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1. Introduction

Current experiments generally rely on neutral beams, directed 
toroidally, in order to induce the plasma to rotate. This toroidal 
rotation has been experimentally proven to stabilize resistive 
wall modes (a class of MHD instabilities that can cause dis-
ruptions) thereby enabling sustained discharges with a plasma 
β that violates the Troyon limit [1–4]. Since most designs 
of reactor-scale devices violate the Troyon limit [5] and are 
intolerant to disruptions [6], driving fast toroidal rotation in 
large devices is critical. Throughout this paper we will use the 

ITER design [7] as an example of a large device in order to 
provide realistic numbers and a frame of reference. Here we 
note that numerical analysis indicates that the slowest rotation 
able to stabilize resistive wall modes in ITER has an on-axis 
Alfvén Mach number around 0.5%–5% [8]. The precise value 
depends on the exact numerical model used, but is signifi-
cantly lower for broader rotation profiles.

Driving rotation in large plasmas is difficult because they 
have more inertia and require more energetic neutral beams to 
penetrate to the magnetic axis. Because of the velocity scalings 
of momentum versus energy, more energetic neutral beams 
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Abstract
Tokamaks with up–down asymmetric poloidal cross-sections spontaneously rotate due to 
turbulent transport of momentum. In this work, we investigate the effect of the Shafranov shift 
on this intrinsic rotation, primarily by analyzing tokamaks with tilted elliptical flux surfaces. 
By expanding the Grad–Shafranov equation in the large aspect ratio limit we calculate the 
magnitude and direction of the Shafranov shift in tilted elliptical tokamaks. The results show 
that, while the Shafranov shift becomes up–down asymmetric and depends strongly on the 
tilt angle of the flux surfaces, it is insensitive to the shape of the current and pressure profiles 
(when the geometry, total plasma current, and average pressure gradient are kept fixed). Next, 
local nonlinear gyrokinetic simulations of these MHD equilibria are performed with GS2, 
which reveal that the Shafranov shift can significantly enhance the momentum transport. 
However, to be consistent, the effect of β′ (i.e. the radial gradient of β) on the magnetic 
equilibrium was also included, which was found to significantly reduce momentum transport. 
Including these two competing effects broadens the rotation profile, but leaves the on-axis 
value of the rotation roughly unchanged. Consequently, the shape of the β profile has a 
significant effect on the rotation profile of an up–down asymmetric tokamak.
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inject less momentum per unit power [9]. This explains why 
the neutral beams in ITER are not expected to drive substanti al 
toroidal rotation [8, 10]. Therefore, unless the momentum 
pinch effect can be used to dramatically amplify the driven 
rotation [11] or bring in rotation from the edge [12, 13], we 
must turn to ‘intrinsic’ rotation (i.e. spontaneous rotation that 
is observed in the absence of external momentum injection 
[14]). This rotation is generated by the plasma through turbu-
lent transport of momentum. Because it is generated by the 
plasma itself, intrinsic rotation would be expected to scale well 
to large devices. However, the gyrokin etic equation, which is 
thought to govern turbulence in the core of tokamaks, pos-
sesses a particular symmetry [15–17] that implies this intrinsic 
momentum flux must be small in /ρ ρ≡∗ �a 1i , the ratio of the 
ion gyroradius to the tokamak minor radius. Fortunately, there 
is one mechanism that breaks this symmetry and is capable of 
spontaneously generating rotation in the core of a stationary 
plasma: up–down asymmetry in the magnetic geometry.

If the flux surfaces in a tokamak are up–down asymmetric 
(i.e. do not have mirror symmetry about the midplane), then the 
momentum flux is no longer constrained to be small in ρ∗� 1. In 
principle, up–down asymmetric flux surfaces are no more diffi-
cult to create than up–down symmetric surfaces, but all existing 
devices have been designed with nearly up–down symmetric flux 
surface shapes in mind. Hence, the ability of a device to create 
a particular up–down asymmetric surface depends strongly on 
the specifics of the shaping coils and the vacuum vessel. The 
TCV tokamak [18], which was designed to accommodate strong 
shaping, has been used to exper imentally investigate flux sur-
faces with a single up–down asymmetric shaping mode [19]. 
As expected, a large change in the rotation profile was observed 
when the up–down asymmetry of the plasma shape was varied. 
Subsequent gyrokinetic simulations [20], which give results 
consistent with the TCV experiments, indicate that up-down 
asymmetry is a feasible method to generate the current exper-
imentally-measured rotation levels in reactor-sized devices.

Configurations with only a single up–down asymmetric 
shaping mode drive rotation through the direct interaction of 
toroidicity (which defines up versus down) and the shaping 
mode. Recent analytic work [21, 22] demonstrates that adding 
a second shaping effect introduces two new physical mech-
anisms that have the potential to enhance the rotation. First, 
the tilting symmetry presented in [21] shows that flux surfaces 
with only a single shaping mode m must have momentum flux 
that is exponentially small in �m 1. Including two shaping 
effects allows them to beat together to produce an up–down 
asymmetric envelope on the connection length-scale that can 
interact with toroidicity to drive rotation. This breaks the tilting 
symmetry and permits the momentum flux to have a stronger 
scaling (i.e. polynomially small in �m 1). These scalings 
indicate that using low order shaping effects and combining 
different shaping effects to make asymmetric envelopes can 
effectively drive fast intrinsic rotation. Physically, high order 
shaping effects do not effectively drive rotation because the 
turbulent eddies, which are extended along the magnetic field 
line, average over small-scale variation in the magn etic equilib-
rium. Second, looking in the screw pinch limit (i.e. large aspect 
ratio limit) of a tokamak we learn that flux surfaces with mirror 

symmetry about any line in the poloidal plane do not drive any 
intrinsic rotation [22]. Including a second shaping effect can 
break mirror symmetry, allowing rotation to be driven through 
the direct interaction between the two shaping effects (com-
pletely independently of toroidicity). These two mechanisms 
dominate in certain regimes (i.e. the �m 1 and large aspect 
ratio limits) and bring in fundamentally new physics, but their 
importance in more realistic geometries is still unclear.

Together all of these results indicate that low order shaping 
effects are optimal for maximizing intrinsic rotation and it is 
important to explore non-mirror symmetric configurations with 
an up–down asymmetric envelope. In this context, there are two 
options. The first is to introduce up–down asymmetric elongation 
using external poloidal field coils and then rely on the Shafranov 
shift (i.e. the shift in the magnetic axis due to toroidicity) to 
break the mirror and tilting symmetries. This appears optimal 
because it makes use of the lowest possible shaping modes (i.e. 
m  =  1 and m  =  2). However, this strategy has the drawbacks that 
the effect of the Shafranov shift is formally small in aspect ratio 
and the direction and magnitude of the shift is a consequence of 
the plasma β profile and the global MHD equilibrium. Hence 
it is not independently controlled by external coils. The second 
option is to use external coils to introduce both elongation and 
triangularity (i.e. m  =  2 and m  =  3 shaping) into the flux surface 
shape in order to directly break mirror symmetry and create an 
envelope that breaks the tilting symmetry. Both modes are lowest 
order in aspect ratio and can be directly controlled by external 
shaping magnets, but this relies on higher order shaping modes 
than the first option. Practically speaking these two strategies are 
intertwined as the divertor geometry nearly always introduces 
some triangularity into the flux surfaces and the Shafranov shift 
exists regardless of the shape of flux surfaces. Nevertheless, 
for simplicity it is useful to distinguish them and examine each 
option independently. In this work we will explore the former: 
the influence of the Shafranov shift and the effect of the β profile 
on the turbulent momentum flux in the core of tokamaks.

In section 2 we use the Grad–Shafranov equation to esti-
mate the magnitude and direction of the Shafranov shift in a 
tokamak with a tilted elliptical boundary. To do so we start 
in section 2.1 by expanding the Grad–Shafranov equation in 
the large aspect ratio limit to write the lowest and next order 
analytic solutions for a linear toroidal current profile as a 
Fourier series in poloidal angle. In section 2.2, we calculate 
the Fourier coefficients needed to match the tilted elliptical 
boundary condition. In section 2.3, we find the dependence of 
the Shafranov shift on the boundary tilt angle and show that the 
shift is insensitive to the shape of both the current and pressure 
profiles (when the geometry, total plasma current, and average 
pressure gradient are kept fixed). These analytic results are 
verified using equilibrium calculations performed with the 
numerical Grad–Shafranov solver ECOM [23]. Section 3 con-
tains the results from nonlinear gyrokinetic simulations of the 
equilibria calculated in section 2. Section 3.1 starts by using 
the results of the MHD analysis to generate local equilibria 
for the gyrokinetic simulations. Section 3.2 details the results 
of several numerical scans aimed at illuminating the effect of 
the Shafranov shift and the β profile on momentum transport. 
In section  3.3 we discuss the sensitivity of the momentum 
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transport to changes in the magnetic equilibrium caused by 
altering the local gradient of β. Furthermore, in section 3.4 we 
consider the impact of changing the shape of the radial profile 
of β. Section 4 contains a summary of the results and some 
concluding remarks.

2. MHD equilibrium calculation of the Shafranov 
shift

In this section we will calculate a general analytic solution 
to the Grad–Shafranov equation for a linear (in poloidal flux) 
toroidal current profile to lowest and next order in an expan-
sion in large aspect ratio. The zeroth and first order solutions 
are needed because the Shafranov shift does not appear to 
lowest order. The analytic solution will contain Fourier coef-
ficients, which in general must be calculated numerically to 
achieve a tilted elliptical boundary flux surface. Making use of 
our numerically calculated Fourier coefficients, we will argue 
that varying the shape of the current profile and the shape of 
the pressure profile (while keeping the geometry, total plasma 
current, and average pressure gradient fixed) does not sig-
nificantly affect the Shafranov shift. These theoretical results 
are verified against the equilibrium code ECOM. Due to the 
insensitivity of the Shafranov shift to the exact current and 
pressure profiles, we are free to use the constant current case 
for input into the gyrokinetic simulations of section 3. This 
is helpful as the Fourier coefficients in the constant current 
equilibria can be calculated analytically.

2.1. Analytic solution for a linear current profile

The geometry of a tokamak equilibrium is governed by the 
Grad–Shafranov equation [24],

→
→⎛

⎝
⎜

⎞

⎠
⎟ψ µ

ψ ψ
∇ ⋅

∇
= − −R

R
R

p
I

Id

d

d

d
,2

2 0
2 (1)

where R is the tokamak major radial coordinate, ψ is the 
poloidal magnetic flux divided by π2 , µ0 is the permeability 
of free space, p is the plasma pressure, ≡ ζI RB  is the toroidal 
magnetic field flux function, 

→
B is the magnetic field, and ζ 

is the toroidal angle. Note that the effect of the /β µ≡ p B2 0
2 

profile only enters through the gradient of the pressure. In 
order to investigate the behavior of the Shafranov shift in a 
tilted elliptical geometry we will expand in the large aspect 
ratio limit, i.e. /≡ �ε a R 10  where a is the tokamak minor 
radius and R0 is the major radial location of the center of the 
boundary flux surface. We will take the typical orderings for a 
low β, ohmically heated tokamak [25]:

µ
∼ ∼ε ε
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,
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where B0 is the on-axis toroidal magnetic field and 

ψ= |∇ |/
→

B Rp  is the poloidal magnetic field. Also, we must 
expand ψ ψ ψ= + +…0 1 , = + +I I I I0 1 2, and p  =  p2, where 
the subscripts indicate the order of the quantity in ε relative 

to the lowest order contributions of ψ ∼ ∼ εaR B R B0 0 p
2

0
2

0 

and ∼I R B0 0 0. To ( )−εO B1 0  we find that the Grad–Shafranov 
equation is
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Since =I R B0 0 0 is a constant, this requires that I1 also be a 
constant. We are free to absorb I1 into I0 and set I1  =  0. Hence, 
using ∼r a we find to ( )O B0  that
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and to ( )εO B0  that
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where ( )≡ − +r R R Z0
2 2 is the distance from the center of 

the boundary flux surface, ( /( ))θ≡ −Z R Rarctan 0  is the usual 
cylindrical poloidal angle, and the axial location of the center 
of the boundary flux surface is assumed to be at Z  =  0.

Like [20, 26], we will develop our intuition by investi-
gating how the Shafranov shift changes with three simple, 
but realistic toroidal current profiles: constant, linear peaked, 
and linear hollow (in poloidal flux). Using Ampere’s law and 
→ → → →

ζ ζ ψ= ∇ +∇ ×∇B I  one can show that the toroidal cur-
rent is related to the right-hand side of the Grad–Shafranov 
equation through

R
p

I
I

j R
d

d

d

d
,0

2
0µ

ψ ψ
µ− − = ζ (6)

where ζj  is the toroidal current density in the plasma. We 
will parameterize all three profiles (i.e. constant, peaked, and 
hollow) by

R
p

I
I

j R j f
d

d

d

d
1 ,N N0 0

2 2

0
0

2

0
0 0 0 0µ

ψ ψ
µ ψ− − = = −ζ ( ) (7)

where ζj 0 is the lowest order current density in the aspect ratio 
expansion, jN is a positive constant, [ ]ψ ψ∈ − − −f ,N b b0

1
0

1  deter-
mines the slope of the current profile, and ψ b0  is the lowest 
order value of the poloidal flux on the boundary flux surface. 
The constant current case is achieved by setting fN  =  0, while 
the hollow current case arises from allowing fN to be negative.

Additionally, from equation (5) we see that it will be nec-
essary to distinguish the contributions to the current from the 
pressure and magnetic field terms in equation  (6). Like the 
toroidal current, we will assume the pressure gradient has the 
form of

  ( )µ
ψ

ψ− = −R
p

j f
d

d
1 ,Np Np0 0

2 2

0
0 (8)

where jNp and [ ]ψ ψ∈ − − −f ,Np b b0
1

0
1  are constants. By equa-

tion (7), this implies that the toroidal magnetic field flux func-
tion term must be
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  ( )
ψ
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I

j f
d

d
1 ,NI NI0

2

0
0 (9)

where

 ≡ −j j jNI N Np (10)

  ( )≡ −f
j

j f j f
1

NI
NI

N N Np Np (11)

are constants.

2.1.1. Solutions to the ( )O B0  Grad–Shafranov equation. Like 
[27–30], we will solve the ( )O B0  Grad–Shafranov equation by 
Fourier analyzing the magnetic flux in poloidal angle as

⎡⎣ ⎤⎦r r r m r m, cos sin ,C

m
m
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S
0 0,0

1
0, 0,∑ψ θ ψ ψ θ ψ θ= + +
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∞

( )   ( ) ( ) ( ) ( ) ( )

 (12)
where m is an integer representing the poloidal flux surface 
shaping mode number. Using equation  (12) we can rewrite 
equation (4) as

ψ
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where ⩾m 0, δi j,  is the Kronecker delta, and T  =  C, S is a 
superscript that indicates the sine or cosine mode. The solu-
tions to this equation with zero poloidal flux at the magnetic 
axis are
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where m  >  0, Jm is the mth order Bessel function of the 
first kind. The Fourier coefficients C0,m and S0,m are deter-
mined by the boundary conditions at the plasma edge, which 
is physically controlled by the locations and currents of 
external plasma shaping coils. Using trigonometric identi-
ties, equation  (12) and equations  (14) through (16) can be 
rewritten as

∑

ψ θ

θ θ
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where ≡ +N C Sm m m0, 0,
2

0,
2  is the magnitude of the Fourier 

mode and ( / )/θ ≡− S C marctant m m m0, 0, 0,  is the Fourier mode 
tilt angle.

Note that for the constant current case (i.e. fN  =  0),  
equation (17) reduces to
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∞

r
j

r N r m,
4

cos .N

m
m

m
t m0

2
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To understand the hollow current case, it is useful to note the 
identity

( ) ( )=J ix i I x ,m
m

m (19)

where Im is the mth order modified Bessel function of the 
first kind. From this we can demonstrate that equation (17) is 
equivalent to
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which can be more easily applied to hollow toroidal current 
profiles (i.e. fN  <  0).

2.1.2. Solutions to the ε( )O B0  Grad–Shafranov equation. In 
order to solve the ( )εO B0  equation we must first Fourier ana-
lyze the magnetic flux in poloidal angle. The lowest order 
Fourier-analyzed flux is given by equation  (12) and equa-
tions (14) through (16). To next order, we can write
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but we still must solve for ( )ψ rm
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equations  (12) and (21) into equation  (5). Since ( )ψ rm
C
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onent of equation (5) as a separate equation. This gives
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for m  =  1 and T  =  C
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for m  =  1 and T  =  S
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and for all other m and T  =  C, S
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(26)

Equation (22) can be solved using the method of variation 
of parameters, yielding

r J f j r r r Y f j r r

Y f j r r r J f j r r

T
m

f j
J f j r

2
d

2
d

! 2
,

m
T

m N N

r

m N N m
T

m N N

r

m N N m
T

m

m

N N
m m N N

1,
0

0

1, 2

∫

∫

ψ
π

π

= − Λ

+ Λ

+

′ ′ ′ ′

′ ′ ′ ′

( ) ( )
( ) ( )

( )( )

( )   ( )

  ( )

 
/

 

(27)

where we have imposed regularity at the origin, Ym is the mth 
order Bessel function of the second kind, and =T C S,m m m1, 1, 1,  
are Fourier coefficients determined by the boundary condi-
tions at the plasma edge. Combining equations  (21), (23) 
through (26), and (27) gives the complete solution to the 

( )εO B0  Grad–Shafranov equation  for an arbitrary boundary 
condition.

To understand the hollow current case (i.e. fN  <  0), we will 
use equation (19) and the identity

( ) ( ) ( )
π

= −+ −Y ix i I x i K x
2

,m
m

m
m

m
1 (28)

where Km is the mth order modified Bessel function of the 
second kind. This enables equation (27) to be reformulated 
as

∫

∫

ψ = − − Λ

− − − Λ

+
−

−

′ ′ ′ ′

′ ′ ′ ′

( ) ( )
( ) ( )

( )( )

( )     ( )

  ( )

 
/
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K f j r r r I f j r r

T
m

f j
I f j r

d

d

! 2
.

m
T

m N N

r

m N N m
T

m N N

r

m N N m
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m

m

N N
m m N N

1,
0

0
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(29)

For a constant current profile (i.e. fN  =  0), we can take the limit 
of equations (21), (23) through (26), and (27) as →f j 0N N  to 
find

∑

∑
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+

−

+ −
+

− +

−
+

+ +

+ +

=

∞
+ +

=

∞
+

=

∞

( )

( )

( )

( )

( ) ( )

( )
( )

( )

⎡

⎣
⎢
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥

r
R

j j
r

j f j
r

r
f j

m
r N m m

f j

m
r N m m

r N m

,
1

4

4

4 12
cos
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(30)

where ≡ +N C Sm m m1, 1,
2

1,
2  is the magnitude of the next order 

Fourier mode, ( / )/θ ≡− S C marctant m m m1, 1, 1,  is the next order 
Fourier mode tilt angle, and we have used equation (18) along 
with

=( )( )
   

→ /
m

f j
J f j r rlim

! 2
f j

m

N N
m m N N

m

0 2
N N

 (31)

Y f j r
m

m

f j
rlim

1 ! 2
f j

m N N

m

N N
m

m

0 2
N N π

= − −( ) ( )
 

→ / (32)

for ≠m 0. The first line of equation (30) contains the direct 
effect of toroidicity on the equilibrium, i.e. the Shafranov 
shift. The second and third lines show that a zeroth order 
shaping mode m splits into two modes, m  −  1 and m  +  1, at 
first order. The last line contains the homogeneous solution, 
which enables an arbitrary boundary condition to be satisfied.

2.2. Solution for a tilted elliptical boundary condition

In order to model realistic tilted elliptical tokamaks in our 
gyrokinetic simulations we must know how the Shafranov 
shift depends on the tilt angle of the elliptical boundary flux 
surface (parameterized by θκb as shown in figure 1). We will 
argue that the Shafranov shift is insensitive to the shape of the 
current and pressure profiles (using linear profiles parameter-
ized by equations (7) and (8) respectively) when the geometry, 
plasma current, and average / ψpd d  is kept fixed. Doing so 
makes the gyrokinetic simulations presented in section 3 more 
widely applicable, as they use equilibria derived assuming 
constant current and pressure gradient profiles.

Together equations (17), (21), (23) through (26) and (27) 
give the general solution of the Grad–Shafranov equation to 

( )εO B0 , which is sufficient to capture the behavior of the 
Shafranov shift. However, we still must determine the Fourier 
coefficients N0,m, θt m0, , C1,m, and S1,m in order to create a tilted 
elliptical boundary flux surface. To do so we require the 
poloidal flux to be constant on the boundary, parameterized 
in polar form by

( )
( ) ( ( ))

θ
κ

κ κ θ θ
=

+ + − + κ

r
a2

1 1 cos 2
,b

b

b b b
2 2 (33)

θ

a
b

R

Z

Figure 1. An illustration of the boundary flux surface (black, solid) 
with the untilted boundary surface (black, dashed) and the axis of 
axisymmetry (black, dash-dotted) shown for reference. Here a is the 
tokamak minor radius (i.e. the minimum radial position on the flux 
surface of interest), b is the maximum radial position, /κ ≡ b ab  is 
the boundary elongation, and θκb is the boundary tilt angle.
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where figure 1 shows the definitions of the various geometric 
parameters. Note that the tilt angle of the boundary θκb is 
defined to increase in the clockwise direction, in contrast to 
the poloidal angle θ.

To calculate N0,m and θt m0,  we substitute equation (33) into 
equation (17) to give

( ( ) )ψ θ θ ψ=r , .b b0 0 (34)

Since ψ b0  is a constant we know that ( ( ) )ψ θ θr ,b0  does not 
depend on θ. In theory, ensuring that this is true for all values 
of θ determines all of the lowest order Fourier coefficients. 
However, the exact solution for these coefficients is not ana-
lytic, so we will resort to a numerical solution. Before we do 
so we will note that, because the lowest order Grad–Shafranov 
equation has cylindrical symmetry, the only angle intrinsic to 
the problem is θκb, which is introduced by the boundary condi-
tion. This implies that

θ θ= κt m b0, (35)

for all m, which suggests that it will be useful to define a new 
poloidal angle

θ θ θ≡ + κ .s b (36)

Furthermore, since an ellipse has mirror symmetry about 
exactly two axes, we know that N0,m  =  0 for odd m.

To determine N0,m for even m we will take the Fourier series 
of ( ( ) )ψ θ θ ψ−r ,b s s b0 0 . Truncating the series at a large mode 
number mmax gives a long series of cosine terms. Requiring 
that the coefficient of each term must individually vanish gives 
a numerical approximation for all N0,m with ⩽m mmax. In the 
limit that →∞mmax  this approximation approaches the exact 
solution, though in practice ≈m 10max  was found to achieve 
sufficient precision for our purposes. This was determined by 
ensuring that the magnetic axis did not move significantly 
when mmax was changed by 40%.

To next order we must determine C1,m and S1,m such that

( ( ) )ψ θ θ ψ=r ,b b1 1 (37)

is true, where ψ b1  is the next order value of the poloidal flux 
on the boundary flux surface. This is done in a similar manner 
to the lowest order equations, except the Grad–Shafranov 
 equation  no longer has cylindrical symmetry and we must 
evaluate the integrals in equation (27). The lack of symmetry 
means that we do not automatically know the tilt angle of the 
modes. However, since ψ0 only has even Fourier mode num-
bers, it can be shown that equation (5) only has odd Fourier 
modes. Hence, = =C S 0m m1, 1,  for even m.

To calculate C1,m and S1,m for odd m we construct ( )ψ θr,1  
from equations (21) and (23) through (27). Taylor expanding 
this in �f j a 1N N

2  to (( ) )O f j aN N
f2 max  allows us to analytically 

calculate the integrals appearing in equation (27) because the 
Bessel functions become summations of polynomials. We can 
now substitute equation  (33) and find the Fourier series of 

( ( ) )ψ θ θ ψ−r ,b b1 1  to mode number mmax. Again, we require 
that all of the Fourier coefficients must individually vanish, 
which produces a numerical approximation for each C1,m 
and S1,m with ⩽m mmax. A value of ≈f 10max  was found to 

give a sufficiently accurate solution. This was determined by 
ensuring that the magnetic axis did not move significantly 
when fmax was changed by 40%.

For a hollow current profile, we repeat the entire above pro-
cess except for using equation (20) instead of equation (17) 
and equation (29) instead of equation (27). While the above 
process also works for the case of a constant toroidal current 
profile, this case actually has an analytic solution, which we 
derive in appendix A.

In order to understand the effect of changing the current 
and pressure profiles in a single experimental device, we will 
choose to keep the major radial location of the center of the 
boundary flux surface (R0), the minor radius (a), the edge elon-
gation (κb), the total plasma current (Ip), and an estimate of the 
average pressure gradient ( /ψp baxis 0 , i.e. the on-axis pressure 
divided by the edge poloidal flux) fixed. In order to keep these 
parameters fixed as we change the current and pressure pro-
files we must calculate how they enter into both jN and jNp. 
Calculating jNp is straightforward, as we can directly integrate 
equation (8) over poloidal flux to find

⎛
⎝
⎜

⎞
⎠
⎟µ

ψ

ψ
= −

−

j R
p f

1
2

.Np
b

Np b
0 0

2 axis

0

0
1

 (38)

To calculate jN we start with the definition of the plasma 
current,

( )

∫ ∫ ∫θ≡ =ζ
π θ

ζI Sj rj rd d d ,s

r

p
0

2

0

b s

 (39)

where S is the poloidal cross-sectional surface. Since we are 
only searching for a simple estimate, we will use equation (7) 
to rewrite equation (39) as

( )
( )

∫ ∫θ µ
ψ= −

π θ
I r

j

R
f rd d 1 ,s

r
N

Np
0

2

0 0 0
0

b s

 (40)

which is accurate to lowest order in aspect ratio. Substituting 
the boundary shape (i.e. equation (33)) and the constant cur-
rent solution for ( )ψ θr, s0  (i.e. equations (18), (35), (A.1) and 
(A.2)) allows us to directly take the integral to find

( )
⎛
⎝
⎜

⎞
⎠
⎟µ

π κ
ψ

= − +
−

j
I

a
R

f
O f j a1

2
.N

b

N b
N N0

p

2 0
0

1
2 2 4 (41)

The ( )O f j aN N
2 2 4  error arises from the fact that we used the con-

stant current solution for ( )ψ θr, s0 , which is only accurate to 
lowest order in �f j a 1N N

2 . This means that as we change fNp 
and fN we must change jNp and jN according to equations (38) 
and (41) respectively.

In figure  2 we plot the calculated flux surfaces resulting 
from three different current profiles, setting =f fNp N. We use 
inputs of R0  =  3, a  =  1 (where we have normalized all lengths 
to the minor radius), κ = 2b , and

π κ
ψ

≈ ≈
j

j

a R

I

p
0.7

Np

N

b

b

2
0

p

axis

0
 (42)

using projections for ITER [7]. Additionally, we choose to 
plot the case of /θ π=κ 8b  because nonlinear gyrokinetic 
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simulations have shown this value to be optimal for generating 
rotation [20]. Note that the ψ b0  appearing in equation (42) is 
part of /ψp baxis 0 , so it is fixed for all three profiles and can be 
calculated for a constant current profile from equation (A.1). 
In figure  2 we see that the current profile has an effect on 
the penetration of elongation from the boundary to the magn-
etic axis. This indicates that hollower current profiles better 
support elongation throughout the plasma, which is consis-
tent with previous theoretical work [20, 26, 31–33] as well as 
EFIT equilibrium reconstruction on simulated experimental 
data (see figure 5(b) of [34]). However, given these param-
eters, the Shafranov shift is not visibly altered, even with the 
extreme changes in the current profile.

In order to verify our calculation, we compared our results 
with the ECOM code [23], a fixed boundary equilibrium 
solver capable of modeling up–down asymmetric configura-
tions. In figure 3 we see a direct graphical comparison between 
ECOM and the results of our calculation that were shown in 
figure 2. The two sets of results agree well, especially for the 
constant and hollow current profile cases. The most significant 
source of error is expected to be finite aspect ratio effects in 
our analytic calculation, which arise from the assumption that 

/= �ε 1 3 1. Hence, since we carried out the analytic calcul-
ation to lowest and next order in the aspect ratio expansion, 
we expect to have an ∼ε 10%2  error. We also note that we 
do not expect the ( )εO B2

0  solution (i.e. the largest order that 
we omitted) to modify the Shafranov shift in a configuration 
with an elliptical boundary. This is because [35] demonstrates 
that toroidicity only introduces m  =  0 and m  =  2 modes at 
order ( )εO B2

0 . Furthermore, equation (30) demonstrates that 
a lowest order shaping effect m introduces only m  −  1 and 
m  +  1 modes to order ( )εO B0 . This suggests that only m  −  2, 
m, and m  +  2 modes will appear to ( )εO B2

0 . Therefore, we 

expect that the m  =  1 mode will not appear at ( )εO B2
0 , so the 

Shafranov shift will not be changed.

2.3. Location of the magnetic axis

We can obtain the Shafranov shift from our calculation by 
numerically solving the equation

( ( ) ( ))
→
ψ θ ψ θ∇ + =

θ θ= =
r r, , 0

r r
0 1

,axis axis
 (43)

using equations  (17), (21), (23) through (26), (27) and (35) 
as well as our numerical solutions for N0,m, C1,m, and S1,m. 
Here raxis and θaxis are the minor radial and poloidal location 
of the magnetic axis respectively, as indicated in figure 4. For 
the special case of a tilted elliptical boundary with a constant 
toroidal current profile (i.e. fN  =  0) we can exactly solve equa-
tion (43) as shown in appendix A. Equations (A.15) and (A.16) 
give the exact location of the magnetic axis when considering 
the poloidal flux to lowest order and next order in �ε 1.

In figure 5 we show the location of the magnetic axis as 
we vary the shape of the current/pressure profile (by changing 
fN and keeping =f fNp N), while holding the geometry, Ip, and 

/ψp baxis 0  fixed. For the most part, we see reasonable quanti-
tative agreement between our theoretical results and ECOM. 
However, the two calculations disagree on the trend of raxis 
with ψfN b0  at large tilt angles. We do not think this is sig-
nificant as it appears to be a breakdown in our inverse aspect 
ratio expansion. The two calculations become consistent if the 
aspect ratio is directly increased or if smaller tilt angles are 
used (where the effective aspect ratio is larger).

An important property of figure 5, which is supported by 
both the analytic and ECOM calculations, is the insensitivity 
of the Shafranov shift to extreme changes in the shape of the 
current profile. Both the magnitude and the direction of the 
Shafranov shift change very little between the different current 
profiles. This is especially true in the domain of [ / ]θ π∈κ 0, 4b , 
which is the range of tilt angles that seem most promising for 
implementing in an experiment [19, 20]. This result allows 
us to simplify our treatment of the Shafranov shift. The gyro-
kinetic simulations we will present in section 3 are formally 
inconsistent because they do not assume constant current and 
pressure gradient profiles, but they use the Shafranov shift of 
equilibria with constant current and pressure gradient pro-
files. However, this inconsistency is not important because the 
Shafranov shift only depends weakly on the shape of the cur-
rent and pressure gradient profiles. As we will see in figure 12, 
the turbulent momentum flux driven by the Shafranov shift is 
approximately linear in the size of the shift, so small errors in 
the shift will only lead to small errors in the momentum flux.

Also from figure 5, we learn that the tilt angle has a large 
effect, not just on the direction of the Shafranov shift, but also 
its magnitude. This is intuitive because we know that, for an 
ellipse with κ = 2, the midplane chord length is twice as long 
in the /θ π=κ 2b  geometry as it is in the θ =κ 0b  geometry. 
Lastly, we see that the direction of the Shafranov shift varies 
considerably, but it is purely outwards for the 0 and /π 2 tilt 
angles as expected. Importantly, it does not align with the tilt 

1 2 3 4 5
−2

−1

0

1

2

R

Z

Figure 2. Calculated flux surfaces for ψ ψ= =f f 0N b Np b0 0  
(black, solid), ψ ψ= =f f 0.4N b Np b0 0  (red, dotted), and 
ψ ψ= = −f f 0.4N b Np b0 0  (blue, dashed).
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angle of the ellipse, so it breaks the mirror symmetry of the 
configuration.

In figure 6 we show the location of the magnetic axis as 
we vary the shape of the pressure profile (by changing fNp) 
with a constant current profile (i.e. fN  =  0), while holding 
the geometry, Ip, and /ψp baxis 0  fixed. We see good quantita-
tive agreement between the calculation given in appendix A 
and ECOM. Figure 6 indicates that varying the shape of the 
pressure profile has little effect on the Shafranov shift. We 
note that, in general, varying the pressure profile has a large 
effect on the magnitude of the Shafranov shift, but not when Ip 
and /ψp baxis 0  are held constant. This is important as it justifies 
using our MHD results for the Shafranov shift with a constant 

/ ψpd d  profile as input for gyrokinetic simulations that are 
based on ITER, which has a constant / ψp rd d  profile [7]. Even 
though this is formally inconsistent, our analysis suggests the 
Shafranov shift in a configuration with constant / ψpd d  will be 
a reasonable estimate of the Shafranov shift in a configuration 
with constant / ψp rd d  (as long as the geometry, Ip, and /ψp baxis 0  
are the same). As we will show in figure 12, the momentum 
flux is approximately linear in the size of the Shafranov shift. 
Hence, the small error introduced by using the Shafranov shift 
calculated with a constant pressure gradient profile (in ψ) will 
not lead to large differences in the momentum flux.

1 2 3 4 5
−2

−1

0

1

2

R

(a)

(b) (c)

Z

1 2 3 4 5
−2

−1

0

1

2

R

Z

1 2 3 4 5
−2

−1

0

1

2

R

Figure 3. Flux surfaces calculated by both ECOM (dotted) and analytically (solid) for (a) ψ ψ= =f f 0N b Np b0 0  (black), (b) 
ψ ψ= =f f 0.4N b Np b0 0  (red), and (c) ψ ψ= = −f f 0.4N b Np b0 0  (blue).

Figure 4. Example flux surfaces showing the geometric meaning of 
the parameters raxis and θaxis, the minor radial and poloidal locations 
of the magnetic axis respectively.
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3. Nonlinear gyrokinetic simulations

In this section we will use the results from section 2 in order 
to perform nonlinear gyrokinetic simulations that include the 
effect of a realistic Shafranov shift on plasma turbulence. 
Since the size of the Shafranov shift is closely connected 
to the plasma pressure, we also included the effect of β′ on 
the magnetic equilibrium. We will use a modified version 
of GS2 [36] to self-consistently calculate the time-averaged 

radial flux of toroidal angular momentum Πζi t
 and the time- 

averaged radial flux of energy Qi t for ions. These calculations 
use a local equilibrium specified by an up–down  asymmetric 
generalization of the Miller geometry model [37].

3.1. Input parameters

In this work, we will use a flux surface of interest with 
Cyclone base case parameters (unless otherwise speci-
fied) [38]: a minor radius of ρ = 0.540 , a major radius 
of Rc0/a  =  3 (i.e. the major radial location of the center of 

the flux surface of interest), a safety factor of q  =  1.4, a 
magnetic shear of ˆ ( / ) /ρ ρ≡ =s q qd d 0.80 , a temperature 
gradient of ( )/ ρ = −Td ln d 2.3s , and a density gradient of 

( )/ ρ = −nd ln d 0.733s  (where the subscript s indicates either 
the ion or electron species). Here /ρ≡ ψr a is the normalized 
minor radial flux surface label, ψr  is a real-space flux surface 
label that indicates the minimum distance of each flux surface 
from its center, /ρ ≡ ψr a0 0  is the value of ρ on the flux surface of 
interest, and ψr 0 is the value of ψr  on the flux surface of interest. 
We note that taking ˆ≠s 0 can be formally inconsistent with 
a constant toroidal current profile (as it is in the large aspect 
ratio limit for circular flux surfaces). However, from figure 5 
we know that we can vary the current profile without affecting 
the Shafranov shift much, as long as we keep Ip and /ψp baxis 0  
fixed. Because of this freedom, we can use the Shafranov shift 
calculated assuming constant current and pressure gradient 
profiles for the Cyclone base case. Many of our simulations 
will model elliptical flux surfaces, all of which have an elon-
gation of κ = 2. Furthermore, all turbulent fluxes calculated 
by GS2 will be normalized to gyroBohm values of

Figure 5. The (a) minor radial and (b) poloidal location of the magnetic axis for constant ( ψ ψ= =f f 0N b Np b0 0 ) (black, solid, circles), 
linear peaked ( ψ ψ= =f f 0.4N b Np b0 0 ) (red, dotted, squares), and linear hollow ( ψ ψ= = −f f 0.4N b Np b0 0 ) (blue, dashed, triangles) current/
pressure gradient profiles, calculated analytically (lines) and by ECOM (points).

Figure 6. The (a) minor radial and (b) poloidal location of the magnetic axis for constant ( ψ =f 0Np b0 ) (black, solid, circles), linear peaked 
( ψ =f 0.4Np b0 ) (red, dotted, squares), and linear hollow ( ψ = −f 0.4Np b0 ) (blue, dashed, triangles) pressure gradient profiles, calculated 
analytically (lines) and by ECOM (points) for a constant current profile.
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ρΠ ≡ ∗n am vi i igB
2

th,
2 (44)

ρ≡ ∗Q n Tv ,i i igB
2

th, (45)

where /ρ ρ≡∗ ai  is the ratio of the ion gyroradius to the 
tokamak minor radius, ni is the ion density, mi is the ion mass, 
Ti is the local ion temperature, and /≡v T m2i i ith,  is the local 
ion thermal speed. All simulations used at least 48 grid points 
in the poloidal angle, 127 grid points in the wavenumber 
of the radial direction, 22 grid points in the wavenumber of 
the direction within the flux surface (but still perpendicular 
to the magnetic field), 12 grid points in the energy, and 10 
grid points in the untrapped pitch angle. The large number of 
poloidal grid points was needed to properly resolve the strong 
flux surface shaping.

The Miller geometry specification in GS2 captures the 
Shafranov shift through local values of / ψR rd dc  and / ψZ rd dc . 
Here ( )ψR rc  and ( )ψZ rc  indicate the location of the center of 
each flux surface as shown in figure 7. In order to model a 
realistic geometry, we will calculate local values of / ψR rd dc  
and / ψZ rd dc  for arbitrary tilt angle from our global MHD 
results. Specifically, we will use the dependence of the 
global Shafranov shift on tilt angle calculated for constant 
current and / ψpd d  profiles (i.e. the solid black line shown in 
figure 5).

First we will assume that / ψRd dc  and / ψZd dc  are con-
stant from the boundary flux surface to the magnetic axis. In 
figure 8, we plot our analytic solution (using the coefficients 
calculated in appendix A) and ECOM results to show that this 
assumption holds, regardless of the shape of the pressure and 
current profiles. Additionally, using equations (18) and (A.2) 
we see that

ψ∝ ψr
2 (46)

for a constant current profile and an exactly elliptical boundary. 
Therefore, using that ψ ψ= b at =ψr a, one can calculate the 
constant of proportionality and show

ψ ψ
ρ=

ψr a

d

d
2 .b

 (47)

Hence, the local Shafranov shift can be written as
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⎞
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where the coordinate system is defined such that the boundary 
flux surface is centered at ( )= =R R Z, 00 . Therefore, we are 

able to calculate / ψ
ψ

R rd dc r 0
 and / ψ

ψ
Z rd dc r 0

 for an ITER-like 

pressure profile using equations (48) and (49) as well as the 
constant current results shown in figure 5.

GS2 also requires a local value of

β
µ

≡′
ψ

a

B

p

r

2 d

d
0

0
2 (50)

because it constructs the poloidal magnetic field to be consis-
tent with the Grad–Shafranov equation. We will find that the 
momentum transport is quite sensitive to β′, so it is an impor-
tant parameter. In keeping with rough projections for ITER 
[7], we use a pressure profile that is linear in ψr . This allows 
us to estimate that

Figure 7. Three example flux surfaces (black, solid) at different 
values of ψr  with their geometric center (red, crosses). This 
illustrates the meaning of the parameters ( )ψR rc  (red, dashed, 
vertical) and ( )ψZ rc  (red, dashed, horizontal), the major radial and 
axial locations of the center of each flux surface respectively.

Figure 8. The shift in the center of flux surfaces (relative to 
the center of the boundary flux surface R0) as a function of 
normalized poloidal flux for geometries with θ =κ 0b . The 
points are calculated by ECOM for a constant current profile 
( ψ ψ= =f f 0N b Np b0 0 ) (black, circles), a linear peaked current 
profile ( ψ ψ= =f f 0.4N b Np b0 0 ) (red, pluses), a linear hollow current 
profile ( ψ ψ= = −f f 0.4N b Np b0 0 ) (blue, pluses), a linear peaked 
pressure profile ( ψ =f 0N b0  and ψ =f 0.4Np b0 ) (red, crosses), and 
a linear hollow pressure profile ( ψ =f 0N b0  and ψ = −f 0.4Np b0 ) 
(blue, crosses). Also shown is our analytic solution (solid line) and a 
linear best fit (dashed line).
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β
µ

≈− ≈−′
p

B

2
0.06,0 axis

0
2 (51)

using an ITER-like value for paxis. Since we are running elec-
trostatic simulations the value of β itself has no effect.

We note that assuming a constant β′ (i.e. / ψp rd d ) profile 
is formally inconsistent with the constant / ψpd d  profile used 
in the MHD calculation of the Shafranov shift. Hence, using 
the results shown in figure 5 together with equation  (51) is 
not formally valid. However, figure 6 shows that the magni-
tude and direction of the Shafranov shift is insensitive to large 
changes in the shape of the pressure profile at constant R0, a, 
κb, Ip, and /ψp baxis 0 . This suggests that, since we have kept the 
proper parameters fixed, the mismatch between the pressure 
profile of the simulation and the pressure profile used to cal-
culate the Shafranov shift will not have much effect.

3.2. Parameter scan results

A total of four scans in θκ, the tilt angle of the flux surface of 
interest, were performed at

 (1) β =′ 0 with no Shafranov shift,
 (2) β =′ 0 with a modest Shafranov shift (approximately half 

the ITER-like Shafranov shift),
 (3) β =′ 0 with an ITER-like Shafranov shift, and
 (4) an ITER-like β = −′ 0.06 with an ITER-like Shafranov 

shift.

These scans were chosen to directly determine the independent 
influences of the Shafranov shift and β′, while minimizing the 
total number of simulations. The magnitude and direction of 
the local ITER-like Shafranov shift was kept consistent with 
equations (48) and (49). Additionally, a single simulation was 
performed with β = −′ 0.06 and no Shafranov shift in order to 
isolate the effect of β′.

Four scans in ρ0, the minor radial coordinate of the flux 
surface of interest, were performed at

 (1) β =′ 0 with no Shafranov shift,

 (2) β =′ 0 with an ITER-like Shafranov shift,
 (3) an ITER-like β = −′ 0.06 with no Shafranov shift, and
 (4) an ITER-like β = −′ 0.06 with an ITER-like Shafranov 

shift.

All simulations had elliptical flux surfaces with /θ π=κ 8. These 
scans were done in order to investigate the balance between the 
Shafranov shift, which we expect to enhance the momentum 
transport, and β′, which our GS2 simulations will reveal to 
reduce the momentum transport. For these scans we kept 
β′ constant to be consistent with ITER (according to equa-
tion  (51)) and again calculated the local Shafranov shift at 
each minor radius according to equations (48) and (49).

Lastly a small scan was performed with circular flux sur-
faces in which θaxis, the direction of the Shafranov shift, was 
varied. This is unphysical, but it was done to explicitly isolate 
the effect of a pure flux surface Shafranov shift.

3.2.1. Elliptical boundary tilt scans. Figure 9 shows the ratio 
of the time-averaged ion momentum flux to the time-averaged 
ion energy flux, calculated by GS2 for the tilted elliptical 
scans. As we will show in section 3.4, this quantity indicates 
the strength of momentum transport and is roughly propor-
tional to the level of rotation (see equation (56)). Figure 9 also 
provides an estimate of the statistical error in the data. This 
error arises from performing a finite time-average over noisy 
turbulent quantities. It was estimated by repeating several 
simulations and computing the average difference between 
the corresponding results.

Figure 9 demonstrates that the presence of an ITER-like 
Shafranov shift increases the momentum transport, here by 
approximately 30%. As discussed in section 1, this is expected 
because the Shafranov shift provides an additional source of 
up–down asymmetry and breaks both the mirror and tilting 
symmetry of the flux surfaces. However, we see that a non-
zero β′ significantly reduces the momentum transport. We will 
investigate this result in section 3.3 by studying at the magni-
tude of the up–down symmetry-breaking in the gyrokin etic 

Figure 9. The ion momentum transport for flux surfaces with no 
shift (black, circles), a modest shift (blue, triangles), and an ITER-
like shift (red, squares) for β =′ 0 (filled) and an ITER-like β ′ 
(empty).

Figure 10. The ion energy flux for flux surfaces with no shift 
(black, circles), a modest shift (blue, triangles), and an ITER-like 
shift (red, squares) for β =′ 0 (filled) and an ITER-like β ′ (empty). 
In this and subsequent figures, whenever a single set of error bars is 
shown, it gives a representative estimate of the error for each data 
point.
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equation. These two effects counteract one another and for 
ITER-like values at /θ π=κ 8 and ρ = 0.540  the shift is over-
shadowed by β′, leading to a net reduction in the momentum 
transport of about 30%. In performing this scan, we added two 
simulations at /π 16 in order to better resolve the steep gradient 
that appears at small tilt angles. Additionally, we removed two 
simulations at /π 2 to save computational time because we had 
already confirmed that up–down symmetric shapes drive no 
rotation, even with a Shafranov shift.

Figure 10 shows the ion energy flux. We see that it is fairly 
insensitive to the effects of both the Shafranov shift and β′ in 
the domain of [ / ]θ π∈κ 0, 8 . At more extreme tilt angles we see 
that β′ dramatically increases the energy flux, as does the shift 
(albeit to a lesser extent).

3.2.2. Minor radial scans. These scans keep β′, ( )/ ρTd ln ds , 
( )/ ρnd ln ds , q, and ŝ constant with minor radius. We chose to 

keep β′ constant to be consistent with ITER (according to 
equation (51)). The others were kept fixed in order to make 
comparisons with previous results more straightforward. 
However, constant values for ( )/ ρTd ln ds  and ( )/ ρnd ln ds  is not 
an unreasonable approximation to many experiments, espe-
cially in the core of tokamaks [39]. The local shift is calcu-
lated at each minor radius to be consistent with equations (48) 
and (49), which result from the global MHD calculation.

The minor radial dependence of the momentum flux is 
shown in figure 11. Note that at ρ = 10  the momentum transport 
in the shifted configurations with and without β′ are indistin-
guishable. Comparing the two scans with β =′ 0, we see that 
the difference in the momentum transport from the two scans 
increases with minor radius. The only difference between the 
scans is the presence of the local Shafranov shift, which also 
increases with minor radius. Hence, this reinforces a result of 
figure 9: the Shafranov shift increases the momentum trans-
port. Similarly, comparing the two scans with no shift rein-
forces the fact that β′ reduces the momentum transport (which 
we also observed in figure 9). Additionally, comparing the no 
shift, β =′ 0 case to the ITER-like shift, ITER-like β′ case 
demonstrates the counteracting effects of the shift and β′ on 
the momentum transport. Because the shift is weak at small 

values of ρ0, the net effect of the shift and β′ is to lower the 
momentum transport. However, at large values of ρ0 the shift 
is stronger, but β′ remains the same. Here the net effect of the 
shift and β′ is to enhance the momentum transport.

Lastly, a dominant trend appearing in figure  11 is the 
roughly linear decrease of the momentum transport with 
minor radius. It is most clearly seen in the data series with no 
shift and β =′ 0, because the only difference between the four 
simulations is the value of the minor radius. This trend (i.e. 
an increase in the momentum transport with increasing aspect 
ratio) is not currently understood as nearly all simulations of 
intrinsic rotation from up–down asymmetry were performed 
using / /≈ψr R 1 6c0 0 . However, it was also observed in several 
simulations performed at / /≈ψr R 1 12c0 0  and / /≈ψr R 1 3c0 0   
in [20].

In figure  12 we show [( / ) / ]∆ Πζv R Qi c i t i tshift th, 0 , the 
change in the momentum transport due to the Shafranov shift, 

where ( )≡ − +r R R Zc c c0
2 2 and [ ]∆ xshift  is defined to be the  

value of x when the Shafranov shift is included minus the value 
of x when the Shafranov shift is omitted. This figure uses the 
same data as figure  11, but more clearly demonstrates that  
the momentum transport is not sensitive to small changes in 
the Shafranov shift. Rather it increases smoothly and fairly 
linearly with the strength of the Shafranov shift, irrespective 
of the value of β′.

3.2.3. Circular flux surface scan. To completely isolate the 
effect of the Shafranov shift on momentum transport we also 
ran simulations with shifted circular flux surfaces as shown in 
figure 13. To create up–down asymmetry and drive momentum 
transport we varied the direction of the tilt by changing the 
parameter θaxis with the magnitude of the shift fixed at  ∼30% 
larger than an untilted ITER-like machine. Scanning θaxis is 
unphysical because circular flux surfaces can only ever have 
a shift in the outboard radial direction, which corresponds to 
θ = 0axis . Though unphysical, this scan will help clarify the 
influence of the Shafranov shift.

Figure 14 shows that the presence and direction of the 
Shafranov shift has little effect on the ion energy flux from 
circular flux surfaces. This behavior is similar to the tilted 

Figure 11. The radial dependence of the momentum transport for 
flux surfaces with no shift (black, circles) and a strong shift (red, 
squares) varied according to equations (48) and (49), for β =′ 0 
(filled) and an ITER-like β ′ (empty).

Figure 12. The change in the momentum transport caused by 
introducing a local Shafranov shift with a magnitude of /− ψr rd dc  for 
β =′ 0 (filled) and an ITER-like β ′ (empty).
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elliptical results (see figure 10) in the range of [ / ]θ π∈κ 0, 8 , 
but different from the tilted elliptical results in the range of 

[ / / ]θ π π∈κ 8, 2 . This is consistent because the magnitude of the 
shift in the circular equilibria is similar to that of the elliptical 
equilibria in the range of [ / ]θ π∈κ 0, 8 , but considerably less 
than the magnitude of the shift present in the elliptical equi-
libria with larger tilt angles. Therefore, both figures indicate 
that the shift present in the circular and minimally-tilted ellip-
tical flux surfaces is not strong enough to modify the energy 
flux significantly.

Figure 15 shows the effect of a strong Shafranov shift on 
momentum transport. We see that a pure shift in circular flux 
surfaces (even when it is diagonal or vertical) drives minimal 
rotation compared to that generated by elliptical flux surfaces 
(as shown in figure 9). This is somewhat surprising since the 
shift is an m  =  1 shaping effect and we expect the momentum 
flux to scale as ( )−mexp  in mirror symmetric configurations 
[21]. However, there are two important caveats. Firstly, the 
exponential scaling is only true in the limit of �m 1, which is 
clearly not satisfied for m  =  1. Secondly, the Shafranov shift 
has a relatively minor effect on the magnetic equilibrium com-
pared with elongating the flux surfaces to κ = 2 (even when 
the shift is 30% stronger than that expected in ITER). This 
can be quantified by looking at the geometric coefficients that 
appear in the gyrokinetic equations (see appendix B and [21] 
for more details on these coefficients). The geometric coef-
ficients are the only way the magnetic geometry enters the 
local gyrokinetic model, so we know they must control the 

momentum transport. Plotting the geometric coefficient 
→
ψ∇

2
 

as an example produces figure 16, which shows that elongating 
an unshifted circular configuration to κ = 2 causes a 300% 
change, while introducing the Shafranov shift only causes a 
50% change. To fairly compare the ability of the Shafranov 
shift and elongation to drive rotation we should control for the 
effect on the magnetic equilibrium. From figure 16 we see that 
an elliptical configuration with κ = 1.2 has a similar effect 

on 
→
ψ∇

2
 as the pure Shafranov shift. Performing a nonlinear 

gyrokinetic simulation of a tilted elliptical configuration with 
κ = 1.2 and /θ π=κ 8 demonstrates that, like a pure Shafranov 
shift, it generates little momentum transport. This suggests 
that the Shafranov shift and elongation drive similar levels of 
rotation when they alter the geometric coefficients to a similar 
degree. Elongation is capable of driving much more rotation 

than a pure Shafranov shift, because it can have a much 
larger effect on the geometric coefficients. The effect of the 
Shafranov shift on the geometric coefficients is constrained 
through a practical limit on the maximum value of β. This 
proves to be more restrictive than the vertical stability limit, 
which constrains the externally-applied elongation.

3.3. Effect of the value of β′

In section 3.2 we included the effect of the Shafranov shift 
in nonlinear, local gyrokinetic simulations and found that it 
enhanced momentum transport as expected. Since the mag-
nitude of the shift depends on the plasma pressure, we also 
included a non-zero β′. While the Shafranov shift alters the 
spacing between flux surfaces, β′ enters through the right-
hand side of the Grad–Shafranov equation  and alters the 
local magnetic shear (i.e. the radial derivative of the magnetic 
field line pitch angle). We found that β′ strongly reduced the 
momentum flux, often entirely canceling the enhancement due 
to the Shafranov shift. Consequently, it is important to under-
stand how β′ alters the geometric coefficients of gyrokinetics.

In appendix B we discuss how β′ enters into the analytic 
expressions for the geometric coefficients. We show that β′ 
vanishes in the large aspect ratio limit (for the orderings of 
equation  (2)), like the Shafranov shift. This means that for 
large aspect ratio tokamaks β′ can be ignored and the results 

Figure 13. The magnetic geometry for circular flux surfaces with an ITER-like (a) horizontal shift, (b) diagonal shift, or (c) vertical shift.
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Figure 14. The energy flux for circular flux surfaces with no shift 
(black, dotted line) and an ITER-like shift (red, square points) as a 
function of the direction of the Shafranov shift. All simulations have 
β =′ 0.
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of [20] (which ignores β′) apply. However, the Shafranov shift 
also vanishes in this limit, so it cannot be used to enhance the 
momentum transport.

Figure 17 uses the geometries from figure 11 to show the 
quantitative effect of β′ on the geometric coefficient → →

α⋅ ∇vds  
(defined by equation (B.2)) with different values of ∥w  and ⊥w . 
Here →w is the velocity coordinate in the frame rotating with the 
background plasma flow, the ∥ subscript indicates parallel to 
the magnetic field, the ⊥ subscript indicates perpendicular to 
the magnetic field, →vds is the guiding center particle magnetic 
drifts,

  ( ) ( )
( )

→ →

∫α ζ ψ θ θ≡ − ⋅ ∇′ ′
θ ψ

θ

ψ

−

α

I R Bd 2 1
 (52)

is the coordinate within the flux surface and perpendicular to 
the magnetic field, and ( )θ ψα  is a free function. Previous work 
seems to indicate that → →

α⋅ ∇vds  may be the most important geo-
metric coefficient for understanding intrinsic rotation trans-
port due to up–down asymmetry [40]. We see that including 
a non-zero β′ tends to reduce the up–down asymmetry of 
→ →

α⋅ ∇vds , which is consistent with the observed reduction in 
momentum transport.

3.4. Effect of the β profile

In order to estimate a realistic value for β′, we used the on-
axis value of β predicted for ITER and assumed β was linear 
with minor radius ψr . This gave a reasonable order of mag-
nitude estimate. However, since the momentum transport 
is strongly and adversely affected by β′ it is worthwhile to 
discuss the implications of different radial profiles of β′. For 
example, we expect that in H-mode operation β′ would be 
larger at the plasma edge and smaller in the core compared to 
L-mode. Unfortunately, since intrinsic rotation is ultimately 
driven by the gradients in density and temperature, β′ is nec-
essary, even though including the effect of β′ in the geometric 
coefficients reduces the momentum flux. To see the relation-
ship between β′ and the rotation gradient we will follow the 
analysis of [20].

First, we neglect the momentum pinch (which can only 
ever enhance the level of rotation) and assume that diffusion 
is the only mechanism balancing the intrinsic source to get

Π ≈
Ω

ζ
ζ

ψ
ΠD n m R

r

d

d
,i t i i i c

i2
 (53)

where Πζi t
 is the time-averaged intrinsic ion momentum 

flux source term arising from up–down asymmetry (i.e. the 
momentum flux calculated by GS2 for /Ω = Ω =ζ ζ ψrd d 0i i ), 
ΠD i is the momentum diffusivity (i.e. the kinematic viscosity), 

Rc is the major radial location of the center of a given flux 
surface, /Ω ≡ζ ζu Ri i  is the ion rotation frequency, and ζu i is the 
ion bulk toroidal velocity. We take the energy flux to be the 
diffusion of a temperature gradient [41] according to

≈−
ψ

Q D n
T

r

d

d
,i t Qi i

i
 (54)

where Qi t is the time-averaged energy flux calculated by 
GS2. Combining these two equations  through the turbulent 
ion Prandtl number /≡ ≈ΠPr D D 0.7i i Qi  [20] gives
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 (55)

where we used that /=T m v 2i i ith,
2 . Doing this is useful because 

the Prandtl number is expected to be unaffected by changes 
in tokamak parameters. We will introduce the Alfvén Mach 

number, /µ≡ ζM u n m Bi i iA 0 0, because it is the relevant 
quantity for stabilizing MHD modes, such as resistive wall 
modes. Neglecting the density gradient (because ( )/ ψT rd ln di  
is three times larger than ( )/ ψn rd ln di ) as well as assuming 
=n ne i and =T Te i allows equation (55) to be rewritten as
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Figure 15. The momentum flux for circular flux surfaces with no 
shift (black, dotted line) and an ITER-like shift (red, square points) 
as a function of the direction of the Shafranov shift. All simulations 
have β =′ 0. Note that we have kept the range of the vertical axis 
the same as in figures 9 and 11 for ease of comparison.

Figure 16. The geometric coefficient ψ∇
→ 2

 for unshifted circular 

flux surfaces (black, solid), circular flux surfaces with a strong 
vertical shift (blue, dashed), and unshifted flux surfaces with a 
vertical elongation of κ = 2 (red, dotted) or κ = 1.2 (red, dash-
dotted) normalized to the unshifted circular value.
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We wrote this expression in terms of ( / ) /Πζv R Qi c i t i tth,  
because it is the normalized parameter that indicates how 
strongly a given geometry drives rotation.

Equation (56) shows several competing dependencies on 

β and β′, both explicitly and through ( / ) /Πζv R Qi c i t i tth, . 
Hence, it is difficult to analytically determine the β profile that 
maximizes rotation. However, we can perform a bilinear 
interpolation of the data in figure 11 to approximate the func-

tional form of ( ) ( / ) /ρ β ≡ Π′ ζG v R Q, i c i t i tth, . We note that 
the dependence on ρ also includes a change in the strength of 
the Shafranov shift according to equations (48) and (49). To 
estimate the function ( )ρ β′G ,  between data points at ( )ρ β′,1 1 , 
( )ρ β′,1 2 , ( )ρ β′,2 1 , and ( )ρ β′,2 2  we use
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In the region ρ< 0.3 we do not have data, so we assume that 

( / ) /Πζv R Qi c i t i tth,  is constant in ρ. This assumption is con-
servative compared to a linear extrapolation using the data at 
ρ = 0.3 and ρ = 0.54. Furthermore, it leads to zero slope on-
axis, which is consistent with constant asymptotic behavior 

in the large aspect ratio limit. To calculate the rotation pro-
file for geometries with a strong Shafranov shift (shown in 
figure 18(c)) we used only the red square points in figure 11. 
Alternatively, if we assume that β is very low (i.e. β =′ 0) we 
can ignore the effect of the pressure profile on the magnetic 
geometry (i.e. neglect the Shafranov shift and assume pres-
sure gradient term in the Grad–Shafranov equation  is much 
smaller than the toroidal field flux function term). In this case 
the rotation profile (shown in figure 18(d)) can be calculated 
by a 1-D interpolation of the filled black circles because the 
turbulent transport becomes independent of β′.

Figure 18 shows that both the Shafranov shift and the shape 
of the β profile have a significant effect on the rotation profile. 
A broader β profile consistently produces a broader rotation 
profile, but with a lower on-axis Mach number. This means 
that the β profile that maximizes the on-axis Mach number 
is not necessarily optimal because broad rotation profiles are 
expected to be significantly more effective at stabilizing resis-
tive wall modes [8]. Additionally, figures 18(c) and (d) indicate 
that stronger plasma pressure effects (i.e. Shafranov shift and 
β′) will cause up–down asymmetry to drive broader intrinsic 
rotation profiles. The reason for this can be seen in figure 11. 
Adding both the Shafranov shift and β′ (to go from the filled 
black circles to the empty red squares) reduces the core 
momentum transport, while enhancing the edge momentum 
transport. Lastly, we see that the largest rotation gradient 

Figure 17. The geometric coefficient α⋅ ∇→ →
vds  in units of /( )Ωv as sth,

2 2  without Shafranov shift at (a) ρ = 0.30 , (b) ρ = 0.540 , (c) ρ = 0.80 , 
and (d) ρ = 10  for no β ′, ∥ =w v s

2
th,
2 , =⊥w 02  (black, solid); an ITER-like β ′, ∥ =w v s

2
th,
2 , =⊥w 02  (red, dotted); and an ITER-like β ′, ∥ =w 02 , 

=⊥w v2 s
2

th,
2  (blue, dashed).

Plasma Phys. Control. Fusion 58 (2016) 125015



J Ball et al

16

occurs at the edge of the peaked pressure profile because the 
integral over the momentum flux in equation (56) is weighted 
towards regions with small β and large β′. This indicates that, 
even though the up–down asymmetry of a single-null divertor 
is usually limited to the edge, it may still drive significant rota-
tion (especially in H-mode operation).

4. Conclusions

This paper focuses on two competing effects influencing the 
momentum transport: the Shafranov shift and β′. Together the 
two effects reduce momentum transport in the core, enhance it 
near the edge, and roughly cancel when averaged over the entire 
device. Using the nonlinear gyrokinetic simulations shown 
in figure 11, we estimate the rotation profile when these two 
effects are included (i.e. figure 18(c)) and when they are omitted 
(i.e. figure 18(d)). Comparing these profiles demonstrates that 
the on-axis value of the rotation is roughly unchanged, but the 
rotation profile is broadened (which is expected to be advanta-
geous for stabilizing resistive wall modes). The magnitude of 
the on-axis rotation was found to be  ∼1% (without including 
any enhancement due to the momentum pinch effect), which is 
in the range of what is needed to stabilize resistive wall modes 
in a large device like ITER (i.e. 0.5%–5%) [8].

As anticipated a strong Shafranov shift was found to 
enhance the momentum transport in up–down asymmetric 
configurations because the shift itself becomes up–down 
asymmetric. The magnitude and direction of the shift was 

found to be insensitive to the shape of both the toroidal current 
(for a pressure profile that is a uniform fraction of the current 
profile) and pressure (for a uniform current profile) profiles at 
fixed geometry, plasma current, and average / ψpd d .

On the other hand, it was found that the effect of β′ on 
the magnetic equilibrium significantly reduces the momentum 
transport, often entirely canceling the effect of the Shafranov 
shift. Consequently, the shape and magnitude of the rotation 
profile is sensitive to the radial profile of β. By studying the 
geometric coefficients, we found that, like the Shafranov 
shift, β′ appears to ( )εO . However, unlike the Shafranov shift 
it tends to reduce the up–down asymmetry of the geometric 
coefficients.
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Figure 18. Example (a) β profiles with their corresponding (b) β ′ and (c, d) Alfvén Mach number profiles, estimated using the data from 
figure 11 both (c) with and (d) without the effects of the pressure profile on the magnetic equilibrium, for constant β ′ (black, solid), linear 
peaked β ′ (red, dotted), and linear hollow β ′ (blue, dashed) profiles.
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Appendix A. Location of the magnetic axis for  
a constant current profile

In order to find the location of the magnetic axis for a constant 
toroidal current profile we will start with equation  (18). By 
requiring that ( ( ) )ψ θ θ ψ=r ,b b0 0  be constant on a tilted ellip-
tical boundary parameterized by equation (33), we find that

ψ
κ

κ
=

+

j a

2 1
b

N b

b
0

2 2

2 (A.1)

κ
κ

=
−

+
N

j

4

1

1
N b

b
0,2

2

2 (A.2)

and θ θ= κt b0,2  (according to equation (35)). All other lowest 
order Fourier coefficients are zero.

Calculating the next order Fourier coefficients from the 
boundary condition (i.e. requiring that ( ( ) )ψ θ θ ψ=r ,b b1 1  is 
constant) is algebraically intensive. We start with  equation (30), 
the next order solution of the poloidal flux for a constant cur-
rent profile. Note that while the current profile is assumed to 
be constant, we are allowing for a pressure gradient that is 
linear in ψ. First, we will postulate that the fifth, third, and 
first Fourier harmonics are the only ones required to match 
the boundary condition. All other next order Fourier coeffi-
cients are set to zero. Then we change to the shifted poloidal 
angle θ θ θ≡ + κs b in order to align the coordinate system with 
the minor and major axes of the elliptical boundary flux sur-
face. Next we change from polar coordinates to Cartesian 

coordinates in the poloidal plane (i.e. = +r X Y2 2 and 

( / )θ = Y Xarctans ). This converts ( )ψ θr, s1  into ( )ψ X Y,1 , a fifth-
order polynomial that contains products of X and Y. Instead of 
equation (33), we use
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the traditional Cartesian formula for an ellipse, as the boundary 
condition. Solving for ( )Y X  and substituting it into ( )ψ X Y,1  
allows us to eliminate all appearances of X2, X4, Y2, and Y4. 
We are left with a fifth-order polynomial that only has six 
terms, one proportional to each of X5, ( )Y X5 , X3, ( )Y X3 , X, and 

( )Y X . Since we have already made use of the boundary condi-
tion, we know that the whole polynomial must be constant. 
Requiring that the coefficients of the six terms be zero gives

( ) ( )θ θ= −κ κC A m A mcos sinm Cm b Sm b1, (A.4)

( ) ( )θ θ= − −κ κS A m A mcos sin ,m Sm b Cm b1, (A.5)
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and = =A A 0Cm Sm  for all other m. These coefficients 
reduce to those found in section 2.1.2 of [26] when fNp  =  0 
as expected.

The above equations  give the full solution to the Grad–
Shafranov equation  to lowest and next order in aspect ratio 
for a constant toroidal current profile, linear (in ψ) pressure 
gradient, and tilted elliptical boundary. We want to substi-
tute these solutions into equation (43) and solve for raxis and 
θaxis, the minor radial and poloidal locations of the magnetic 
axis. The simplest approach is to first expand equation  (43) 
to lowest order in �ε 1 and change to Cartesian coordinates 
to find

( ) ( )
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ψ ψ∇ +∇ =

= = = =
R Z R Z, , 0,

R R Z Z R R Z
0

,
1

, 0axis0 axis0 0
 (A.12)

where Raxis0 and Zaxis0 are the lowest order solutions for the 
major radial and axial locations of the magnetic axis respec-
tively. The solution to this,
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is easy to find and gives the location of the magnetic axis 
to first order in �ε 1. However, this turns out to be a fairly 
poor approximation and does not produce close agreement 
with the numerical results from ECOM. However, if we solve 
 equation (43) exactly we get a much better approximation that 
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matches ECOM. The crucial step to solving equation  (43) 
exactly is to guess that the lowest order solution for the loca-
tion of the magnetic axis in equations (A.13) and (A.14) has 
the exactly correct tilt angle, i.e.
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−
Z

R R
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We can see that this is indeed true by substituting equa-
tion (A.15) into equation (43), which produces a quartic equa-
tion of the form
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The exact location of the magnetic axis is given by solution 
of this quartic and equation (A.15). Quartics have a very com-
plicated analytic solution, so in practice it is simpler to solve 
computationally. However, for the special case of fNp  =  0 we 
see that d4  =  0 and the quartic reduces to a quadratic solved by
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− + −
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d d d d
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Appendix B. Dependence of the gyrokinetic  
geometric coefficients on β′

In this appendix, we will study the sensitivity of the 
momentum flux to β′ by investigating how the gyrokinetic 
equation changes with β′. The magnetic geometry only enters 
the electrostatic local gyrokinetic model (in the absence of 
rotation) through eight geometric coefficients [21]: ˆ →

θ⋅ ∇b , B,
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→
ψ|∇ |2, 

→ →
ψ α∇ ⋅ ∇ , and 

→
α|∇ |2. Here ˆ /

→
≡b B B is the magnetic field 

unit vector, →vds is the guiding center particle drift velocity, α 
(defined by equation  (52)) is the coordinate within the flux 
surface and perpendicular to the magnetic field, /µ≡ ⊥m w B2s

2  
is the magnetic moment, ms is the particle mass of species s, 
and Ωs is the gyrofrequency.

The calculation of the geometric coefficients in GS2 is done 
in the context of the Miller local equilibrium [37]. This must 
be done carefully as the Miller model takes the flux surface 
shape and its radial derivative as input, but all second order 
radial derivatives are calculated through the Grad–Shafranov 
equation. It is through these second order radial derivatives (as 
well as the explicit dependence appearing in αvds ) that β′ enters 
the geometric coefficients. Additionally, we note that we keep 
the safety factor, the magnetic shear, the background gradi-
ents, and the geometry fixed as we change β′. Therefore, while 
the Shafranov shift directly enters the flux surface geometry 
and affects all of the geometric coefficients, the effect of β′ 
is limited to a few coefficients. The parameter β′, which is 
a normalized form of / ψp rd d  (see equation (50)), only enters 

into three coefficients: αvds , 
→ →
ψ α∇ ⋅ ∇ , and 

→
α∇

2
. We will 

start with equations derived in [40] to show precisely how β′ 
enters and that its effect is small in the inverse aspect ratio 
�ε 1, when using the ohmically heated tokamak ordering (see 

equation (2)).
First we combine equations (B.16) and (6) from [40] to get
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where the curly braces below the different terms give their 

ordering in �ε 1, lp is the poloidal arc length such that  

l R Zp
2 2θ θ θ∂ ∂ = ∂ ∂ + ∂ ∂/ ( / ) ( / ) , ( ˆ ˆ ) /

→ → →
κ ψ ψ≡− ⋅ ∇ ⋅ ∇ ∇b bp p p  

is the curvature of the poloidal magnetic field, and ˆ /
→

≡b B Bp p p 
is the poloidal field unit vector. We see that introducing β′ 
creates a lowest order modification to ( / )ψI Id d . Next, using 
equation (6) of this paper, we can find that the right-hand side 
of the Grad–Shafranov equation can be written as
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which explicitly includes a term proportional to the pres-
sure gradient (i.e. β′). However, to lowest order in aspect 
ratio the coefficient of this term is zero as it is composed 
of a safety factor term that is small and two integral terms 
that cancel with each other (because ( )= + εR R O R0 0 ). 
All other quantities in equation  (B.5) do not contain the 
pressure gradient and can be calculated directly from 
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the flux surface geometry provided to the Miller model.  
Therefore, β′ only introduces an ( )εO B0  modification to 

j R0µ ζ .
We will see that the toroidal current density (i.e. 

µ ζj R0 ) will appear in several places in the geometric coeffi-
cients. Equation (B.6) from [40] gives the radial derivative of 
the poloidal field as

Although the toroidal current term appears as ( )− −O a R1
0

1 , the effect of β′ on / ψ∂ ∂Bp  is small by an order (i.e. ( )− −εO a R1
0

1 ) 
because β′ does not enter µ ζj R0  to lowest order. We can directly differentiate /=ζB I R to get
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Ordering these two terms we see that the effect of / ψId d  is small, so the effect of β′ on / ψ∂ ∂ζB  through equation (B.4) is small 
by one order, entering at ( )− −εO a R1

0
1 .

Using equations (B.14) and (6) from [40] gives
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By ordering the various terms we find that the / ψId d  term is 

small by two orders in �ε 1. However, the µ ζj R0  term enters 
to lowest order, therefore the effect of β′ on 

→
α∇  is only small 

by one order (i.e. ( )−εO a 1 ). The dependence of the coeffi-

cients 
→ →
ψ α∇ ⋅ ∇  and 

→
α∇

2
 on 

→
α∇  is apparent. Hence β′ does 

not enter 
→ →
ψ α∇ ⋅ ∇  and 

→
α∇

2
 to lowest order in �ε 1. Instead 

it enters to next order due to the quantity µ ζj R0 , which is 

given by equation  (B.5). The geometric coefficient αvds  is 
more complicated. Substituting equation  (B.7) into equa-
tion (B.2) gives
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We see that β′ will enter into the µ ζj R0  term as well as both 
/ ψ∂ ∂Bp  terms, but ordering these three terms reveals that the 

effect of β′ is ( )Ω− − −εO a R v s s
2 1

0
1

th,
2 1 . The parameter β′ has a 

much larger ( )Ω− − −εO a R v s s
1

0
1

th,
2 1  effect through the two 

→
α∇  

terms as well as the / ψId d  term. Figure 17 illustrates the rela-
tive magnitudes of these two effects for a few typical geom-
etries. The difference between the dotted red line and the 
dashed blue line indicates the effect of the / ψId d  term, while 
the difference between the solid black line and the dotted red 
line indicates the effect of µ ζj R0  acting through 

→
α∇ . We see 

that the effect of µ ζj R0  seems to dominate.
In conclusion, β′ only enters into three of the geometric 

coefficients: αvds , 
→ →
ψ α∇ ⋅ ∇ , and 

→
α∇

2
. The dominant effect of 

β′ on 
→ →
ψ α∇ ⋅ ∇  and 

→
α∇

2
 is contained in the quantity µ ζj R0  

and is small in �ε 1. The drift coefficient αvds  also depends on 
β′ to next order because of µ ζj R0 . However, it has another sep-
arate dependence through the quantity / ψId d  that is formally 
the same size in �ε 1, but in practice this appears to be a weak 
effect. These dependences are the only way that the gyrokin-
etic model knows about β′. Hence they must be responsible 
for the significant reduction in the momentum transport.
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