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Abstract. In traditional brain–computer interface (BCI) studies, binary communication systems have generally
been implemented using two mental tasks arbitrarily assigned to “yes” or “no” intentions (e.g., mental arithmetic
calculation for “yes”). A recent pilot study performed with one paralyzed patient showed the possibility of a more
intuitive paradigm for binary BCI communications, in which the patient’s internal yes/no intentions were directly
decoded from functional near-infrared spectroscopy (fNIRS). We investigated whether such an “fNIRS-based
direct intention decoding” paradigm can be reliably used for practical BCI communications. Eight healthy sub-
jects participated in this study, and each participant was administered 70 disjunctive questions. Brain hemo-
dynamic responses were recorded using a multichannel fNIRS device, while the participants were internally
expressing “yes” or “no” intentions to each question. Different feature types, feature numbers, and time window
sizes were tested to investigate optimal conditions for classifying the internal binary intentions. About 75% of the
answers were correctly classified when the individual best feature set was employed (75.89%�1.39 and 74.08%
�2.87 for oxygenated and deoxygenated hemoglobin responses, respectively), which was significantly higher
than a random chance level (68.57% for p < 0.001). The kurtosis feature showed the highest mean classification
accuracy among all feature types. The grand-averaged hemodynamic responses showed that wide brain
regions are associated with the processing of binary implicit intentions. Our experimental results demonstrated
that direct decoding of internal binary intention has the potential to be used for implementing more intuitive and
user-friendly communication systems for patients with motor disabilities. © 2016 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.21.9.091303]
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1 Introduction
There are a number of individuals suffering from neurological
disorders such as amyotrophic lateral sclerosis, multiple sclero-
sis, and brainstem stroke. They progressively lose their ability to
regulate their neuromuscular systems, and consequently have
difficulties in expressing their thoughts or intentions through
the brain’s normal output pathways. To provide those who
are severely paralyzed with an alternative communication chan-
nel, brain–computer interfaces (BCIs) have been intensively
studied for the last few decades. BCI is a nonmuscular commu-
nication method that translates brain signals into predefined
commands for controlling external devices or communicating
with others. To implement BCI systems, various neuroimaging
modalities have been employed, such as electroencephalogra-
phy (EEG), functional near-infrared spectroscopy (fNIRS),
magnetoencephalography, and functional magnetic resonance
imaging (fMRI), among which EEG has been most frequently
used due to its reasonable price and portability.1

Recently, fNIRS has attracted growing interest from BCI
researchers, as it is less susceptible to environmental noises
and electrophysiological artifacts (e.g., electro-oculogram and
muscle activity) compared to EEG.2 A variety of mental tasks
have been used for implementing fNIRS-based BCI systems,
e.g., motor imagery, mental arithmetic, music imagery, mental
counting, and object rotation.2 So far, a large number of fNIRS-
based BCI studies3–10 have demonstrated that different mental
tasks can be classified with accuracies high enough to be used
for practical BCI communication systems (at least 70% accuracy
is necessary for practical binary communications).11

A representative BCI application based on the mental-
imagery–based BCI paradigms is a binary yes/no communica-
tion system, which is simple, but very useful for patients with
severe locked-in syndrome (LIS). In general scenarios of fNIRS-
based binary communication, two different mental tasks that
elicit distinct brain hemodynamic responses (e.g., left- and
right-hand motor imagery) are selected. While the user of the
BCI system performs one of two mental tasks, the pretrained
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classifier decides which mental task the user is currently per-
forming. Since each of the two mental tasks is assigned to either
a “yes” or “no” intention, the user can express his or her binary
intentions by simply performing one of the two designated
mental imagery tasks.

Several previous studies showed the possibility of applying
the mental imagery paradigm to the development of binary BCI
systems,12–14 but the arbitrary task-to-intention mapping has
inherent limitations. It generally requires short-term working
memory resources to imagine given mental tasks.15 In addition,
user training periods are necessary to generate reliable task-spe-
cific brain patterns.16–18 Most importantly, it has been frequently
reported from EEG-based BCI studies that some subjects called
“BCI illiterate” cannot elicit consistent brain activity patterns for
specific mental tasks even after extensive training (the portion is
about 15% to 30%, depending on the tasks).19,20

On the other hand, a recent pilot study showed that it might
be possible to decode internal yes/no responses to disjunctive
questions from fNIRS signals.21 The “direct intention decoding”
paradigm was applied to a patient with complete LIS, and a
meaningful classification accuracy (>70%) was reported. This
paradigm could be used as a promising alternative to the conven-
tional paradigms for developing a more intuitive and user-
friendly binary BCI system; however, since the direct intention
decoding paradigm was tested with only one subject in the pre-
vious study, additional validation studies are needed to further
confirm its feasibility and reliability.

In this study, motivated by the previous pilot study that
decoded internal yes/no intentions from brain hemodynamic
responses,21 we investigated whether this direct intention decod-
ing paradigm can be reliably used for practical BCI communi-
cations. To this end, we replicated an experimental paradigm
similar to the previous study with eight healthy subjects. In
the experiments, the participants were given 70 disjunctive ques-
tions through a set of speakers, and asked to internally answer
“yes” or “no,” during which the hemodynamic responses of the
brain were measured using a multichannel fNIRS device. The
recorded hemodynamic responses were used for discriminating
“yes” and “no” covert intentions, where different feature types,
numbers of features, and analysis time periods were tested to
investigate optimal classification conditions.

2 Method

2.1 Participants

Eight participants (all males and right handed, 23 to 30 years of
age) took part in this study. None of them had a previous history
of neurological or psychiatric disorders that might affect the
experimental results. The general concept of BCI technology,
our research goal, and experimental procedures were sequen-
tially explained to the participants before the experiments, and
they provided written informed consent. They were given mon-
etary reimbursement for their participation in the experiments.
Ethical approval was obtained from the Institutional Review
Board of Hanyang University.

2.2 Disjunctive Questions

In the previous reference study by Gallegos-Ayala et al.,21 two
types of questions with known and unknown answers were used,
where mostly questions with known answers were tested. In this
study, we only considered questions with unknown answers to

reflect realistic communication situations in daily life. Seventy
disjunctive questions that were grouped into five different
classes were prepared for this study (see Appendix). All of the
questions asked about the participant’s current emotional state
and/or personal tastes in various objects, e.g., “Are you thirsty?,”
“Do you like cats?,” “Do you want to go to the Amazon?,” and
“Do you want to get a fountain pen?.” Each question was di-
vided into two parts, and the second part included a critical
word (e.g., “Are you” + “thirsty?,” “Do you want to go to” +
“Amazon”) that determines the answer. All of the questions
were translated into Korean to help the native Korean partici-
pants understand the meaning of the questions without a delay.

2.3 Experimental Paradigm

Before the experiments, the participants were asked to sit in
a comfortable armchair facing a 17-in. LCD monitor placed
at a 1-m distance from the participants. Figure 1 shows the
experimental paradigm used in this study. In the beginning of
the experiment, a preparation time of 10 s was given to the par-
ticipants, when they were instructed not to move their body and
concentrate only on the upcoming question. Following this, the
first part of a disjunctive question was presented for 2 s (e.g.,
“Are you”) and the critical word was presented for 3 s (e.g.,
“hungry?”) through two loud speakers placed at both sides of
the monitor. The durations of the time periods (2 and 3 s)
were determined considering the general lengths of the ques-
tions translated into Korean. The participants were asked to
internally answer either “yes” or “no” for 10 s right after listen-
ing to a question, while they were asked to stare at a black fix-
ation cross located at the center of the monitor. Each participant
was asked to press either the “yes” button or the “no” button on a
response pad when the word “Click” appeared on the monitor.
All of the participants generally responded within 1 to 2 s. After
a 5-s break, the same procedure was repeated until all 70 ques-
tions were presented. The numbers of “yes” and “no” responses
were different among the subjects, as they responded based on
their emotional state and personal tastes, but the mean ratio of
“yes” and “no” responses was almost identical (0.502 and 0.498,
respectively), as shown in Table 1.

2.4 fNIRS Data Acquisition

During the experiments, task-related cerebral hemodynamic
responses were recorded using a multichannel near-infrared
spectroscopy (NIRS) imaging system (FOIRE-3000, Shimadzu
Co. Ltd., Kyoto, Japan) in a dimly lit, soundproof room.
Figure 2 shows the NIRS optode distribution and the channel
location. For data recording, 31 optical fiber probes, consisting
of 16 sources and 15 detectors, were attached to the subject’s
scalp. The light sources emitted three different wavelengths
of 780, 805, and 830 nm. The central optode was placed on

Fig. 1 Experimental paradigm used for recording task-related hemo-
dynamic responses.
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Cz according to the international 10-20 EEG electrode system,
as shown in Fig. 2. The distance between adjacent optodes was
set to 3 cm because it has been shown in previous fNIRS studies
that this interoptode distance is ideal for measuring cortical
hemodynamic response changes.22 Since all subjects had
black hair that might have decreased the signal-to-noise ratio
of the NIRS signals, we carefully adjusted their hair during
NIRS preparation until the measurement intensity level became

acceptable. We used the Automatic Adjustment Function in the
measurement software provided by the company. In particular,
the negative high-voltage values of the photomultiplier were
appropriately set between 100 and 1000 V, and measurement
intensity was thereby set between 0.05 and 4 V for all three
wavelengths when input intensity was between 0 and 10 V.
The task-related light intensity changes were recorded from
50 scalp locations with a sampling rate of 10 Hz. The recorded
light intensities were then converted into the concentration
changes of oxygenated and deoxygenated hemoglobin ([oxy-
Hb] and [deoxy-Hb], respectively) using the modified Beer–
Lambert law before data analysis (extinction coefficients of
780-, 805-, and 830-nm wavelengths: 0.7360, 0.8973, and
1.0507 for [oxy-Hb], and 1.1050, 0.8146, and 0.7804 for
[deoxy-Hb]; differential pathlength factor: 1 for all three wave-
lengths).23 The NIRS optode configuration used in this study
fully covered the sensorimotor area and partly covered the tem-
poral area, which are the brain regions employed in the previous
study that first attempted to classify internal yes/no responses
using fNIRS signals.21 (Pre)frontal and occipital areas were
also partly covered by our optode configuration. This wider cov-
erage of brain regions can allow for investigating brain areas
relevant to the processing of internal yes/no intentions.

2.5 fNIRS Data Analysis

Figure 3 shows the pipeline of the data processing, consisting of
preprocessing, feature extraction, feature selection, and classifi-
cation. The following subsections provide detailed descriptions
of each analysis step.

2.5.1 Preprocessing

A common average reference (CAR) spatial filter was first
applied to the [oxy-Hb] and [deoxy-Hb] responses to remove
common noise components (e.g., effect of scalp blood flow
changes), for which the mean hemoglobin values of all channels
were calculated and then subtracted from the hemoglobin values
of each channel for every time point. The CAR method, com-
monly used in EEG-based BCIs, has shown good performance
for reducing common noise components,24,25 and has also been
successfully applied to fNIRS data analyses.26–28 After the appli-
cation of the CAR filter, each hemoglobin response was filtered
using a bandpass filter with cutoff frequencies of 0.01 and
0.09 Hz using a fourth-order Butterworth zero-phase filter in
order to filter out spontaneously generated physiological com-
ponents known to originate from Mayer waves (approximately
0.1 Hz), heart rate (1.6 to 1.8 Hz), and breathing (0.2 to 0.3 Hz).
Also, the bandpass filtering removed linear trend of NIRS sig-
nals by filtering out NIRS signals below 0.01 Hz. The frequency
band of 0.01 to 0.09 Hz was selected based on the previous
fNIRS-based BCI studies.6,29

2.5.2 Feature extraction

For the feature extraction, we used 10-s epochs measured while
the participants were covertly answering a given question (see
Fig. 1). Since task-related hemodynamic responses generally
appear with a varying delay of 3 to 8 s,4,5,9,30 different time win-
dows were used to extract candidate features. Each time window
was defined by a start time ranging from 1 to 6 s and an end
time spanning from 5 to 10 s. The increment time was set to 1 s
for both start and end times. All possible combinations of start

Fig. 2 Arrangement of 31 optical fiber probes and 50 NIR channels.
The red and blue circles represent the 16 sources and the 15 detec-
tors, respectively. The gray numbered squares indicate the 50 NIR
channels. The distance between adjacent optodes is 3 cm. The Cz
position based on the 10-20 international system is set as the center
of this configuration.

Table 1 Numbers of yes and no responses, and their respective
ratios for each subject.

Subject Num. Yes:No Ratio Yes:No

S1 40:30 0.57:0.43

S2 41:29 0.59:0.41

S3 39:31 0.56:0.44

S4 30:40 0.43:0.57

S5 31:39 0.44:0.56

S6 23:47 0.33:0.67

S7 31:39 0.44:0.56

S8 46:24 0.66:0.34

Mean 35.125:34.875 0.502:0.498
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and end times were then used to construct different time
windows.5,9,31 Based on the previous fNIRS-based BCI stud-
ies,5,9,31,32 the following five different feature types were
extracted from each time window’s data to investigate the influ-
ence of feature types on the classification performance:

1. Mean: Averaged signal amplitude over the time
window

EQ-TARGET;temp:intralink-;e001;63;544x̄ ¼ 1

b − aþ 1

Xb
t¼a

xt: (1)

2. Variance: A measure of signal spread

EQ-TARGET;temp:intralink-;e002;63;479σ2 ¼ 1

b − aþ 1

Xb
t¼a

ðxt − x̄Þ2: (2)

3. Skewness: A measure of the asymmetry of the prob-
ability distribution of signal values relative to its mean

EQ-TARGET;temp:intralink-;e003;63;403s1 ¼
1

b−aþ1

P
b
t¼a ðxt − x̄Þ3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
b−aþ1

P
b
t¼a ðxt − x̄Þ2

q �
3
: (3)

4. Kurtosis: A measure of the peakedness of the proba-
bility distribution of signal values relative to its mean

EQ-TARGET;temp:intralink-;e004;63;316k ¼
1

b−aþ1

P
b
t¼a ðxt − x̄Þ4� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
b−aþ1

P
b
t¼a ðxt − x̄Þ2

q �
2
: (4)

5. Slope: A measure of the steepness of signal values

EQ-TARGET;temp:intralink-;e005;63;242s2 ¼
xb − xa
b − a

; (5)

where xt is a hemodynamic response signal value at a
time point t, and a and b are the first and last time
points in each time window, respectively.

The candidate features were independently evaluated for
all possible combinations of the time windows, 50 channels,
and the five feature types for the [oxy-Hb] and [deoxy-Hb]
responses recorded during 70 trials (70 different questions).

2.5.3 Feature selection

A large number of features might cause overfitting of a classifier
constructed from the training data, thus feature selection is an

essential step in pattern classification problems based on
machine learning techniques. In this study, we used the Fisher
score, which has been frequently used in fNIRS-based BCI
literature and has shown high performance.6,7,9,33 The Fisher
scores were calculated for all elements of the constructed feature
set

EQ-TARGET;temp:intralink-;e006;326;565FSi ¼
ðμyes − μnoÞ2
vyes þ vno

; (6)

where μ and v are the mean and variance, respectively, of the
designated class. The subscript i represents the i’th feature
element. Since the Fisher score is defined as the ratio of the dif-
ference of the means of features in two classes to the sum of
variances of features in the same class, a higher Fisher score
guarantees larger separability between different classes. Thus,
the best feature subset is generally constructed by selecting the
top N features having the highest Fisher scores. As the optimal
number of features varies among subjects as well as feature
sets, different numbers of features ranging from 2 to 6 were
independently tested for each feature set, as in the previous
fNIRS-based BCI study,9 which showed little change in the
classification accuracy with more than six features.

2.5.4 Classification

The leave-one-out cross-validation (LOOCV) method was used
to evaluate the performance of classifying covert binary inten-
tions. The LOOCV method leaves one trial as the test data and
constructs a classifier using the other trials (training data set).
The one trial left is then tested using the constructed classifier,
and this procedure is iterated until every trial is used as the
test data. The numbers of correct and incorrect predictions
are counted during LOOCV, and the classification accuracy
is then estimated by dividing the number of correct predictions
by the total number of trials. In this study, a classification accu-
racy was calculated separately for “yes” trials (sensitivity) and
“no” trials (specificity), then an adjusted accuracy was evaluated
by averaging sensitivity and specificity to accounts for the
unbalanced numbers of “yes” and “no” trials.34 The LOOCV
method was separately applied to all possible [oxy-Hb] and
[deoxy-Hb] feature sets for each subject. To avoid potential
biases in estimating classification accuracy, feature selection
was independently performed using the Fisher score in every
cross-validation step; thereby features selected for constructing
a classifier varied among the 70 cross-validations. Linear
discriminant analysis, which was used as a classifier, has
been successfully employed in many fNIRS-based BCI
studies.4–6,9,32,33,35

Fig. 3 Flowchart showing the fNIRS data acquisition and four data analysis steps consisting of prepro-
cessing, feature extraction, feature selection, and classification.
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3 Results
Table 2 shows the best classification accuracies of each subject
for [oxy-Hb] and [deoxy-Hb] responses, and their correspond-
ing optimal feature sets. For example, the best classification
accuracy (77.50%) of subject S1 was obtained from the feature
set constructed using slope features in a time period of 2 to 10 s,
when the number of selected features was three. All subjects
showed significantly higher classification accuracies than a
random chance level (68.57% for p < 0.001), which are also
higher than the marginal classification accuracy of 70% that
determines whether a binary BCI system can be used for prac-
tical communication.11 The mean classification accuracies of
the [oxy-Hb] and [deoxy-Hb] features were almost identical:
75.89% and 74.08%, respectively. The true positive (sensitivity)

and true negative (specificity) prediction rates were 71.34% and
80.43% for the [oxy-Hb] features and 71.87% and 76.16% for
the [deoxy-Hb] features, respectively.

Figure 4 shows the best classification accuracies of each sub-
ject for the [oxy-Hb] and [deoxy-Hb] responses with respect to
the number of selected features. The best mean accuracies of
the [oxy-Hb] and [deoxy-Hb] responses were obtained when
five and two features were selected, respectively, but the number
of selected features did not significantly affect the classification
accuracy [Friedman: χ2ð4Þ ¼ 1.48, p ¼ 0.83 for the [oxy-Hb]
responses; Friedman: χ2ð4Þ ¼ 3.3, p ¼ 0.51 for the [deoxy-Hb]
responses].

Figure 5 shows the optimal analysis time periods of each sub-
ject in terms of the classification performance. Each horizontal

Table 2 Classification accuracies of each subject attained using the best feature set for [oxy-Hb] and [deoxy-Hb] responses. Selected features
(channels) were different in each cross-validation step because training data were continuously changed during LOOCV. The six channels most
frequently selected during the whole LOOCV steps over all subjects and their selection ratios are as follows: ch. 14 (20.22%), 16 (18.42%), 6
(18.17%), 50 (18.02%), 38 (17.09%), and 25 (16.81%) for [oxy-Hb] responses, and ch. 14 (20.19%), 4 (19.4%), 33 (18.94%), 32 (18.72%), 15
(18.54%), and 16 (18.27%) for [deoxy-Hb] responses, respectively.

Subject

Oxy-Hb Deoxy-Hb

Number of
selected
features

Time
period
(s)

Feature
type

Sensitivity
(%)

Specificity
(%)

Adjusted
accuracy

(%)

Number of
selected
features

Time
period
(s)

Feature
type

Sensitivity
(%)

Specificity
(%)

Adjusted
accuracy

(%)

S1 3 2 to 10 Slope 75 80 77.50 4 0 to 5 Slope 80 73.33 76.67

S2 3 4 to 10 Kurtosis 72.86 74.74 73.80 2 3 to 10 Skewness 78.5 75.41 76.95

S3 2 1 to 10 Kurtosis 58.97 90.33 74.64 6 5 to 10 Kurtosis 79.49 67.74 73.61

S4 5 1 to 9 Kurtosis 66.67 82.50 74.58 6 1 to 6 Kurtosis 73.33 80 76.67

S5 4 3 to 8 Skewness 80.65 71.79 76.22 6 4 to 9 Skewness 70.97 71.79 71.38

S6 4 1 to 7 Kurtosis 73.91 78.73 76.31 6 0 to 6 Kurtosis 60.87 76.60 68.73

S7 2 2 to 10 Kurtosis 70.97 82.05 76.51 2 2 to 9 Kurtosis 70.97 76.92 73.94

S8 5 0 to 5 Kurtosis 71.74 83.33 77.53 2 0 to 7 Variance 60.87 87.50 74.18

Mean 3.63 1.8 to
8.6

71.34%
�6.37

80.43%
�5.65

75.89%
�1.39

4.25 1.9 to
7.8

71.87%
�7.69

76.16%
�5.88

74.08%
�2.87

Fig. 4 Best classification accuracies of each subject with respect to the number of features for (a) [oxy-
Hb] responses and (b) [deoxy-Hb] responses.
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bar represents the best analysis time window, within which
the number of selected features, feature type, and classification
accuracy are shown. The best analysis time periods were
highly dependent on the subjects, and no general trend could
be found.

Figure 6 shows the best classification accuracies of each sub-
ject with respect to feature type. The kurtosis feature generally
showed a higher mean accuracy than the others for both [oxy-

Hb] and [deoxy-Hb] responses. In particular, the kurtosis
feature showed a statistically higher performance than the mean
and variance features when the features were extracted from
[oxy-Hb] responses [Friedman: χ2ð4Þ ¼ 16.5, p ¼ 0.0024;
the Bonferroni post hoc analysis: kurtosis > mean ¼ variance,
corrected p < 0.05].

Figures 7 and 8 show the grand [oxy-Hb] and [deoxy-Hb]
responses averaged over all subjects, respectively. The time

Fig. 5 Optimal analysis time periods of each subject for (a) [oxy-Hb] responses and (b) [deoxy-Hb]
responses. A binary question is presented between t ¼ −5 and t ¼ 0, and the subject starts an internal
answer at t ¼ 0 for 10 s.

Fig. 6 Best classification accuracies of each subject with respect to the feature type for (a) [oxy-Hb]
responses and (b) [deoxy-Hb] responses. The asterisk represents a statistically significant difference
between the corresponding pair of feature types in terms of classification accuracy. The kurtosis feature
generally showed a higher mean accuracy than the others for both (a) [oxy-Hb] and (b) [deoxy-Hb]
responses. Detailed information on kurtosis feature sets used to obtain the best classification accuracies
for (a) [oxy-Hb] and (b) [deoxy-Hb] responses are presented in Table 2 for the subjects S2–S4 and S6–
S8, and for S3–S4 and S6–S7, respectively. The following is the detailed information on kurtosis feature
sets used for the other subjects: (a) [oxy-Hb] responses—S1: six features and a time period of 0–10 s; S5:
four features and a time period of 1–9 s; (b) [deoxy-Hb] responses—S1: two features and a time period of
1–8 s; S2: five features and a time period of 1–9 s; S5: three features and a time period of 1–9 s; S8: five
features and a time period of 0–10 s.
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periods showing a statistically significant difference of hemo-
globin responses between “yes” and “no” conditions are
depicted by green lines on the bottom of each panel. As seen
in the figures, the [oxy-Hb] responses generally increase for
“yes” responses and decrease for “no” responses, especially
in prefrontal areas (ch. 47 to 50), showing many statistically sig-
nificant time periods. The inverted trend is observed over the
parieto-occipital regions (ch. 1 to 26), but both intentions do
not generally induce remarkable changes around the frontal cor-
tex (ch. 28 to 45). On the other hand, the [deoxy-Hb] responses
are almost reversed compared to the [oxy-Hb] responses, except
that the difference between the two conditions is relatively small
around the prefrontal areas (ch. 46 to 50).

Figure 9 depicts the distribution of the averaged Fisher scores
evaluated for every channel, from which the most important
channels can be identified. The channels over the parieto-occipital

areas show high Fisher scores for both [oxy-Hb] and [deoxy-
Hb] responses. The Fisher scores for the [oxy-Hb] responses
are higher than those for the [deoxy-Hb] responses over the
prefrontal regions. Since the Fisher score represents the degree
of difference between two conditions, these results coincide
well with the grand-averaged hemodynamic responses shown in
Figs. 7 and 8.

4 Discussion
In classical fNIRS-based BCI studies, binary communication
systems have generally been implemented by assigning two dis-
tinct mental imagery tasks to “yes” or “no” answers. For the
implementation, so far, more than 10 mental tasks have been
adopted.2 In this study, following the previous pilot study
that tried to directly decode internal yes/no thoughts through
fNIRS,21 we investigated whether the direct intention decoding

Fig. 7 Grand-averaged [oxy-Hb] responses recorded during covert “yes” and “no” responses for all 50
channels. The shaded regions indicate the standard errors computed across all subjects for each “yes”
and “no” condition. The green bars on the bottom of each panel represent time periods showing sta-
tistically significant difference of [oxy-Hb] responses between “yes” and “no” conditions (paired t -test;
p < 0.05). A binary question is presented between t ¼ −5 and t ¼ 0, and the subject starts an internal
answer at t ¼ 0 for 10 s. The grand-averaged [oxy-Hb] responses were obtained by normalizing prepro-
cessed [oxy-Hb] responses based on single-trial, for which we calculated the mean of each trial, sub-
tracted it from all data points of the corresponding trial, and averaged all the normalized trials across all
subjects.
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paradigm can be reliably used for binary communications. Our
experimental results demonstrated that individual covert binary
intentions could be reliably classified using fNIRS signals with
classification accuracy high enough to be used for binary com-
munication applications (>70%).11

As discussed in a study by Luu and Chau,35 the traditional
task-based BCI paradigm was neither intuitive nor user-friendly
for binary communication due to indirect task-to-intention map-
ping. Compared to the traditional BCI paradigm, the main ad-
vantage of the direct intention decoding paradigm is that the user
can naturally make yes/no binary decisions based on current
internal states, thereby requiring less cognitive load than the
conventional one. Thus, it is highly expected that the paradigm
based on direct decoding of user intention can contribute to the
development of more intuitive binary communication systems.
We also expect that this paradigm can be used as an alternative

to the existing mental-task-based BCI paradigms, when patients
cannot produce certain task-specific brain activities, generally
known as “BCI illiteracy.”19,20 Further studies would be needed
with more subjects not only to generalize our results, but also to
enhance the overall performance (e.g., information transfer rate)
for the user-friendly BCI paradigm to be used for practical com-
munication applications. In future studies, development of gen-
eral classification models that can be constructed using existing
training data need to be considered for those who are completely
locked-in, because building an individualized classification
model might not be always available for some of them.

Interestingly, the kurtosis feature showed statistically higher
accuracy than the mean and variance features in [oxy-Hb]
results, both of which have been most frequently used in tradi-
tional fNIRS-based BCI studies.2 Similar trends were also
observed in [deoxy-Hb] results, but there was no statistically

Fig. 8 Grand-averaged [deoxy-Hb] responses recorded during covert “yes” and “no” responses for all 50
channels. The shaded regions indicate the standard errors computed across all subjects for each “yes”
and “no” condition. The green bars on the bottom of each panel show statistically significant difference of
[deoxy-Hb] responses between “yes” and “no” condition at the corresponding time periods (paired t -test;
p < 0.05). A binary question is presented between t ¼ −5 and t ¼ 0, and the subject starts an internal
answer at t ¼ 0 for 10 s. The grand-averaged [deoxy-Hb] responses were obtained by normalizing pre-
processed [deoxy-Hb] responses based on single-trial, for which we calculated the mean of each trial,
subtracted it from all data points of the corresponding trial, and averaged all normalized trials across all
subjects.
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significant difference among different feature types. Note that
the previous reference study used only the “mean” feature.21

It was observed from Figs. 7 and 8 that “yes” covert inten-
tions increased [oxy-Hb] responses in prefrontal areas and
decreased the responses over parieto-occipital areas in general.
The inverted [oxy-Hb] responses were mostly seen for “no”
intentions over the same brain areas; thereby these brain areas
produced significantly different [oxy-Hb] responses between the
two conditions (“yes” versus “no”), as shown in Fig. 7. In par-
ticular, the significant differences between the two conditions
are observed on the prefrontal areas (ch. 47 to 50). As mentioned
earlier, [deoxy-Hb] responses are almost reversed compared to
the [oxy-Hb] responses, but there was a relatively smaller differ-
ence between the two conditions around the prefrontal areas.
Thus, remarkable differences in [deoxy-Hb] responses between
the two conditions are mostly observed around parieto-occipital
areas, especially on right parietal areas (ch. 11, 14, 15, 23, 25,
and 28), as shown in Fig. 8. It has been well documented that
prefrontal and parietal brain areas are strongly associated with
conscious intention, “holding something in mind,”21,36–38 which
could explain the most significant differences in hemodynamic
responses between internal “yes” and “no” conditions over
prefrontal and parietal brain areas. In line with these results,
the distribution of the Fisher’s score in Fig. 9 also showed
that prefrontal and parietal areas would be most closely involved
in processing binary covert intentions. In addition, the strong
involvement of prefrontal areas observed in the [oxy-Hb]
responses indicates that the binary communication system based
on the direct intention decoding paradigm could be potentially
implemented with portable “headband-type” fNIRS systems
that cover only prefrontal areas.39

Appendix: List of Questions Used for
the Experiments
Class 1 – Pain

1. Is your waist hurting?

2. Is your head hurting?

3. Is your leg hurting?

4. Is your arm hurting?

5. Is your eye hurting?

6. Is your chest hurting?

7. Is your throat hurting?

8. Is your back hurting?

9. Is your stomach hurting?

10. Is your knee hurting?

11. Is your shoulder hurting?

Class 2 – Do you like . . . ?

12. Do you like horror movies?

13. Do you like baseball?

14. Do you like Starcarft?

15. Do you like billiard?

16. Do you like cream bread?

17. Do you like IU (Korean singer)?

18. Do you like Dong Won Kang (Korean actor)?

19. Do you like cats?

20. Do you like soju (Korean alcohol)?

21. Do you like broccolis?

22. Do you like soondaegookbap (Korean style intestine
sausage soup)?

23. Do you like rice cakes?

24. Do you like raw halibut?

25. Do you like coffee?

26. Do you like sapgyulsal (Korean style pork belly)?

27. Do you like Ho Dong Kang (Korean Comedian)?

28. Do you like North Korea?

29. Do you like snow?

30. Do you like the smell of cigarette?

31. Do you like orange?

Class 3 – Do you want to go to . . . ?

32. Do you want to go to baseball stadium?

33. Do you want to go to North Korea?

34. Do you want to go to New York City?

35. Do you want to go to Japan?

36. Do you want to go to Pyramid?

37. Do you want to go to North Pole?

38. Do you want to go to Amazon?

39. Do you want to go to racetrack?

Fig. 9 Grand-averaged gradient maps of the Fisher scores of each
channel for (a) [oxy-Hb] responses and (b) [deoxy-Hb] responses.
The Fisher scores were calculated by taking into account all possible
feature sets used for classification, and normalized by the maximum
value of all channels separately for [oxy-Hb] and [deoxy-Hb] responses.
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40. Do you want to go to army base?

41. Do you want to go to Desert Island?

42. Do you want to go to Everland (Korean
amusement park)?

43. Do you want to go to Sahara Desert?

44. Do you want to go to Greece?

45. Do you want to go to East Coast?

46. Do you want to go to Mexico?

47. Do you want to go to Mt. Halla (Mountain located
in Korea)?

48. Do you want to go to Thailand?

49. Do you want to go to Jeju Island?

50. Do you want to go to Alaska?

51. Do you want to go to Lax Vegas?

Class 4 – Do you like to get . . . ?

52. Do you like to get soccer shoes?

53. Do you like to get the New iPad?

54. Do you like to get Avante (a car made by
Hyundai Motor Company)?

55. Do you like to get a fedora?

56. Do you like to get an audio?

57. Do you like to get a fountain pen?

58. Do you like to get a doll?

59. Do you like to get a flower?

Class 5 – Etc.

60. Are you afraid of height?

61. Are you afraid of cockroach?

62. Is your body stiff?

63. Do you like the experiment?

64. Are you sleepy?

65. Are you hungry?

66. Are you thirsty?

67. Do you feel cold?

68. Do you feel hot?

69. Do you feel disgusted?

70. Do you feel dizzy?
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