a function of visual stimuli, user movement, and duration. This can limit the feasibility of long-term experiences [24,25].

Nonetheless, SL remains a powerful tool for increasing immersion and personalized experiences, with great potential for cultural tourism content. This study has applied SL to cultural tourism content, focusing on reducing user burden and ensuring effective immersion in short time frames.

2.4. Storyliving Scenario Structure

The SL scenario structure is designed based on interactions between the user and the narrative flow [26,27]. Five types of structure are considered here: String of Pearls, Parallel, Interpolated, Dynamic, and Branching (Table 1).

Table 1. Types of storyliving scenario structures (Adapted from [26,28]).

Type	Structural Diagram	Description	Advantages	Disadvantages
String of Pearls	Start END	Each episode within the narrative is independent, similar to pearls on a string.	Narrative is easy to understand.	Weak connections and poor consistency between episodes.
Parallel	Start	Each episode is independent yet related.	Maintains interest through a complex narrative.	Can be confusing because of simultaneous progress.
Interpolated	Start Start	Composes a larger narrative from smaller stories.	Offers various choices and paths.	Difficult to maintain narrative length and consistency.
Dynamic	Start Start C END Start Start C END END	Narrative evolves with real-time interaction and feedback.	Provides a tailored experience based on audience choices and actions.	High technical requirements.
Branching	Start END END END	Leads to multiple endings based on choices.	Provides high immersion and engagement through diverse choices.	Complex to design and manage.

The String of Pearls structure is easy to understand but has weak connectivity and consistency between episodes [26,29]. The Parallel structure can lead to confusion as multiple episodes progress simultaneously [26,30]. The Interpolated structure struggles to maintain length and consistency in the narrative [26,31]. The Dynamic structure, although

Appl. Sci. 2024, 14, 11348 4 of 22

based on real-time interaction and feedback, has high technical demands [26,31]. These requirements can be challenging to implement in HMD VR environments because of problems such as VR sickness.

Of these options, the Branching structure was selected for this study. This structure enables the narrative to develop in different directions based on user choices, which enhances immersion and engagement. It also offers new experiences in repeated playthroughs because of its multiple possible endings [32]. Although the Branching structure can be complex to design and manage, it serves this study's focus on the creation of diverse and personalized user experiences. Through the development of a nonlinear SL VR scenario using the Branching structure, this study seeks to provide an immersive experience that maximizes users' control over the progression of the story.

3. Materials and Methods

This study followed four stages to develop an effective SL VR system (Figure 2).

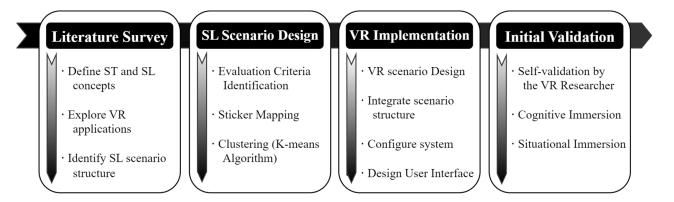


Figure 2. Research flow.

First, a literature survey of digital narratives was conducted to define the ST and SL concepts and explore their application in VR environments. The literature survey identified the scenario structure for SL, which was then tailored for implementation in relation to Hanyangdoseong.

Second, three core methodologies were used to design the scenario: identification of evaluation criteria, sticker mapping, and clustering. The evaluation criteria assessed six aspects of the city wall's sense-of-place on a five-point Likert scale; this supported the segmentation of the VR scenario [33–35]. In sticker mapping, participants provided survey responses at specific map locations using stickers; this facilitated the analysis of spatial preferences and determined the scenario's branch nodes [36,37]. Clustering grouped the data into clusters with similar characteristics; the k-means algorithm was then used to segment the data for the evaluation criteria [33,38,39].

Third, in the implementation phase, the designed scenarios were translated into a functional VR environment. This required the integration of the scenario structure into the VR system, the configuration of the system to support user interaction, and the design of an intuitive user interface.

Fourth, the VR researcher conducted an initial self-validation of the SL VR system, focusing on cognitive and situational immersion factors. The results from this analysis served as preliminary data for the refinement of the system [40-42].

This approach allowed the establishment and systematization of the SL VR scenario structure, enabling a rich and personalized experience for users.

3.1. Storyliving Scenario Construction Methodology

The SL scenario was constructed in a series of steps involving quantitative analysis (Figure 3). First, preliminary data were collected, including spatial, experiential, and

Appl. Sci. 2024, 14, 11348 5 of 22

geographic characteristics. Clustering was then performed on these data to analyze spatial patterns and design events using trekking and geospatial routes. A sticker-mapping survey identified the spaces most frequently interacted with, and this informed the establishment of branch nodes. All quantitative analyses in this study, including clustering, correlation analysis, and descriptive statistics, were performed using MATLAB. This systematic process allowed the quantitative design of the main routes and the nonlinear scenario.

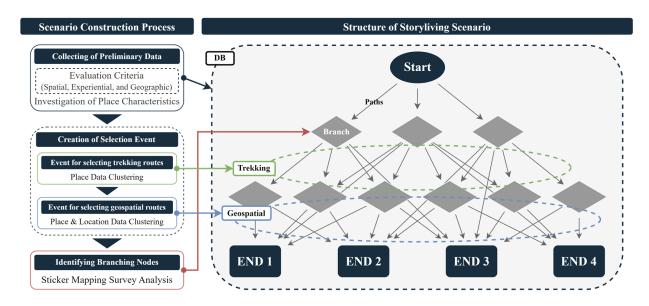


Figure 3. Storyliving scenario design process.

3.1.1. Collection of Preliminary Data Using Evaluation Criteria

To investigate the sense-of-place characteristics of 79 locations along Hanyangdoseong, we used six evaluation criteria, categorized into three types that reflect different dimensions of spatial perception: spatial (historical value [43,44] and accessibility [43,45]), experiential (convenience [45,46] and diversity [45,47,48]), and geographic (natural harmony [44,45,48] and population density [46,47]) (Table 2).

Characteristic	Very Low Score (1)	Low Score (2)	Medium Score (3)	High Score (4)	Very High Score (5)
Historical value	No fortress	Fortress damaged	Fortress and commerce present	Fortress well-preserved	Fortress fully preserved
Accessibility	Very hard to access	Accessible by road	Car access	Bus access	Bus and subway access
Convenience	No facilities	Some rest areas	Basic sanitation facilities	Fully equipped facilities	Well-equipped with additional facilities
Diversity	Limited activities	Basic sightseeing	Guided sightseeing	Cultural events	Various experiential activities
Natural harmony	No natural elements	Minimal natural elements	Nature and fortress in harmony	Nature in an important role	Full harmony of nature and fortress
Population density	Very few visitors	Some visitors	Moderate number of visitors	Some areas crowded	Overcrowded

Table 2. Criteria for zoning of Hanyangdoseong.

"Historical value" relates to the preservation state of the space, and "accessibility" relates to the ease of access. "Convenience" reflects the availability and quality of amenities, whereas "diversity" is a measure of the variety of activities offered. "Natural harmony" reports the degree to which the space blends with the natural environment, and "population density" gives the number of visitors during specified periods.

The selection of locations was based on the Hanyangdoseong map provided on the Seoul City website, with 66 locations surveyed at approximately 280 m intervals along the

Appl. Sci. 2024, 14, 11348 6 of 22

18.6 km wall length [49]. These 66 locations were selected using systematic sampling [50] to ensure uniform representation. The use of a sufficiently large sample size can minimize data variability, enhancing statistical reliability, and data can also be collected in a manageable range [51,52]. Thirteen further locations on the inner and outer sections of the city wall were also included, resulting in 79 locations evaluated for the six characteristics.

The characteristics of each location were evaluated using a five-point Likert scale. The evaluation was conducted by three researchers who majored in architecture and are currently engaged in research on cultural heritage and VR. Each researcher performed evaluations three times: once through on-site visits, once using 360 photo-based assessments, and finally, through collaborative discussions. This approach allowed for the cross-verification of data and ensured a comprehensive coverage of each location's characteristics.

To derive a unified dataset, the researchers discussed and refined their individual assessments. This iterative evaluation ensured both data consistency and reliability. To quantitatively assess the degree of agreement between the researchers' evaluations, an intraclass correlation coefficient (ICC) analysis was conducted for each location, confirming the reliability of the collected data.

ICC is a statistical measure used to evaluate the consistency or reproducibility of quantitative measurements by different raters. Higher ICC values indicate strong agreement among the raters, suggesting that the evaluations were consistently aligned [53].

Table 3 presents the sense-of-place characteristics, average scores by each researcher, final aggregated scores for each location, and corresponding ICC values. The ICC values represent the degree of agreement between the three researchers' evaluations for each location. These results confirm the reliability of the dataset used for constructing the SL VR system, demonstrating its robustness and supporting the development of a nonlinear scenario for the SL VR system.

3.1.2. Event for Selecting Trekking Routes

In this study, "event" refers to an action initiated by user selection and triggering associated functions. Immersion is enhanced by providing actions and responses based on user choices.

To generate events focused on selecting trekking-based routes, we performed k-means clustering on the sense-of-place data for Hanyangdoseong using the Statistics and Machine Learning Toolbox. This algorithmic approach aims to allow users to experience the characteristics of various locations along Hanyangdoseong to enhance immersion. Using the elbow method [54,55], we determined the optimal number of clusters to be three. From the analysis, 79 locations were grouped into three clusters (Table 4). Trekking-1 had high scores for historical value and natural harmony but low scores for accessibility and convenience. Trekking-2 had medium scores for accessibility and convenience, with most characteristics falling around the median. Trekking-3 had high scores for accessibility, convenience, and population density, with a wide range of activities available.

The box plot in Figure 4 shows each characteristic's median, range, and outliers, revealing the differing patterns of the six characteristics across the clusters [38]. The clustering results reflect the relationships between sense-of-place characteristics in the SL scenario, which will provide users with criteria for making informed choices. The data aid in the establishment of precise trekking route events in the scenario.

However, because the clustering is based solely on sense-of-place data without consideration of geographic factors, it may not match well with the exploration routes. Further, the distribution of points within the clusters may be unbalanced. The inclusion of geospatial data in the clustering process can enhance the realism of the exploration experience and allow users to feel that they are truly navigating the environment.

Table 3. Sense-of-place Characteristics and ICC Evaluation of Hanyangdoseong.

T .:		Historic	al Value			Access	sibility			Conve	nience			Dive	rsity			Natural l	Harmony]	Populatio	n Density		100
Location	A	В	С	Final	A	В	С	Final	A	В	С	Final	A	В	С	Final	A	В	С	Final	A	В	С	Final	ICC
1	4.333	4	4	4	1.333	1	1	1	1	1.667	1.333	1	3.333	3.333	3	3	4	4.667	4	4	2.333	2	2	2	0.941
2	4	4.333	4.333	4	2.333	2	2	2	2.333	2	2.333	2	3	3.667	3	3	3.333	3.333	3.333	3	2	2.333	2.667	2	0.824
3	3	3.333	3	3	2	2	2.333	2	2	2.333	2	2	2	2.333	2	2	2.333	2	2	2	2	2.333	2	2	0.66
4	1.333	1	1	1	3	3.667	3.333	3	1	1.333	1	1	1.333	1	1.333	1	1	1	1.333	1	1	1.333	1.333	1	0.87
5	1	1.667	1	1	3.333	3.333	3	3	1	1.333	1.667	1	1.333	1	1	1	1	1	1.333	1	1	1	1.333	1	0.856
6	5	5	5	5	5	5	5	5	1.333	1.333	1.333	1	4	4.333	4	4	3.333	3	3.333	3	3.333	3	3.333	3	0.955
7	3.333	3.333	3.333	3	2	2.333	2	2	4.333	4	4	4	3.333	3.333	3.333	3	2.333	2.333	2	2	3.667	3	3	3	0.808
8	3.333	3.333	3.333	3	2	2.333	2.333	2	2	2	2.667	2	3.333	3.333	3	3	3	3.667	3	3	3.333	3	3.333	3	0.642
9	4.667	4	4	4	2.333	2.333	2	2	2	2.667	2.333	2	3	3.333	3	3	4.333	4	4	4	4.333	4.333	4.333	4	0.874
10	4.333	4.333	4	4	1	1	2	1	1.333	1.333	1	1	3.333	3.333	3.333	3 5	3	3.667	3.333	3	3.333	3	3	3	0.907
11 12	4	4.333	4.667	4	4.333	4.333	4.333 4.333	4	4	4.667	4 1	4	5 3	5 3	5	3	4.333 3.333	4	4	4	5 3.333	5	5 3.667	5 3	0.596 0.888
	4.333	4 3.667	4	4	4 2.333	4 2.667	4.333	2	1.667 5	1.333 5	5	5	5 5	5 5	3.333 5	5 5	3.333	3.667 1.333	3 1	1	3.333	3		3	0.888
13 14	3 4.333	3.667	3 4.667	4	2.333	2.667	3.333	3	1.333	1.333	1.333	5 1	3.333	3	3	3	3.333	3	3	3	2.333	2.333	3 2	2	0.967
15	3	3.333	3.333	3	2	2.333	2	2	5	5	5	5	5.333 5	5	5 5	5 5	1.333	1.667	1	1	3.333	3.333	3.333	3	0.902
16	4	4.333	4	4	3.333	3.667	3	3	2	2.333	2	2	3.333	3	3.333	3	3.333	3	3.333	3	2.333	2	2.333	2	0.813
17	3.333	3	3	3	5	5	5	5	5	5	5	5	5	5	5	5	4.333	4.333	4.333	4	4	4	4.333	4	0.908
18	4	4.333	4.333	4	2.333	2.333	2	2	2	2	2.333	2	3	3.333	3.333	3	3	3	3.333	3	3	3.333	3.333	3	0.83
19	5	5	5	5	5	5	5	5	2.667	2.333	2	2	4.333	4	4	4	2.333	2.667	2	2	4	4.333	4.333	4	0.939
20	3.333	3	3.333	3	5	5	5	5	5	5	5	5	5	5	5	5	2.333	2.333	2.333	2	5	5	5	5	0.963
21	3.333	3.333	3	3	5	5	5	5	5	5	5	5	3	3	3.333	3	3.667	3	3.333	3	4.333	4.333	4.333	4	0.89
22	5	5	5	5	5	5	5	5	5	5	5	5	3	3.333	3.333	3	3.333	3	3	3	3.333	3	3	3	0.954
23	1	1.333	1.333	1	3.333	3.333	3.333	3	1.333	1.333	1	1	1	1.333	1	1	1.333	1	1.667	1	1.667	1.333	1	1	0.827
24	1.333	1.333	1.333	1	3.333	3.333	3.333	3	1.667	1.333	1	1	1	1.333	1.333	1	1.333	1	1	1	1.667	1.333	1	1	0.818
25	4.333	4.667	4	4	1.333	1.333	1.333	1	1.333	1	1.333	1	3	3	3.333	3	4.333	4	4	4	3.333	3	3.333	3	0.931
26	3	3.333	3.667	3	5	5	5	5	2	2.333	2.333	2	3	3.333	3.333	3	3.333	3.667	3	3	2.333	2.667	2	2	0.878
27	4.333	4.333	4.333	4	1.333	1.333	1	1	1.667	1.333	1	1	3.333	3.333	3.333	3	4.333	4.333	4.333	4	3.333	3.667	3	3	0.918
28	3	3.333	3	3	3.333	3	3	3	2.333	2.667	2	2	3.333	3.333	3	3	3	3.333	3	3	2	2.333	2.333	2	0.612
29	4	4.333	4	4	1	1.667	1.333	1	1.333	1.333	1.333	1	3	3.333	3	3	4	4.333	4	4	3.333	3	3.667	3	0.925
30	3.333	3.333	3.333	3	3	3	3.333	3	2.333	2	2.333	2	3	3.333	3	3	3.333	3	3	3	2.333	2	2	2	0.71
31	4.667	4.333	4	4	1	1.333	1	1	1.333	1	1	1	3.333	3	3.667	3	4.333	4	4	4	3.333	3	3.333	3	0.943
32	3	3.333	3.333	3	3.667	3.333	3	3	3	3.333	3.667	3	3.333	3.667	3	3	3.667	3.333	3	3	2	2	2.333	2	0.583
33	4.333	4	4.333	4	1	1.333	1	1	2	2	2.667	2	3.667	3	3.333	3	4.333	4	4.333	4	2	2.333	2.333	2	0.919
34	1	1.667	1.333	1	1	1.333	1.333	1	1	1	1.333	1	1	1	1.333	1	3	3.333	3.333	3	1.333	1	1	1	0.856
35	1	1.333	1	1	4.333	4.333	4.333	4	1.333	1.333	1	1	1.333	1	1.333	1	1	1.667	1.333	1	1.333	1	1.333	1	0.918
36 37	5 4.333	5	5	5	1.333 3.667	1.333	1	3	1.333	1 1.333	1.667 1.333	1	3.667	3 3.333	3.333 3.333	3	5	5 4.333	5 4.333	5	3.333	3	3 3.333	3	0.967 0.889
38	4.333 5	4 5	4 5	4 5	3.667	3 1.667	3 1.333	3 1	1.333	1.667	1.333	1	3.333	3.333	3.333	3	4 5	4.333 5	4.333 5	4	3	3 3.667	3.333	3	0.889
39	4.667	4	4	4	3.333	3.333	3	3	4	4.333	4	1	5	5	5.333 5	5 5	4	4.333	4	4	5 5	5.007	5 5	5	0.969
40	4.007 5	5	5	5	1.333	1.333	1	1	1.333	1.667	1	1	3.333	3.333	3	3	5	4.333 5	5	± 5	3	3	3.333	3	0.836
41	4.333	4	4.333	4	2.333	2	2	2	5	5	5	5	3.333	3.333	3.667	3	4.333	4	4	4	3 4.667	4.333	3.333 4	4	0.969
42	2.333	2.333	2.333	2	1.667	1	1	1	1	1	1.667	1	2	2.333	2	2	4.333 5	5	5	5	2.333	2	2.333	2	0.901
43	2.333	2.333	2	2	3.667	3	3.333	3	3.333	3	3.333	3	3.333	3	3.667	3	2.333	2.333	2	2	3	3	3.333	3	0.652
44	2.333	2.333	2.333	2	2.667	2.333	2	2	3.333	3.333	3	3	3.333	3.333	3.333	3	3	3	3.333	3	2	2	2.333	2	0.686
45	3.333	3	3	3	4	4.333	4.333	4	2	2	2.333	2	2.333	2	2.333	2	2.333	2	2	2	4.333	4.333	4	4	0.904
	0.000			Ü		1.000	1.000										2.000				1.000	1.000			3.701

 Table 3. Cont.

T ()		Historic	al Value			Access	sibility			Conve	nience			Dive	ersity			Natural l	Harmony]	Populatio	n Density	,	100
Location	A	В	С	Final	A	В	С	Final	A	В	С	Final	A	В	С	Final	A	В	С	Final	A	В	С	Final	- ICC
46	5	5	5	5	2.333	2	2.333	2	2.333	2	2.333	2	2.333	2.333	2	2	4	4.333	4	4	2	2	2.333	2	0.942
47	3	3.333	3	3	3.333	3.333	3.333	3	2.333	2.333	2	2	2.333	2.333	2.333	2	3.333	3.333	3.333	3	2	2	2.333	2	0.692
48	2	2.667	2	2	3.333	3	3.667	3	2.333	2	2	2	2.333	2.333	2	2	3.333	3.333	3.333	3	3	3.667	3.333	3	0.715
49	3.333	3.333	3.333	3	5	5	5	5	4.333	4.333	4.333	4	3.333	3	3	3	3.333	3	3.333	3	5	5	5	5	0.89
50	3.333	3.333	3.333	3	5	5	5	5	4.333	4.333	4.333	4	2.333	2	2.333	2	3	3	3.333	3	4.333	4	4	4	0.899
51	1.333	1.333	1.333	1	5	5	5	5	4.333	4.333	4	4	4	4.333	4.333	4	1	1.333	1.333	1	4	4	4.333	4	0.96
52	4.667	4	4.333	4	3	3.333	3	3	3.333	3	3.333	3	5	5	5	5	3.333	3.333	3.333	3	3	3.333	3	3	0.849
53	1	1.333	1	1	3	3.333	3.667	3	1.333	1	1	1	1	1.333	1.333	1	1	1.333	1.333	1	3	3.333	3.667	3	0.903
54	1.333	1.333	1.333	1	5	5	5	5	5	5	5	5	4.333	4	4.667	4	1.333	1	1.333	1	4.667	4	4.333	4	0.966
55	2	2.333	2.333	2	5	5	5	5	4.667	4	4	4	4.333	4	4	4	1.333	1	1	1	3.333	3	3.667	3	0.953
56	4	4.333	4	4	2.333	2	2	2	3.333	3.333	3	3	2	2.333	2	2	3	3	3.333	3	2	2.333	2.667	2	0.853
57	1.333	1.333	1.333	1	3.333	3	3.667	3	4	4.333	4	4	2.333	2.333	2	2	1	1.333	1.333	1	1	1	1.333	1	0.921
58	3	3	3.333	3	1.667	1	1.333	1	1.333	1.333	1.333	1	2	2.333	2	2	4.333	4.333	4.333	4	3	3.333	3	3	0.914
59	3	3.333	3.333	3	2.333	2.333	2	2	2	2.333	2.333	2	2.333	2	2.333	2	4	4.333	4	4	3	3.333	3.333	3	0.821
60	4.333	4	4.333	4	1.667	1	1.333	1	1	1.333	1	1	2	2.333	2.333	2	5	5	5	5	2.333	2	2.667	2	0.954
61	4	4.333	4	4	1.333	1.333	1.333	1	1.333	1.333	1.333	1	2.333	2.333	2	2	5	5	5	5	3.333	3.333	3.333	3	0.948
62	4	4.333	4.667	4	1	1.333	1.333	1	1	1.333	1.333	1	2	2	2.667	2	5	5	5	5	2	2.333	2.333	2	0.954
63	4.667	4	4.333	4	1.333	1.333	1.333	1	1.333	1	1.333	1	2.667	2	2.333	2	5	5	5	5	3.333	3	3	3	0.95
64	3	3.333	3	3	1	1.333	1	1	1.333	1.333	1.333	1	2.667	2.333	2	2	5	5	5	5	2.333	2	2	2	0.953
65	1	1.667	1.333	1	3.333	3	3.667	3	1	1.333	1	1	2.333	2.333	2.333	2	5	5	5	5	1.333	1.333	1.333	1	0.946
66	2.333	2	2	2	2	2.667	2.333	2	2	2	2.667	2	2	2	2.333	2	5	5	5	5	1	1.667	1	1	0.941
67	5	5	5	5	4.333	4	4.333	4	1.333	1.333	1.333	1	3.333	3.333	3.333	3	3	3	3.333	3	3	3.333	3.667	3	0.923
68	4	4	4.333	4	1.333	1.333	1.333	1	3.333	3.667	3	3	3.667	3	3	3	5	5	5	5	2.667	2.333	2	2	0.929
69	5	5	5	5	1.333	1.333	1	1	2.667	2.333	2	2	2	2.333	2	2	5	5	5	5	2.667	2	2	2	0.967
70	5	5	5	5	1	1	1.333	1	2.667	2	2.333	2	3.333	3.333	3	3	5	5	5	5	2.333	2	2	2	0.97
71	5	5	5	5	1	1.333	1	1	2.333	2.333	2	2	2.333	2	2.333	2	5	5	5	5	2.333	2.667	2	2	0.967
72	5	5	5	5	1	1.333	1	1	3	3.333	3	3	2	2	2.667	2	5	5	5	5	2.333	2.333	2	2	0.972
73	5	5	5	5	1.333	1	1	1	2.333	2	2	2	2.333	2.333	2	2	5	5	5	5	2.333	2.333	2.333	2	0.971
74	5	5	5	5	1.333	1	1.333	1	2	2.333	2.333	2	2	2.333	2	2	5	5	5	5	1	1.333	1	1	0.978
75	5	5	5	5	1	1.333	1.333	1	2	2	2.667	2	3	3.333	3	3	5	5	5	5	2	2	2.333	2	0.972
76	5	5	5	5	1.333	1.333	1	1	2	2	2.667	2	2.667	2.333	2	2	5	5	5	5	2	2.667	2.333	2	0.96
77	5	5	5	5	1.667	1	1	1	1	1.333	1	1	3	3.333	3	3	5	5	5	5	1.333	1.333	1	1	0.98
78	5	5	5	5	1.667	1	1	1	3	3.333	3	3	3.667	3	3	3	5	5	5	5	1.333	1.333	1	1	0.972
79	4	4	4.333	4	3	3.667	3.333	3	3.333	3	3	3	4.333	4	4.333	4	4.333	4.333	4	4	3	3.333	3.667	3	0.649

Cluster	Locations	Historical Value	Accessibility	Convenience	Diversity	Natural Harmony	Population Density
Trekking-1	40	4.225	1.475	1.575	2.6	4.275	2.4
Trekking-2	18	1.833	2.889	1.778	1.889	2.389	1.611
Trekking-3	21	3.238	3.952	3.905	3.857	2.524	3.762

Table 4. Results of k-means clustering for sense-of-place data.

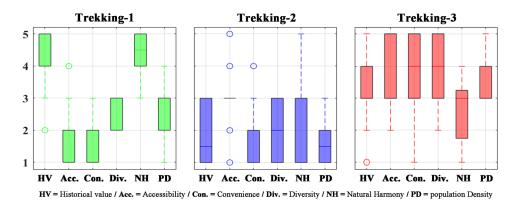
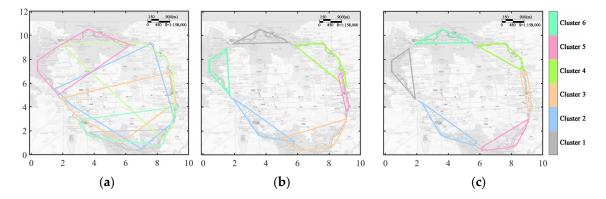



Figure 4. Sense-of-place characteristic distributions for each cluster.

3.1.3. Event for Selecting Geospatial Routes

To generate events that take into account the geographical environment, geographical data were integrated into the clustering process, with weights reflecting distances according to the sense-of-place [33,56]. Location data were extracted by adding the x- and y-coordinates to the Hanyangdoseong map. Taking account of the data complexity and the flexibility of the elbow method, we set the number of clusters to six [57]. Custom scripts utilizing statistical functions supported by the Statistics and Machine Learning Toolbox were employed throughout this process to analyze spatial patterns and optimize clustering.

Weights were applied to define geospatial boundaries and prevent cluster overlap [58,59]. This approach can reduce navigation confusion and provide a clear exploration experience. As shown in Figure 5a,b, with a weighting of 1, the clusters were irregular, whereas a weighting of 3 resulted in more regular shapes but some overlap. The weighting of 8 (Figure 5c) produced the most organized and clearly separated clusters and was used further.

Figure 5. Cluster boundaries based on geographic data weighting. (a) With weight = 1. (b) With weight = 3. (c) With weight = 8.

The analysis classified each site into six clusters (Table 5). The clusters were differentiated by their geospatial traits and were distinct from the initial trekking routes. Clusters 1 and 6 resembled Trekking-1, whereas Clusters 2 and 4 were similar to Trekking-1 and

Trekking-3, with some overlap in other segments. Clusters 3 and 5 were distributed across the remaining segments, excluding Trekking-2 or Trekking-3. These geospatial clusters enable users to experience courses based on the terrain, enhancing realism and increasing the desire to visit the site.

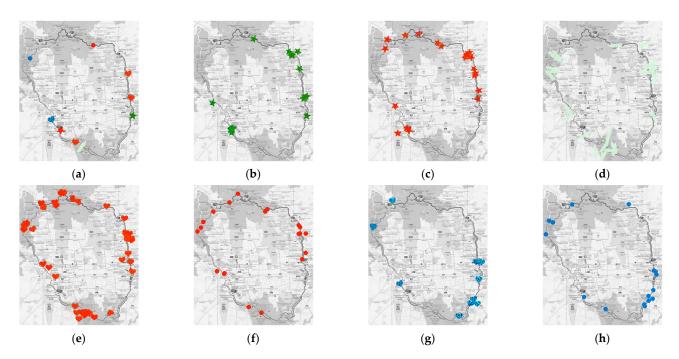
Table 5. Results of k-means clustering for geospatially weighted data.

Cluster	Locations	Trekking-1	Trekking-2	Trekking-3
1	12	8	3	1
2	16	3	4	9
3	12	4	0	8
4	11	5	3	3
5	16	8	8	0
6	12	12	0	0

3.1.4. Sticker Mapping for the Extraction of Branch Nodes

Sticker mapping [37] was conducted to visually identify user preferences and aversions, with the goal of deriving scenario branch nodes. This method allowed for an analysis of how users reacted to specific spaces along the Hanyangdoseong route.

The survey included both experienced and new visitors to gather data from a variety of perspectives. The sample size of 20 was chosen to balance feasibility with the need to gather representative input (Table 6).


Table 6. Demographic Information of Sticker Mapping Survey Participants.

0 1	M	ale	Fem	ale
Gender	1	0	10)
A C	19–29	30–45	46–62	63+
Age Group	12	4	3	1
Vielt England	1–3	4–10	11–20	21+
Visit Frequency -	11	4	3	2
T. 11.0	Y	es	N	0
Full Course Visit	(5	14	4

The participants, including ten men and ten women, placed stickers on a map in response to seven questions across three categories—basic, placed stickers on a map in response to seven questions across three categories—basic, positive, and negative aspects (Table 7). Multiple locations could be marked for each question (Figure 6).

Table 7. Sticker mapping questions and guidelines.

Category	Target	Sticker Shape	Instruction
	Entry point	Green star	Place green star stickers in areas you consider entrances to Hanyangdoseong.
Basic	Arrival point	Red star	Place red star stickers in areas where you feel you have "arrived".
	Scenery	Green arrow	Place green arrow stickers to indicate pleasant scenery.
D. de	Favorite place	Red heart	Place red heart stickers in favorite places.
Positive -	Attractive path	Red circle	Place red circle stickers on paths you find attractive.
Magativa	Disliked place	Blue heart	Place blue heart stickers in places you prefer less or dislike.
Negative -	Boring path	Blue circle	Place blue circle stickers on paths where you felt bored.

Figure 6. Survey example and sticker mapping results. (a) Example survey. (b) Entry point. (c) Arrival point. (d) Scenery. (e) Favorite place. (f) Attractive path. (g) Disliked place. (h) Boring path.

The data were organized by location, resulting in 21 branch nodes. Figure 7a shows the sticker counts and rankings, which represent the total number of stickers placed by participants at each location, and the rankings are based on user preferences. Figure 7b visually presents the preference mapping, highlighting the distribution of preferences along the Hanyangdoseong route. Preferences were ranked using the frequency interval method, and the corresponding sections of each trekking cluster were marked. The branch nodes are located along the Hanyangdoseong route, although some are in spaces not directly related to Hanyangdoseong. These points were interpreted as critical intersections where preferences and aversions overlap, a phenomenon that can be explained by the concepts of place attachment and place aversion [60]. That is, some individuals feel a positive attachment to certain spaces, whereas others feel negative and tend to avoid them.

The branch nodes identified here can be used as foundational data for route design, user experience planning, and event placement in future SL scenarios to maximize user immersion.

3.2. Implementation of Storyliving Virtual Reality

The implementation of SL requires an approach that is different from traditional VR. This section explains how the data and scenario elements from Section 3.1 are integrated into the VR environment.

3.2.1. Scenario Design

To offer choices to users, we designed the scenario with multiple nodes and types of trekking and geospatial routes (Figure 8).

The node types include start, branch, event, and end nodes. In the start node, users watch an introductory video about Hanyangdoseong's history and choose an entrance. Branch nodes, set at 21 high-preference locations, allow users to change routes or experience events.

In the event nodes, users choose a preferred node from three trekking routes to experience a particular sense-of-place. Background music (BGM) suitable for each section enhances the experience, including rustling leaves for nature, slow piano music for relaxation, and light car noises for urban areas. After selecting a trekking route, users can

further immerse themselves by choosing geospatial routes that align with the actual terrain, providing a more realistic exploration.

Ranking	Location	Total	Preferenc	e Clusters
1	Naksan Park	24	5	1, 2
2	Namsan	20	5	1, 2
3	Inwangsan Peak	16	4	1
4	Sungnyemun	14	4	2
5	Heunginjimun	14	4	2
6	Hyehwamun	11	3	2
7	Jangchung Gymnasium	9	3	1, 3
8	Site of Donuimun	7	3	2
9	Changuimun	7	3	2
10	Baekakgokseong	5	2	1
11	Waryong Park	5	2	2
12	Baekak Maru	4	2	1
13	Site of Soeuiumun	4	2	2
14	Sukjeongmun	4	2	2
15	Inwangsan Gokseong	4	2	1
16	Gwanghuimun	3	1	1
17	Dongdaemun Design Plaza	3	1	2
18	Site of Namsomun	2	1	1
19	Seoul Science High School	2	1	1
20	Hanyangdoseong Museum	2	1	2,3
21	Malbawi Information Center	2	1	1
	(a)			

Figure 7. Preference mapping based on sticker counts. (a) Sticker counts and rankings. (b) Preference mapping.

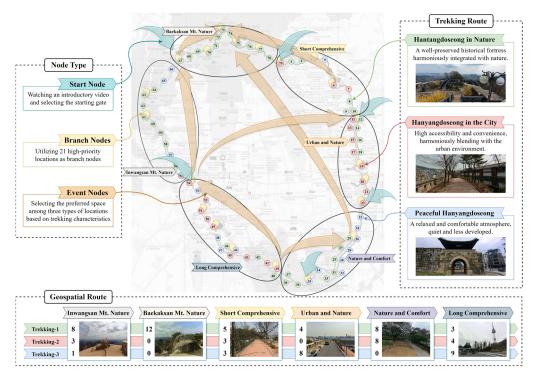


Figure 8. Scenario design based on node types.

In the end node, users encounter four different endings after having explored all the locations of the same type or visited all locations along Hanyangdoseong.

The timing of a selection event in a VR environment is implemented through three mechanisms (Table 8). First, users are offered a choice at each branch node, allowing

them to select the next path or experience events. Second, users can move to different routes at any point, enabling free exploration. Third, when users traverse the same type of route more than four times, new choices are presented to avoid repetition and encourage diverse experiences.

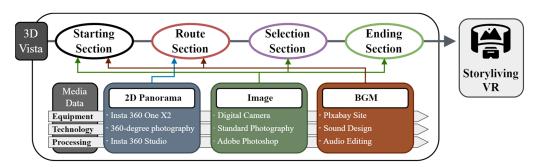
Table 8. Mechanisms of selection events.

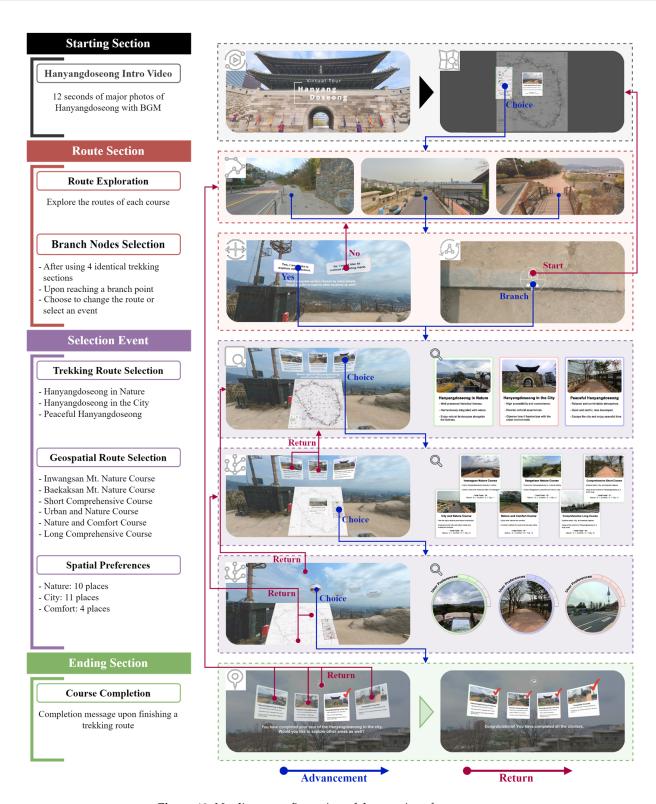
Mechanism	Description	Effect
Arrival at branch node	Provides various options on reaching a branch node	Allows for the selection of the next path or the experience of specific events
Free movement	Offers the option to move to a different choice at any time	Enables free exploration and progression of the story in the desired direction
Prevent repeated movement	Provides new options after moving through the same type of space more than four times	Prevents repetitive movement and encourages diverse experiences

This scenario design offers a nonlinear exploration in which user choices at branch nodes influence routes and events, leading to multiple possible endings. Users can immerse themselves deeply in Hanyangdoseong, enjoying particular experiences based on their decisions.

3.2.2. System Configuration

Technical implementation involved multiple data collection and processing steps, organized into the pipeline shown in Figure 9. Two-dimensional panoramas and images were captured using an Insta 360 One X2 (manufactured by Insta360, Los Angeles, CA, USA) and a digital camera, with BGM sourced from Pixabay. The assets were processed using Insta 360 Studio, Adobe Photoshop (Version 25.9), and a sound editor.




Figure 9. Storyliving virtual reality implementation pipeline.

The pipeline was simplified to essential data within the 3D Vista VR tool for HMD VR implementation. Excessive data provision was avoided to prevent user discomfort. Our approach lays the foundation for the implementation of SL VR, allowing users to explore Hanyangdoseong more vividly.

3.2.3. User Interface Design

The user interface (Figure 10) is designed in stages to enable users to explore Hanyang-doseong and experience historical and cultural spaces. Navigation within the system is conducted through handheld controller clicks.

This design accommodates the vast expanse of Hanyangdoseong, allowing users to explore and transition between locations efficiently. It also supports frequent scene transitions, which are integral to the storyliving structure, while helping to reduce the risk of cybersickness [24,25]. The process is divided into starting, route, selection and repetition, and ending sections.

 $\label{eq:Figure 10.} Figure \ 10. \ Nonlinear \ configuration \ of \ the \ user \ interface.$

In the starting section, users watch an introductory video showing Hanyangdoseong's key spaces to enhance immersion. Then, the map of Hanyangdoseong is displayed, and the users select one of six courses to begin.

In the route section, users explore the 79 locations along Hanyangdoseong. When they reach a branch point or repeatedly traverse the same section, route change or event options are provided. The free movement feature allows users to return to the starting point or select another course at any time.

In the selection and repetition section, users listen to the descriptions of each trekking route and choose an option: Hanyangdoseong in Nature, Hanyangdoseong in City, or Peaceful Hanyangdoseong. They then explore preferred locations distinguished by terrain and enjoy the unique experiences at each site.

In the ending section, the completion of at least one trekking route triggers a completion message and a checkmark for that course. When all courses are completed, a final message is displayed, indicating that the user has thoroughly explored all the locations of Hanyangdoseong and gained a deep understanding. The system configuration provides features that allow users to move to different locations or return to previous ones at each stage, enabling an immersive, nonlinear exploration experience.

Unlike conventional VR systems, which often focus on providing linear, visually-driven simulations with predetermined viewing points, this storyliving approach offers users the freedom to explore multiple pathways. By making meaningful choices throughout their journey, users can foster deeper engagement and develop a more personal understanding of Hanyangdoseong.

3.3. Storyliving Verification

We conducted self-validation for an initial verification of the VR system, focusing on the identification of cognitive and situational immersion factors. The feedback and results from this initial analysis provided foundational data for system enhancement. The initial validation was conducted solely by the VR researcher who developed the system, using the Meta Quest 3 headset to ensure reliable testing.

Each factor was analyzed based on Csikszentmihalyi's flow theory, which describes the psychological states users experience when deeply engaged in an activity. This theory is crucial for assessing immersion levels [40,41]. This methodology has been applied to evaluate whether science museum mixed reality exhibitions foster visitor immersion [42] and was used here to validate the SL VR system with HMD devices.

The cognitive immersion factors were Clear Goals, Logical Process, Exploratory Structure, Story Structure, and Tactile Interface (Table 9). These factors emphasize environments in which users set clear goals and immerse themselves through logical problem-solving [40,41]. Gardner's multiple intelligences theory, which addresses users' diverse intellectual approaches, was applied to comprehensively evaluate problem-solving interactions in the VR environment [42,61]. For example, the Verbal Approach assessed linguistic problem-solving interactions, whereas the Logical Approach evaluated logical thinking interactions, effectively measuring cognitive immersion.

The situational immersion factors were Physical Engagement, Immediate Feedback, Interactive Communication, Content Manipulation, and Challenging Tasks. These factors promote active participation in the VR environment and enable users to experience immediate responses [40,41]. We used Steiner's 12 senses theory to provide a framework to evaluate users' responses to external stimuli, which is crucial for analyzing sensory immersion in the VR environment [62,63]. For example, Sight Sense was used to evaluate visual immersion, whereas Hearing Sense was used to assess auditory immersion.

The analytical method involved verifying whether each factor met established criteria, then scoring according to Gardner's multiple intelligences theory, with one point awarded for each element, for a maximum score of 5. For the sensory evaluation, 0.5 points were added per sense. This method was used to assess each immersion factor's impact on the user's overall immersive experience.

Table 9. Analytical criteria for cognitive and situational immersion.

Category for Cognitive Immersion	Criteria Drawing on Multiple Intelligence Theory
Clear Goals	Verbal Approach (VA)
Clearly set goals that users can achieve.	Solving problems through dialogue or narration.
, ,	Logical Approach(LA)
Logical Process	Solving logical puzzles or problems.
Provide a process whereby users can	Quantitative Approach (QA)
logically solve problems.	Solving problems with figures and numbers.
	Fundamental Approach (FA)
Exploratory Structure	Addressing fundamental questions and philosophical approaches to
Support users to explore and find information.	phenomena.
	Aesthetic Approach (AA)
Story Structure	Addressing sensory and aesthetic factors through visual and auditory
Provide a consistent storyline.	elements.
·	Experiential Approach (EA)
Tactile Interface	Directly experiencing and interacting with situations.
Provide an interface that users can physically	Collaborative Approach (CA)
manipulate.	Solving problems through cooperation and discussion among users.
Category Based on Situational Immersion	Analytical Criteria Based on External Stimuli Senses
	•
	Sight Sense (SS) Quality of graphics, vibrancy of colors, and visual immersion.
Physical Engagement	Hearing Sense (HS)
Support users to actively participate in the VR	Audio quality, accuracy of spatial sound, and immersion.
environment through their physical senses and	Taste Sense (TS)
movement.	
	Taste reproduction technology and satisfaction. Touch Sense (Tcs)
Immediate Feedback	, ,
Provide users with real-time responses to their	Realism of the tactile interface and appropriateness of feedback.
inputs, enhancing immediacy and engagement.	Smell Sense (SmS)
	Smell reproduction technology.
Interactive Communication	Temperature Sense (TpS)
Facilitate user interaction and communication	Reproduction of temperature and realism of perceived temperature.
through responsive dialogues and actions.	Vitality Sense (VS)
	User perception of physical state and fatigue.
Content Manipulation	Movement Sense (MS)
Allow users to control and modify content,	Sense of natural movement and interaction in the environment.
enhancing their sense of agency.	Balance Sense (BS)
0,	Realism and accuracy of balance and spatial awareness.
Challenging Tasks	Language Sense (LS)
Engage users with interesting and challenging	Accuracy and naturalness of dialogue and voice recognition.
tasks through problem-solving, encouraging	Reasoning Sense (RS)
deeper immersion and sustained focus.	Realism of story progression and character reasoning.
T T T T T T T T -	Self-awareness Sense (SaS)

4. Results

Insights into the effectiveness of the SL VR system were obtained through the analysis of the cognitive and situational immersion factors (Table 10).

Impact of user-character interaction on self-awareness.

For cognitive immersion, Clear Goals and Story Structure had high scores, showing that users could set objectives at each exploration point. Clarity in setting goals facilitates deep engagement with the content and encourages logical thinking and collaboration; these factors can contribute to a better understanding of the historical and cultural significance of Hanyangdoseong. The nonlinear narrative structure was effective in maintaining the narrative flow and providing users with personalized experiences. The branching structure enabled users to follow various paths logically connected to the overarching story, which can deepen their narrative immersion.

Table 10. Analysis results for cognitive and situational immersion.

	С	ognitive Immersion		Situa	ational Immersion
Category	Analysis	Results	Category	Analysis	Results
	774	Introduce the significance of		SS	View of VR surroundings
	VA	Hanyangdoseong.	-	HS	Trekking-based BGM
=	т. А	Induce logical thinking through trekking	·	Tcs	Experience of unfolding a map
Clear	LA	route selection.	-	VS	Feeling of vitality during experience
Goals		Present goals for exploration through trekking	Physical Engagement	MS	Movement recognition
	EA	route selection.	Ingagement _	BS	Sense of balance
=	C.1	Encourage collaboration among parties to	·	LS	Understanding and use of language
	CA	achieve overall goals.	-	RS	Problem-solving and deduction
	T 4	Transfer historical and cultural information	-	SaS	Self-recognition
	LA	through route exploration.		SS	Immediate visual feedback
Logical	0.4	Support accurate data collection during	-	HS	Sound feedback based on location
Process	QA	exploration.	Immediate	MS	Immediate movement feedback
-		Provide direct experiences during exploration	Feedback -	BS	Balance feedback
	EA	of the routes.	-	RS	Problem-solving feedback
		Support user understanding by explaining		SS	Visual feedback during interactions
	VA	exploratory activities.	-	HS	Sound interaction
Exploratory		Induce logical deduction and analysis	Interactive	MS	Gesture interaction
Structure	LA	through exploratory activities.	Communication -	LS	Text interaction
EA		Provide exploratory activities at various	- 	RS	Problem-solving during conversation
		Provide narrative structure in a nonlinear		SS	Visual confirmation of content changes
	VA	format.	Content	HS	Manipulation based sound
-		Manage information accurately during story	Manipulation .	MS	Manipulation based movement
Story	QA	progression.	-	RS	Manipulation based problem-solving
Structure	Δ Δ	Provide visual and auditory experiences		SS	Visual presentation of tasks
-	AA	during the story.		HS	Explanations and instructions for tasks
	EA	Provide various stories based on user choices.	Challenging Tasks	MS	Physical movement recognition during task
	AA	Provide sensory experiences through interface manipulation.	-	DC.	completion
Tactile Interface		Allow physical manipulation of the interface	-	BS	Balance during task completion Problem-solving and deduction during task
	EA	through VR experiences.		RS	completion
	Immersio	n Level (1 point per element)		Immersion Le	evel (0.5 points per element)
Tactile Interfa	ace	Clear Goals 5 4 2 Logical Process 0	Challenging Tasks		Immediate Feedbac
Story	y Structure	Exploratory Structure	Content Mani	pulation	Interactive Communication

Tactile Interface had low scores because of interface simplification, which aimed to minimize VR sickness but limited the degree of physical interaction. Although basic operations could be performed readily, the lack of more complex physical interactions is a barrier to achieving deeper cognitive immersion.

Among the situational immersion factors, Physical Engagement had high scores, indicating that users could actively engage with the VR environment to experience a strong sense of realism, which contributes to immersion. The system's effectiveness in recognizing user movements and providing a realistic sense of balance enhanced the immersive experience.

Content Manipulation had lower scores, suggesting challenges in the manipulation of content because of nonintuitive controls or a less user-friendly interface. These results identify areas needing improvement to enhance user experience and overall immersion.

The Immediate Feedback mechanisms, which included visual, auditory, and movement-based responses, were less effective. The moderate score showed that users did not consistently perceive immediate responses to their actions, indicating that although some feedback elements were effective, others did not adequately reinforce a sense of presence in the virtual environment.

An examination of the overall immersion levels (see radar charts in Table 9) shows that cognitive immersion had excellent outcomes, particularly in the areas of Clear Goals and Story Structure, which are crucial for engaging users in the narrative and helping them understand the progression of the story. Slightly lower overall scores were obtained for situational immersion, primarily because of lower scores in Content Manipulation and Immediate Feedback.

The results suggest that although the system is effective in providing a realistic and interactive environment, it faces challenges in the areas of user interface design and feedback mechanisms, which are critical for maintaining situational immersion.

5. Discussion

The development and evaluation of the SL VR system provided valuable insights into approaches to balancing cognitive and situational immersion within a nonlinear narrative framework. We hypothesized that a well-structured branching narrative would effectively engage users and offer a rich educational experience, particularly in the context of cultural heritage. This hypothesis was supported by the high levels of cognitive immersion obtained, especially in the areas of Clear Goals and Story Structure. Our findings indicate that users could navigate the content with a clear sense of direction and establish a personal connection with the narrative through their choices, thereby deepening their engagement with and understanding of the historical context of Hanyangdoseong.

However, we identified several areas in need of further development. The lower scores for Tactile Interface and Content Manipulation indicate that whereas the simplification of the controls helped reduce VR sickness, it may have inadvertently limited the system's capacity for immersive physical interaction. This limitation emphasizes a common challenge in VR development—balancing user comfort with the depth of interaction. The findings suggest that future iterations of the SL VR system should explore more nuanced control schemes that enhance physical engagement without sacrificing user convenience.

A comparison of the cognitive and situational immersion results reveals an intriguing disparity; although users were highly engaged cognitively, their situational immersion was lower because of limitations in physical interaction and feedback responsiveness. This discrepancy emphasizes the need for a holistic approach to VR system design, in which narrative engagement and physical interaction receive equal attention.

In conclusion, although the SL VR system shows promise for the use of nonlinear narratives to enhance cognitive immersion, the achievement of a more balanced immersive experience will require further advancements in the physical interaction and feedback systems. The findings provide guidance for future improvements to create a more integrated immersive tool for cultural heritage education.

6. Conclusions

This study aimed to develop an SL VR system to enhance the understanding of cultural heritage by providing users with personalized, immersive experiences. We used an SL

scenario design process to construct scenarios by clustering quantitative data based on the sense-of-place characteristics of Hanyangdoseong. By employing k-means clustering and sticker mapping techniques, we segmented trekking and terrain sections to design scenarios that maximize user immersion.

The quantitative data clustering method used in this study has the advantage of allowing the construction of scenarios based on objective and quantitative data. This stands in contrast to older approaches using interviews with urban experts or literature reviews. Our design approach allowed for the objective development of highly immersive content for a range of user groups. Further, our data-driven approach provides universality, enabling the application of the same methodology to other cultural heritage sites or types of VR content.

This study provides fundamental data for the digital transformation and educational use of cultural heritage through a valuable case study involving the development of VR content based on nonlinear narratives. Our approach can be expected to increase the appeal of cultural heritage and provide users with immersive experiences. This research makes important contributions to studies and practices related to digital heritage, especially through the provision of methodologies for enhancing immersive experiences in VR environments.

One limitation of the current study is the lack of comprehensive user evaluations, as assessments were primarily conducted by the research designers, potentially limiting the diversity of perspectives on usability and effectiveness. To overcome this limitation, future research will include in-depth validation with a more diverse range of user groups, focusing on balancing user convenience with active participation while maintaining immersion in the storyliving experience. Additionally, user surveys and electroencephalography analyses will be employed to optimize the system's usability and satisfaction, providing objective and subjective data to meet the needs of diverse audiences better.

Author Contributions: Conceptualization, J.J.P. and H.J.J.; methodology, J.J.P.; software, J.W.C.; validation, J.W.C. and J.J.P.; formal analysis, J.W.C.; investigation, J.W.C.; resources, J.W.C.; writing—original draft preparation, J.W.C.; writing—review and editing, J.J.P.; visualization, J.W.C.; supervision, H.J.J.; funding acquisition, H.J.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022R1A2C3011796).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki, and approved by the Institutional Review Board of Hanyang University (protocol code HYUIRB-202412-003, approved on 3 December 2024).

Informed Consent Statement: Written informed consent has been obtained from the survey participants to publish this paper.

Data Availability Statement: Data are available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Joo, W.J.; Brongersma, M.L. Creating the ultimate virtual reality display. Science 2022, 377, 1376–1378. [CrossRef] [PubMed]
- 2. Dzardanova, E.; Kasapakis, V. Virtual reality: A journey from vision to commodity. *IEEE Ann. Hist. Comput.* **2023**, 45, 18–30. [CrossRef]
- 3. Järvinen, A. Virtual Reality as Trend Contextualising an Emerging Consumer Technology into Trend Analysis. In Proceedings of the Future Technologies Conference, San Francisco, CA, USA, 6–7 December 2016; pp. 1065–1070. [CrossRef]
- 4. Mordor Intelligence. VR Market Size & Share Analysis—Growth Trends & Forecasts (2024–2029); Mordor Intelligence: Rajapushpa Summit, India, 2024; p. 153. Available online: https://www.mordorintelligence.com/industry-reports/virtual-reality-market (accessed on 28 June 2024).
- 5. Assal, K.E.; Thomas, E.; Gabriel, A.; Dijkstra-Soudarissanane, S. Viewport-Driven DASH Media Playback for Interactive Storytelling. In Proceedings of the 10th ACM Multimedia Systems Conference, Amherst, MA, USA, 18–21 June 2019; pp. 304–307. [CrossRef]

Appl. Sci. 2024, 14, 11348 20 of 22

6. Li, N.; Li, L.; Chen, X.; Wong, I.A. Digital destination storytelling: Narrative persuasion effects induced by story satisfaction in a VR context. *J. Hosp. Tour. Manag.* **2024**, *58*, 184–196. [CrossRef]

- Hamby, A.; Brinberg, D.; Daniloski, K. Reflecting on the journey: Mechanisms in narrative persuasion. J. Consum. Psychol. 2016, 27, 11–22. [CrossRef]
- 8. Doolani, S.; Owens, L.; Wessels, C.; Makedon, F. vIS: An immersive virtual storytelling system for vocational training. *Appl. Sci.* **2020**, *10*, 8143. [CrossRef]
- 9. Jo, M.; Cha, J.; Kim, J. The effects of tourism storytelling on tourism destination brand value, lovemarks and relationship strength in South Korea. *Sustainability* **2022**, *14*, 16495. [CrossRef]
- 10. Hodgkinson, G. Lock up your stories—Here comes virtual reality. TECHART J. Arts Imag. Sci. 2016, 3, 10–14. [CrossRef]
- 11. Vallance, M.; Towndrow, P.A. Perspective: Narrative storyliving in virtual reality design. Front. Virtual Real. 2022, 3, 779148. [CrossRef]
- 12. Shepard, M. Interactive Storytelling-Narrative Techniques and Methods in Video Games. Available online: https://scalar.usc.edu/works/interactive-storytelling-narrative-techniques-and-methods-in-video-games/index (accessed on 12 May 2014).
- 13. Howell, B.F.; Hemming, A.L.; Kilbourn-Barber, G.; Christensen, S.Y. Exploring the Impact of Linear & Nonlinear Presentation Methods in a Design History Course. In Proceedings of the International Conference on Engineering and Product Design Education, Barcelona, Spain, 7–8 September 2023. [CrossRef]
- 14. Montargot, N.; Férérol, M.-E.; Kallmuenzer, A. Storytelling and digitalization as opportunities for spa towns. *Curr. Issues Tour.* **2021**, *26*, 91–104. [CrossRef]
- 15. Graham, K.; Fai, S. Creating Nonlinear Digital Stories of the Canadian Parliament Buildings and Rehabilitation Project. In Proceedings of the 3rd Digital Heritage International Congress (DigitalHERITAGE) and 24th International Conference on Virtual Systems and Multimedia (VSMM), San Francisco, CA, USA, 26–30 October 2018; pp. 221–228. [CrossRef]
- 16. Rall, H.; Harper, E. Pericles VR: Insights into visual development and gamification of a lesser-known Shakespeare play. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Virtual, 12–16 March 2022; pp. 31–38. [CrossRef]
- 17. Cho, E.-J. Repair and restoration project of the Seoul city wall after liberation through the documents in National Archives of Korea. *J. Seoul Stud.* **2017**, 73–118. [CrossRef]
- 18. Kang, P.-W. The locational characteristics of archaeological site in Seoul City Wall. *J. Korea Middle Ages Archaeol. Soc.* **2019**, 123–143.
- 19. Park, H. Walking along Seoul City Wall as therapeutic mobilities. J. Korean Geograph. Soc. 2016, 51, 109–125.
- 20. Kim, T.-H.; Park, S.-J. The relation of night life and the value of experience tourism as landscape lighting in Seoul City Wall. *Northeast Asia Tour. Res.* **2017**, *13*, 47–64.
- 21. Yuel, S.G. A Study on the Utilization Methods of Educational Content Based on the Non-linear Storytelling. *J. Knowl. Inf. Technol. Syst.* **2013**, *8*, 71–81.
- 22. Zhang, Y.M.; No, S.K. A study on the interactive method to improve the immersion of VR animation -Focused on <Bonfire>-. *J. Korean Soc. Des. Cult.* **2023**, 29, 417–428. [CrossRef]
- 23. Marasco, A. Beyond virtual cultural tourism: History-living experiences with cinematic virtual reality. *Tour. Herit. J.* **2020**, 2, 1–16. [CrossRef]
- 24. Saredakis, D.; Szpak, A.; Birckhead, B.; Keage, H.A.D.; Rizzo, A.; Loetscher, T. Factors associated with virtual reality sickness in head-mounted displays: A systematic review and meta-analysis. *Front. Human Neurosci.* **2020**, *14*, 96. [CrossRef]
- 25. Conner, N.O.; Freeman, H.R.; Jones, J.A.; Luczak, T.; Carruth, D.; Knight, A.C.; Chander, H. Virtual Reality Induced Symptoms and Effects: Concerns, Causes, Assessment & Mitigation. *Virtual Worlds* **2022**, *1*, 130–146. [CrossRef]
- 26. Schell, J. The Art of Game Design: A Book of Lenses; CRC Press: Boca Raton, FL, USA, 2008. [CrossRef]
- 27. Moser, C.; Fang, X. Narrative Control and Player Experience in Role Playing Games: Decision Points and Branching Narrative Feedback. In Proceedings of the Human-Computer Interaction. Applications and Services: 16th International Conference, HCI International 2014, Heraklion, Greece, 22–27 June 2014; Part III 16, pp. 622–633. [CrossRef]
- 28. Ouyang, L.-Z. Study on the Interactive Storytelling Structure and Flow of Games: Focusing on Detroit: Become Human. *J. Digit. Contents Soc.* **2024**, 25, 875–885. [CrossRef]
- 29. Lau, C.Y.; Ang, W.L. The game theory: Malaysia's position in South China Sea towards China's string of pearls strategy. *Adv. Sci. Lett.* **2016**, 22, 1618–1621. [CrossRef]
- 30. Cardona-Rivera, R.E.; Zagal, J.P.; Debus, M.S. GFI: A Formal Approach to Narrative Design and Game Research. In Proceedings of the 13th International Conference on Interactive Digital Storytelling, Bournemouth, UK, 3–6 November 2020; pp. 133–148. [CrossRef]
- 31. Lebowitz, J.; Klug, C. Interactive Storytelling for Video Games: A Player-Centered Approach to Creating Memorable Characters and Stories; Routledge: New York, NY, USA, 2011.
- 32. de Lima, E.S.; Feijó, B.; Furtado, A.L. Procedural generation of branching quests for games. *Entertain. Comput.* **2022**, 43, 100491. [CrossRef]
- 33. Jain, R.; Bhat, A. A Systematic Study on Methods of Spatiotemporal Hotspot Detection and Evaluation Metrics. In Proceedings of the 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 16–17 December 2022; pp. 193–200. [CrossRef]

34. Wang, Y.; Lu, C.; Chen, H.; Zhao, Y. Evaluation and spatial characteristics of cooperation among tourist attractions based on a geographic information system: A case study of the Yangtze River Delta region, China. *Sustainability* **2022**, *14*, 13041. [CrossRef]

- 35. Abdulla, H.; Ibrahim, M. The impact of urban spatial plan on land value: An approach system to relating space syntax premises to the land price. *Sustainability* **2023**, *15*, 7239. [CrossRef]
- 36. Kastens, K.A.; Liben, L.S. Children's strategies and difficulties while using a map to record locations in an outdoor environment. *Int. Res. Geogr. Environ. Educ.* **2010**, *19*, 315–340. [CrossRef]
- 37. Patel, K. Realizing Henri Lefebvre: Ideas of social space in Lucien Kroll's La Meme, Brussels 1969–1972 and Bernard Tschumi's Parc de la Villette, Paris 1982–1987. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2016.
- 38. Huang, X.; Ye, Y.; Zhang, H. Extensions of kmeans-type algorithms: A new clustering framework by integrating intracluster compactness and intercluster separation. *IEEE Trans. Neural. Netw. Learn. Syst.* **2014**, 25, 1433–1446. [CrossRef]
- 39. Khan, M.K.; Sarker, S.; Ahmed, S.M.; Khan, M.H. K-Cosine-Means Clustering Algorithm. In Proceedings of the 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), Khulna, Bangladesh, 14–16 September 2021; pp. 1–4. [CrossRef]
- 40. Ha, E.K. A study on the structure of spatial experience by digital media. Proc. Korean Soc. Spat. Des. 2012, 20, 9–18. [CrossRef]
- 41. Csikszentmihalyi, M.; Larson, R. *Flow and the Foundations of Positive Psychology*; Springer: Dordrecht, The Netherlands, 2014. [CrossRef]
- 42. Mok, J.; Choi, I. A study on the optimization of immersive environment in science museum. *J. Korea Inst. Spat. Des.* **2018**, *13*, 251–262. [CrossRef]
- 43. Liu, Z.; Liu, W.; Zhao, B. Spatial accessibility dynamics of urban parks in Nanjing, China: Implications for spatial equity. *Open House Int.* **2024**, 49, 696–717. [CrossRef]
- 44. Hong, X.; Peng, Q.; Zheng, R.; Lin, W.; Fan, S.; Su, K. Evaluating the spatial evolution of the eco-economy harmony in Anxi County, China, based on ecosystem services value. *Sustainability* **2024**, *16*, 1491. [CrossRef]
- 45. Wang, T.; Kang, X.; Li, X. Evaluation of the Spatial Quality of Sunken Plazas Based on Multi-source Time-spatial Data. In Proceedings of the Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things (CNIOT'23), Xiamen, China, 26–28 May 2023; pp. 548–553. [CrossRef]
- 46. Mao, Z.; Han, H.; Zhang, H.; Ai, B. Population spatialization at building scale based on residential population index. A case study of Qingdao City. *PLoS ONE* **2022**, *17*, e0269100. [CrossRef]
- 47. Chuang, I.T.; Chen, Q.; Poorthuis, A. Categorizing urban space based on visitor density and diversity: A view through social media data. *Environ. Plan. B Urban Anal. City Sci.* 2022, *50*, 1471–1485. [CrossRef]
- 48. Cegielska, K.; Piotr, P.; Kukulska-Kozieł, A. Urban green spaces: How geospatial information can help identify diversity. A case study from eastern Lesser Poland. *Bull. Geog. Socio-Econ. Ser.* **2022**, 7–29. [CrossRef]
- 49. Seoul Hanyangdoseong. Seoul Metropolitan Government, Cultural Heritage Division. Available online: https://english.seoul.go.kr/service/amusement/hanyangdoseong/ (accessed on 3 June 2024).
- 50. Barcelona Field Studies Centre. Urban Sampling Techniques. Available online: https://geographyfieldwork.com/urban_sampling.htm (accessed on 26 June 2024).
- 51. Etikan, I.; Bala, K. Sampling and sampling methods. Biom. Biostat. Int. J. 2017, 5, 00149. [CrossRef]
- 52. Bhattacherjee, A. *Social Science Research: Principles, Methods and Practices (Revised Edition)*; University of Southern Queensland: Toowoomba, Australia, 2019. [CrossRef]
- 53. Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979, 86, 420–428. [CrossRef]
- 54. Syakur, M.; Khotimah, B.K.; Rochman, E.; Satoto, B.D. Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster. In Proceedings of the 2nd International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, 9 November 2017; IOP Conference Series: Materials Science and Engineering, 2018; Volume 336, p. 012017. [CrossRef]
- 55. Hong, S.-B.; Kim, B.-H. Analysis and discussion of public sports data based on clustering model. *Asia-Pac. J. Converg. Res. Interchange* **2024**, *10*, 25–34. [CrossRef]
- 56. Baker, J.; Andris, C.; DellaPosta, D. Spatial social network (SSN) hot spot detection: Scan methods for non-planar networks. *arXiv* **2020**, arXiv:2011.07702.
- 57. Marutho, D.; Handaka, S.H.; Wijaya, E. The Determination of Cluster Number at K-Mean Using Elbow Method and Purity Evaluation on Headline News. In Proceedings of the 2018 International Seminar on Application for Technology of Information and Communication (iSemantic 2018), Semarang, Indonesia, 21–22 September 2018; pp. 533–538. [CrossRef]
- 58. Modha, D.S.; Spangler, W.S. Feature weighting in k-means clustering. Mach. Learn. 2003, 52, 217–237. [CrossRef]
- 59. Pedersen, K.; Jensen, R.R.; Hall, L.K.; Cutler, M.C.; Transtrum, M.K.; Gee, K.L.; Lympany, S.V. K-means clustering of 51 geospatial layers identified for use in continental-scale modeling of outdoor acoustic environments. *Appl. Sci.* **2023**, *13*, 8123. [CrossRef]
- 60. Lynch, K. The image of the environment. In *The Image of the City*; MIT Press: Cambridge, MA, USA, 1960; pp. 1–13, ISBN 978-0262620017.
- 61. Altan, M.Z. The theory of multiple intelligences and values education. Pegem J. Educ. Instruct. 2011, 1, 53–57. [CrossRef]

62. Jeong, E.-h.; Kim, G.-c. A study on the emotional space expression characteristics applying digital media—Centered on the experience of a cognitive process. *J. Korean Inst. Inter. Des.* **2009**, *18*, 115–123.

63. Mota, E.R.B.; Syrgiannis, C.; Fazenda, I.C.A.; Guevara, A.D. The 12 Senses by Rudolf Steiner and Observations of Alterations due to Autism. In Proceedings of the 14th International Conference on Innovation and Management (ICIM 2017), Swansea, UK, 27–29 September 2017; pp. 1428–1433.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.