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3D moving target tracking with measurement fusion of TDoA/FDoA/AoA
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Abstract

In this paper, we investigate the tracking of the 3D moving target when multiple measurements are available. We propose a particle filter-based
3D target tracking algorithm with measurement of time difference of arrival (TDoA), frequency difference of arrival (FDoA), and angle of arrival
(AoA). We analyze the performance of the proposed scheme by MATLAB simulations and show the efficiency of the particle filter for 3D moving
target tracking with various types of measurements.
c⃝ 2019 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Accurate and reliable 3D target tracking/localization is be-
coming very important for current and future industrial ap-
plications. Location-based services (LBS) are being applied
in various fields such as emergency responses, tracking sys-
tems, surveillance, mobile marketing, entertainments, gaming,
etc. [1]. It is generally believed that the most accurate wireless
positioning system is global navigation satellite system (GNSS)
(e.g., GPS—USA, Galileo—Europe, GLONASS—Russia, and
Beidu—China) which implements a form of trilateration, but
the GNSS signal is not always available when operating under
radio frequency interference or anomalous ionospheric con-
ditions [2]. To simply and accurately perform the location
estimate, many localization techniques without GNSS have
been developed and proposed [3].

Geolocation technique-based localization methods are in-
troduced [4]. The time difference of arrival (TDoA) has an
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advantage that can solve time synchronization problem by
eliminating the clock bias, which causes localization error in
time of arrival (ToA) measurements. The angle of arrival is
determined by the array vector of the received signal, which
can be a quite good measurement for the location-awareness
communications [5]. The signal of a moving target can provide
the frequency difference of arrival (FDoA) measurement which
represents the difference of the Doppler frequency. Target
tracking with TDoA, FDoA [6] have been developed.

In a scenario where the state or the measurements are
nonlinear, the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) can be used for tracking the target. How-
ever, EKF has an unavoidable error in the linearization of the
nonlinear model. In addition, EKF and UKF are designed for
Gaussian models, leading to errors when the filters are applied
to estimate non-Gaussian distribution.

In this paper, we propose the particle filter (PF)-based 3D
target tracking algorithm with measurement collaboration of
TDoA, FDoA, and AoA. It can be used for tracking the location
of moving unmanned vehicles in real time. It can be also
adapted to problems of tracking unmanned vehicles or people
in distress where vehicles or people can be identified from
the satellites. We show the performance enhancement in the
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Fig. 1. Scenario of 3D target tracking with measurement collaboration of
TDoA/FDoA/AoA.

localization accuracy of the proposed algorithm compared to
the results of EKF-based target tracking and without the AoA
measurement.

2. System model

2.1. Mobility model

We considered the mobility model [7] for defining the 3D
movement of the target. The state vector of the moving target at
time instant t is denoted by

xt = [xt , ẋt , ẍt , yt , ẏt , ÿt , zt , żt , z̈t ]T, (1)

where xt , yt , and zt are the position of target, ẋt , ẏt , and
żt represent the velocity of target, ẍt , ÿt , and z̈t indicate the
acceleration of target in the x , y, z directions in 3 dimension.
The movement of the target can be described by

xt = A(T, α)xt−1 + Bu(T )ut + Bw(T )wt , (2)

where T is a discrete time step, α is a reciprocal of the
maneuver time constant, and wt is a noise of mobility model.
More details of mobility model is given in [7].

2.2. Measurement model

Fig. 1 shows the scenario for 3D target tracking considered
in this paper. We assume that TDoA/FDoA/AoA measurements
are available at each anchor from the received signals of the 3D
target and the other anchor nodes. In this scenario, an anchor
node 1 acts as a reference node and the TDoA/FDoA/AoA
measurements are defined as

zt = h(xt ) + vt , (3)

where the function h(xt ) is denoted by

h(xt )
= [r12, r13, . . . , r1i , f21, f31, . . . , fi1, ψ1, θ1, . . . , ψi , θi ]T,

(4)

where the location parameters are defined in Section 2.3. vt ∼

N (0,Σt ) is the measurement noise vector, in which Σt is
assumed to be diagonal matrix.

2.3. Location parameter

The TDoA between a reference anchor 1 and the anchor i is
given by

r1i ≜ r1 − ri = (t1 − t0)c − (ti − t0)c = (t1 − ti )c, (5)

where t0 is the clock time, ti is the time of arrival (ToA) between
the anchor node i and the target, c is the speed of light.

FDoA [8] of the two received signals between the target and
the anchor node i is denoted by

fi1 ≜
fc

c

(
(ṗt − ṡt,1)T (pt − st,1)⏐⏐pt − st,1

⏐⏐ −
(ṗt − ṡt,i )T (pt − st,i )⏐⏐pt − st,i

⏐⏐
)
,

(6)

where pt , ṗt ∈ R3 are the position and velocity of the target,
and st,i , ṡt,i ∈ R3 are the position and velocity of the anchor
node i , at time instant t respectively.

The azimuth and the elevation of AoA from the target to the
anchor node i are respectively defined as

φi = arctan
yt,i − yt

xt,i − xt
,

θi = arccos

√
(xt,i − xt )2 + (yt,i − yt )2⏐⏐pt − st,i

⏐⏐ . (7)

3. Particle filter-based target tracking with measurement
collaboration

Unlike the KF, which do not guarantee optimum solution, we
employ the use of PF for target tracking with the measurement
collaboration given in (3) [9]. Furthermore, we adopt the
Markov chain Monte Carlo (MCMC)-based resampling method
for estimating the more accurate posterior distribution of the
target state, [10,11].

Given the samples {xn
t , w

n
t }

N
n=1, the particle evolution is

defined as

xn
t = A(T, α)xn

t−1 + Bu(T )un
t + Bw(T )wt , ∀n ∈ ΩN , (8)

where ΩN is set of N particle samples.
The posterior distribution of the target state at time t is

approximated by

p(xt |zt ) ≈

N∑
n=1

wn
t δ(xt − xn

t ), (9)

where wn
t is the nth particle weight and can be computed by

wn
t ∝ wn

t−1 p(zt |xn
t ). (10)

The likelihood function of measurements p(zt |xn
t ) is given by

p(zt |xn
t )

=
1√

(2π )k |Σt |
exp

(
−

[
zt − h(xn

t )
]T
Σ−1

t

[
zt − h(xn

t )
]

2

)
.

(11)
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Table 1
Simulation parameters.

Parameter Value Parameter Value

MC 100 σT DoA 10 [m]
Iteration 400 [s] C PX,Y 5, 15, 25, 30 [m/s2]
Np 2500, 5000 C PZ 3, 8, 21, 25 [m/s2]
σstate 0.1 [m/s2] α 0.6
σF DoA 10 [Hz] T 1
σAoA 1,3,5 [◦] Network size 5000 × 5000 × 400 [m3]

Fig. 2. Trajectory of moving target.

4. Simulation results

4.1. Simulation environment

To do tracking, we first need to know the existence of the
target. There are many kinds of methods to detect the target,
and this field has been studied much [12,13]. In this paper, we
assume that the detection of the target is accurate.

In our simulation, we will track the position of one target. By
using measurements, we can estimate the position of the target
with particles. The number of anchor nodes used are 4 and 8.
Regardless of Ne f f (threshold value) the resampling process
is performed every iteration. We summarize the simulation
parameters in Table 1. The FDoA performance is affected by
the velocity of the target rather than the noise, so we analyzed it
according to the average velocity. And the AoA performance
is analyzed according to the noise level. The performance
about anchor nodes was analyzed according to the number and
arrangement.

4.2. Performance analysis

Fig. 2 gives an illustration of the exemplary trajectory of the
moving target. There are 8 anchors and the target moves in the
network based on the mobility model. Fig. 3 shows the CDF of
positioning errors using PF with FDoA (red line), PF without
FDoA (black line) and EKF (blue line) where the average
velocity is about 30 [m/s2] and the number of anchors is 8 (4
anchors are placed on the ground and 4 anchor nodes are placed

Fig. 3. CDF of positioning error according to Filters when average velocity of
target is about 30 [m/s2]. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. CDF of positioning error according to Filters when average velocity of
target is about 40 and 50 [m/s2]. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

on z = 200). It can be observed that when the average velocity
of a target is relatively slow, the use of the FDoA measurements
does not help to improve the tracking performance. But, when
the average velocity of a target is relatively fast, the use of the
FDoA measurements can be helpful for tracking the position of
a target. Fig. 4 shows the CDF of positioning errors using PF
with FDoA (red line, green line) and PF without FDoA (black
line, blue line) where the average velocity is about 40 [m/s2]
and about 50 [m/s2].

Fig. 5 shows the CDF of positioning errors where 4 anchors
are placed on the ground and 4 anchors are placed on z =

200. When the AoA measurement is considered with noise
error 5 degrees (blue line) are considered, the performance
is lower than when the AoA measurement is not used (red
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Fig. 5. CDF of positioning error according to AoA noise. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

line). However, when the AoA measurement noise is 1 degree
(black line) and 3 degrees (green line), the PF achieves a
higher performance. From the results, it can be deduced that
the use of AoA measurement with TDoA/FDoA can improve
the performance of the system if the AoA measurement has an
error less than 3 degree.

The CDF of positioning error according to the number and
arrangement of anchors is shown in Fig. 6. When the number
of anchor nodes is 4 and all four anchor nodes are placed on the
ground (i.e. z = 0), the PF with AoA measurement (blue line)
shows the worst tracking performance. If the number of anchor
nodes is increased to 8 and all anchors are still placed on the
ground (i.e. z = 0), some performance improvement (green
line) occurs due to the increase in the number of anchors. On
the other hand, if the number of anchor nodes is 8 (4 anchors
are placed on the ground and 4 anchor nodes are placed on z =

200), better tracking performance (black line) can be obtained
as compared to when all the 8 anchors are placed on the ground.
This is because if all anchors are placed on the ground, the posi-
tion estimation performance about the z coordinate is degraded.

5. Conclusions

In this paper, we investigate the tracking of the 3D moving
target when multiple measurements are available. The results
show that in a nonlinear scenario, the PF performance is
superior to EKF with similar measurement models are used.
Additionally, we confirmed the effect of FDoA and AoA
measurement on tracking performance according to the velocity
of a target and noise level of AoA measurement. From the
results, when the average velocity of a target is relatively slow,
the FDoA measurement interferes the tracking performance.
When the average velocity of a target is relatively fast, the
FDoA measurement is helpful for tracking. Also, when the
AoA measurement error is more than 4 degrees, not using the
AoA measurement is more helpful to the tracking performance.
Using the AoA measurement only when the error of AoA

Fig. 6. CDF of positioning error according to the number and arrangement of
anchors. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

measurement is lower than 3 degree helps to improve the
positioning performance when 4 anchors are located on the
ground while the other 4 anchors are located on z = 200. It
is shown that when all the anchors are placed on the ground, it
is difficult to obtain good positioning performance.

In our future work, optimal anchor node arrangement will
be studied when moving objects are tracked. Also, further
studies on tracking techniques using fewer anchor nodes, high
performance positioning algorithm using a small number of
particles, and new methodologies other than particle filtering
will be investigated in our future work.
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