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ABSTRACT

In this paper, a similarity relation between RF wave systems in tokamaks is found theoretically by investigating scaling conditions
of plasma density and temperature, tokamak size and background magnetic fields, and RF wave frequency and power. The scaling
conditions simultaneously satisfy Maxwell’s equations, the Grad-Shafranov equation, and the Fokker-Planck equation. The con-
sistency of the scaling with transport equations is examined by several empirical and theoretical scalings for confinement time.
The similarity found in this paper is useful to investigate the possibility of the test system for RF wave experiments and verify the
coupled numerical codes for the wave modeling.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5066288

I. INTRODUCTION

Finding a scaling law in a system is a commonly sought
objective in many experiments and simulations (e.g., tokamak
confinement time scalings1–3) because it can be used to design
and optimize the system.There are additional benefits of finding
an analytical similarity based on the scaling law, which are listed
below. First, if it is practically difficult to represent the system in
experiments because it is too large, expensive, or hazardous,
using the similarity enables alternative experiments that are
smaller, less expensive, or less hazardous. For example, a wind
tunnel is a reduced test system to model a large fluid dynamic
system using the scaling law with some dimensionless variables
(e.g., Reynolds number),4 and some laboratory experiments are
used to model MHD phenomena in astrophysics.5 Second, the
dimension of partial differential equations can be reduced by
introducing similarity variables,which reduce the computational
cost significantly to solve the problem.6 Finally, the analytical
similarity can be used to verify numerical codes. Specifically, if
some numerical codes are coupled to find a set of self-
consistent solutions, finding whether the solutions follow the
scaling relations is an efficient way to verify the coupling. The
fact that the numerical solutions satisfy the similarity is not a
sufficient condition but is a necessary condition of the code

verification. The similarity must hold regardless of the degree of
nonlinearity in the coupling.

In this paper, we find a similarity relation of RF waves in
plasmas, which are used for heating and current drive in a
tokamak. There are several experimental and theoretical
studies based on the similarity of the RF waves in different
tokamaks. For example, when designing the ICRF (ion cyclo-
tron range of frequency) wave heating scenarios on ITER,7

many experiments on the existing tokamaks have been exam-
ined by setting the similar wave conditions.8–10 One can
expect the similar phenomena in ITER as observed in JET
experiments, which have proven the important ICRF physics
such as the optimized minority ion concentration, mode con-
version to slow waves, and finite Larmor radius effects in dif-
ferent plasmas: (3He)H, (T)H, or (H)D. Additionally, the ITER
antenna design and coupling problems are investigated in
JET based on the similarity of the system.10–12 These similari-
ties are obtained by matching some important key parame-
ters (e.g., the cyclotron frequency, species, and antenna size),
but it cannot guarantee the exact equivalent physical effects
between two different systems because of other non-
matched parameters, as considered in this paper. Although
many engineering constraints (e.g., magnetic fields and
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machine size) likely reduce the chance of the rigorous
similarity of all parameters, we analyze the possibilities
theoretically.

The rigorous similarity of the RF wave system in a tokamak
is found in this paper by investigating the coupled equations:
Maxwell’s equations, Grad-Shafranov equation, transport equa-
tion, and Fokker-Planck equation. It is well known that
Maxwell’s equations for the electromagnetic wave propagation
and damping in plasmas have a similarity with some dimension-
less parameters using wave frequency x, plasma frequency
xp ¼ nse2Z2

s=�0ms, cyclotron frequency xc ¼ ZseB0/ms, and the
normalized length scale.13 Here, ns, ms, and Zs are the density,
mass, and charge of the species s, respectively, e is the electron
charge, �0 is the vacuum dielectric constant, and B0 is the back-
ground magnetic field intensity. However, it is not clear whether
there is a universal similarity of the RF system when Maxwell’s
equation is coupled with other equations for the tokamak sys-
tem. For example, the Grad-Shafranov equation is solved for the
background magnetic field,14 the transport equation is solved
for the plasma density and temperature profiles,1–3 and the
Fokker-Planck equation is solved to include the kinetic effects
due to non-Maxwellian distribution functions.15–17

In principle, there is no reason that there exists a common
scaling between the equations because each equation is derived
in the different time and length scales with different assump-
tions. Maxwell’s equations in plasmas describe Faraday’s law and
Ampère’s law for the high wave frequency by including the
momentum equation for the perturbed plasma particles due to
the waves. On the other hand, the Grad-Shafranov equation is
Ampère’s law with the momentum equation by J�B ¼ rp,
where J is the static current in the lowest order that is not
related to the perturbation by RF waves and p is the static
plasma pressure. The Fokker-Planck equation is for the evolu-
tion of the distribution function in the slow collisional time scale
compared to the RFwaves.

By finding the similarity, we examine the possibility of the
reduced test system (wind tunnel) for the RF wave system and
verify the numerical codes, which are widely used in the RF
wave research community. A high power RF system in a large
tokamak for heating (e.g., ECH and ICRH systems in ITER7) is
extremely expensive and takes a high portion of total construc-
tion cost.18 The cost of the RF system is expected to increase
significantly for an advanced tokamak in the future because it
requires a larger RF power for non-inductive current drive in a
steady state operation.19 Therefore, testing the RF system in a
smaller size systemwith a reduced cost will be significantly ben-
eficial, if it is available. The verification of the numerical codes
for the RF system using the similarity can be another important
contribution of this study.

The rest of this paper is organized as follows. In Sec. II, we
explain how the similarity relation is obtained between the
coupled equations by varying the plasma density and tempera-
ture, the machine size and magnetic fields, and RF wave
frequency and power. In Sec. III, the similarity is used to verify
the coupled numerical codes (TORIC20-ECOM21 and AORSA23-

ECOM21-CQL3D15). In Sec. IV, the consistency of the scaling with
the transport scaling is examined byGoldston empirical scaling,2

GryoBohm theoretical scaling,24,25 and ITER design scaling.3

Finally, in Sec. V, we make a conclusion with a discussion of
conditions to violate the similarity.

II. SIMILARITY IN THE COUPLED EQUATIONS

In this section, we find the possible similarity relation by
adding the conditions that satisfy the different set of equations.
The scaling relations in Sec. IIA are obtained to satisfy Maxwell’s
equations. In Sec. II B, the conditions found in Sec. IIA are exam-
ined to satisfy both Maxwell’s equations and the Grad-Shafranov
equation. Finally, in Sec. IIC, the other conditions are added to
satisfy all three equations: Maxwell’s equations, the Grad-
Shafranov equation, and the bounce-averaged Fokker-Planck
equation.

A. Maxwell’s equations

Maxwell’s equations for the electromagnetic waves in plas-
mas13 can be reduced to

r̂ � r̂ � E ¼ x2a2

c2
Eþ li

x
Jp

� �
¼ x2a2

c2
� � E; (1)

where r̂ ¼ ar is the normalized differential operator using the
minor radius a and Jp is the plasma current. Here, the plasma
current is modeled by the dielectric tensor

� ¼ � xp

x
;
xc

x
;
kc
x
;
kkvt
x

; k?qi

� �
; (2)

where several dimensionless parameters represent the effects
of physical quantities on the dielectric tensor; xp/x represents
the plasma density n, xc/x represents the backgroundmagnetic
field B0, kc/x represents the wave refractive index, kkvt=x rep-
resents the Doppler effect at the plasma temperature T, and k?q
represents the finite Larmor radius effect.13 Here, k is the wave
vector that is determined by antenna boundary conditions and
dispersion relations in plasmas. Thus, its components parallel
and perpendicular to the background magnetic fields, kk and k?,
have the dimension of 1/aant, if the dispersion is similar. For the
rigorous similarity, we assume in this paper that the relative
ratios between the antenna length scale aant, the minor radius a,
and the major radius R are the same in the scaling, and so, the
major radius can represent all length scales of the tokamak.
Additionally, the relative shapes of all geometry in the tokamak
(e.g., magnets, vacuum chamber, and antenna location and
shape) are assumed to be the same in the scaling.

The scaling relations are obtained in terms of the set of
physics variables (ms, Zs, ns, and Ts for the plasmas, B0 and R for
the machine, and x for the RF waves) to make the dimensionless
parameters xp=x;xc=x;kc=x; kkvt=x; k?q invariant. The follow-
ing scalings need to be applied for all species simultaneously for
the rigorous similarity, and so, we drop the subscripts s for the
species in this manuscript below.

Assume that one can change the wave frequency by a mul-
tiplication factor a and themajor radius by c
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�x ¼ ax; �R ¼ cR; (3)

where the overline of the variable denotes the change of the
variable after the scaling. In a real system, the ion mass and
charge could be controllable by selecting different ion species
for the scaling, but the electron mass and charge are fixed.
Because the rigorous similarity holds only when all species
change simultaneously, the species mass and charge are not
modified in the scaling of this study. If one assumes that the
mass and charge are flexible, the scaling relations can have
more degrees of freedom, as explained in the Appendix.

For the same dimensionless variables in the dielectric ten-
sor by the scalings in Eq. (3), it needs to satisfy

B0 ¼ aB0; �n ¼ a2n; �T ¼ a2c2T: (4)

Moreover, to have the same factor x2a2/c2 on the right
hand side in Eq. (1), it requires the additional condition

c ¼ a�1: (5)

In this condition, the dielectric tensor does not change

�� �x;B0 ; �n; �R; �T
� �

¼ � x;B0;n;R;Tð Þ; (6)

and the dispersion relation is exactly equivalent in the scaling.
Thus, for the equivalent boundary condition and the antenna
current, the electric fields of Maxwell’s equation solver have the
following scaling:

�̂
E �x;B0 ; �n; �R; �T
� �

¼ aÊ x;B0;n;R;Tð Þ; (7)

where Ê ¼E=
ffiffiffiffiffiffiffiffi
Pabs
p

is the normalized electric field by the square
root of total RF wave power absorption Pabs. Here, the depen-
dency of the total power absorption on a is considered because

Pabs ’
ð
Vol

drReðE � JÞ ¼
ð
Vol

drRe E � x
li
� � E

� �
; (8)

for the volume change (Vol/ R3).

B. Grad-Shafranov equation

The backgroundmagnetic fields B0 in Eq. (4) have additional
constraints by other parameters in a tokamak because it needs
to satisfy the Grad-Shafranov equation14 for the MHD equilib-
rium in an axisymmetric geometry

R2r̂ � 1
R2 r̂W

� �
þ a2 lR2 dp

dW
þ 1
2
dF2

dW

� �
¼ 0; (9)

whererW ¼ BpR, F¼ BtR, and p ¼ nT. The background magnetic

fields B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
t þ B2

p

q
are determined by both toroidal magnetic

fields Bt and poloidal magnetic fields Bp. This equation implies
the balance between three terms by B2

p=2l; B
2
t =2l, and p, and so,

the similarity of the equation can be described by two dimen-
sionless parameters b0 ¼ 2lp=B2

0 and q¼ (a/R)(Bt/Bp).

It is coincidental that the scaling in Sec. IIB for Maxwell’s
equations is consistent with the Grad-Shafranov equation. By
the scaling in Eqs. (4) and (5), one can prove that b0 does not
change, because b0 ¼ a2c2b0 ¼ b0. The ratio of toroidal

and poloidal magnetic fields is also conserved by the
Grad-Shafranov equation, giving the same safety factor with the
same aspect ratio a/R in the scaling, �q ¼ q.

As a result of the scaling, the MHD equilibria have the scal-
ings of pressure andmagnetic fields

�p ¼ a2p; Bt ¼ aBt; Bp ¼ aBp; (10)

and the plasma current does not change

�I ¼ I; (11)

where l0I ¼
Ð
dlBp / BpR is used.

C. Fokker-Planck equation

For a moderate or large power RF system, the wave propa-
gation and damping are significantly affected by the plasma
distribution function in velocity space. The evolution of the dis-
tribution function f is obtained by solving the Fokker-Planck
equation

@f
@t
þ v � rf þ a � rvf ¼ CðfÞ; (12)

where C( f) is the Fokker-Planck collision operator and a is the
acceleration by the electromagnetic force. In the drift-kinetic
equation for a tokamak, the Fokker-Planck equation can be
reduced to

@f
@t
þ ðvD þ vkbÞ � rf þrv � D � rvf ¼ CðfÞ; (13)

where vD ¼ �ðv2?=2BxcÞb�rB� ðv2k=xcÞb� ðb � rbÞ is the rB
and the curvature drift, v? and vk are the perpendicular and
parallel velocities, andD is the quasilinear velocity diffusion ten-
sor by RF waves.13,26 The quasilinear diffusion by the RF waves is
sufficiently valid if the perturbation due to the waves is small
enough to be linearized.27–29 The quasilinear diffusion tensor
was analytically derived by Kennel and Engelmann,26 and it has
been used in many numerical codes (e.g., AORSA-CQL3D23 and
TORIC-CQL3D30,31). The term related to the drift vD is small
except for the energetic ions, and so, it can be ignorable in this
study for RF waves.15 Taking the bounce average of Eq. (13), the
parallel streaming term related to vkb is eliminated,15 giving

@f
@t
þrv � hDib � rvf ¼ hCðfÞib; (14)

where the distribution is described by the invariant variables
(e.g., energy and magnetic moment) at each flux surface and
h…ib is the bounce average. The effect of ignoring the drift term
(e.g., finite orbit width effect) to the similarity will be discussed
in Sec.V.

As a result of the scaling in Eq. (5), the thermal velocity does
not change, vt ¼ vt. Thus, the scaling of the quasilinear term is
determined by the RF diffusion tensor D. Using the Kennel-
Engelmann diffusion tensor26

D � qE

m

� �2

dðx� X� kkvkÞ; (15)

the scalings of Eqs. (3) and (7) result in
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�̂
D �x;B0 ; �n; �R; �T
� �

¼ aD̂ x;B0;n;R;Tð Þ; (16)

where d is the Dirac-delta function and D̂ ¼D=Pabs is the nor-
malized quasilinear tensor by the power absorption. Equation
(16) is obtained by the scaling of the Dirac-delta function in the
velocity space using dðx� X� kkvkÞ � 1=kk � R.

The collision operator is proportional to the collision fre-
quency, � / n/v3, and the scaling results in

�CðfÞ ¼ a2CðfÞ: (17)

To match the scalability between the RF wave diffusion
term and the collision term,we need an additional scaling condi-
tion for the RF power

Pabs ¼ aPabs; (18)

and then the bounce-averaged Fokker-Planck equation in Eq.
(14) is consistent with the scaling of Maxwell’s equation and the
Grad-Shafranov equation.

Then, the final scaling that we found in this section can be
summarized by

�x ¼ ax; �R ¼ 1
a
R; �T ¼ T;

B0 ¼ aB0; �n ¼ a2n Pabs ¼ aPabs;

(19)

where only one scaling parameter a is used. In Eq. (A6), three
scaling parameters are used when the plasma mass and species
are flexible.

III. NUMERICAL VERIFICATION OF THE SCALING

In this section, we verify the numerical codes, which are
widely used in the RF wave research community, using the simi-
larity relation of Eq. (19) derived in Sec. II. The coupling between
Maxwell’s equations and the Grad-Shafranov equation is tested
using the wave code TORIC20 and the MHD equilibrium code

ECOM.21 As a default case of the test, the ICRF minority heating
scenario of (H)D plasmas is examined for a circular plasma
shape, which is similar to Alcator-C geometry.22 The default
case has the following parameters: x ¼ 118MHz, R¼64cm,
T¼ 1.65 KeV, B0 ¼ 8T, and n¼ 2.75� 1020 m�3, and in the scaling
cases, the parameters are scaled by a using Eq. (19). The density
ratio of Hydrogen to electron (nH/ne ¼ 0.06) does not change in
the scalings. Figure 1 shows the numerical error of the similarity
for the normalized electric fields in Eq. (7) for the change by a
compared to the default case of a ¼ 1. The errors are obtained by
measuring the infinite norm of the electric field component (Eþ)
real part on the 2-D grid of TORIC and its relative ratio of the
difference between the scaling case and the default case to the
default case. Figure 1(a) shows the relative error of the solutions
coupling Maxwell’s equation solver in TORIC with the MHD
equilibrium built in TORIC.20 The error is negligibly small within
seven significant digits, and it is mostly due to a round-off error.
It is worth noting that the round-off error in Fig. 1(a) generally
increases when comparing two systems in a big difference of
log10a, and the degree of the error is almost symmetric in a ¼ 1
(i.e., the error between a ¼ 1 and a ¼ 10 is similar to the error
between a ¼ 1 and a ¼ 0.1). On the other hand, in Fig. 1(b), the
result using the numerical coupling between two separate codes
TORIC-ECOM shows some loss of accuracy because of the
errors in the interpolation on the different radial and poloidal
grids between two codes. The ECOM code numerically gener-
ates the circular MHD equilibrium in the EFIT format with the
corresponding pressure and toroidal magnetic field profiles to
the different a, and it is read by TORIC through the conversion
of the EFIT format to the numerical equilibrium format of
TORIC. Nevertheless, the accuracy in Fig. 1(b) is still acceptable
inmany practical applications for the RF wave modeling.

To include the kinetic effects due to the non-Maxwellian
distribution, the numerical solutions for Maxwell’s equations,
the Grad-Shafranov equation, and the Fokker-Planck equation

FIG. 1. Relative errors in the similarity of Ê in Eq. (7) in terms of the scaling parameter a, compared to Ê of a ¼ 1. The solutions are obtained by coupled Maxwell’s equation
solver and the Grad-Shafranov equation solver using (1) TORIC-analytical circular MHD equilibrium20 and (b) TORIC-numerical MHD equilibrium code ECOM.21
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are coupled in the codes, AORSA-ECOM-CQL3D. In Figs. 2
and 3, the similarity of the coupled solutions is verified. Because
the bounce-averaged Fokker-Planck equation in Eq. (14) results
in the distribution function,

fðE; l; tÞ ¼ fðt ¼ 0Þ þ
ðt0¼t
t0¼0

dt0 hCðfÞib �rv � hQib � rvf
� �

; (20)

the similarity in Eq. (19) results in the scaling of the size of the
distribution function and the time scale of the temporal change

�̂f �x;B0 ; �R; �n; �T;Pabs ;�t
� �

¼ f̂ x;B0;R;n;T;Pabs; tð Þ; (21)

�t ¼ 1
a2

t; (22)

where f̂ ¼ f=n is the normalized distribution function by the
density.

Figure 2 shows the similarity of 1-d radial power damping
profiles between a ¼ 1 (solid lines) and a ¼ 0.1 (dashed lines)
using the solutions of the coupled codes, AORSA-ECOM-
CQL3D, through two examples [ICRF off-axis damping in
Fig. 2(a) and on-axis damping in Fig. 2(b)]. The on-axis damping
case uses the same default parameters as the case of the minor-
ity damping in Fig. 1, while the off-axis damping case uses the
different wave frequency x ¼ 115. For the kinetic effects, the
total wave power is set to be Pabs ¼ 1MW in the default case.
The power profiles using the Maxwellian distribution function
are obtained in the coupling of two codes, AORSA-ECOM, with-
out coupling with CQL3D. The power profiles using the self-
consistent non-Maxwellian distribution are obtained in the
coupling of the three codes, after AORSA is iterated with
CQL3D, and both solutions converge within several steps in the
simple fixed-point iteration.23 In the self-consistent solution,
the difference of power profiles between AORSA and CQL3D is
sufficiently small and the relative change over the iteration step
is less than 10�3.23 In Fig. 2, the numerical errors of the scaling

between a ¼ 1 (solid lines) and a ¼ 0.1 (dashed line) are accept-
ably small within a few percents except the core damping r/a
�0.0 in Fig. 2(b). The error is likely due to the different treatment
of the flux surface at the core in AORSA and CQL3D, and the
small difference in the core results in the notable difference in
the power density because of the small volume. It is also worth
noting that the errors become larger when using non-
Maxwellian distribution, which implies that the coupling
between AORSA and CQL3D results in the error.

Figure 3 shows the similarity of the distribution functions
between a ¼ 1 (solid lines) and a ¼ 0.1 (dashed line) in the same
example of Fig. 2(a). The acceptably small errors in Figs. 3(a) and
3(b) confirm the scalings of the distribution function in Eqs. (21)
and (22), respectively.

IV. CONSISTENCY WITH TRANSPORT SCALING

In this section, the consistency of the scaling in Eq. (19) with
the particle and energy transport equations is considered. This
consistency is a critical question when demonstrating the simi-
larity in real experiments.While the wave frequency, power, and
the machine size may be controllable as in the similarity, the
plasma density and temperature are not easily controlled
because they depend on the particle and energy transport,
which are not still clearly understood in the research commu-
nity. In the transport equation, one needs to consider the sour-
ces of energy (e.g., RF wave power damping) and particle (e.g.,
neutron beam injection) and the sinks of them due to the anom-
alous transport in a tokamak.1–3

For the consistency analysis, we focus on the energy trans-
port rather than the particle transport because one can use fuel-
ing to control the density profile and it is not related to the RF
waves (except the small nonlinear effects such as the pondero-
motive forces32). We also assume that the only energy source is

FIG. 2. Power density radial profiles with a ¼ 1.0 (solid lines) and a ¼ 0.1 (dashed lines) by the solutions of the coupled Maxwell/Grad-Shafranov/Fokker-Planck equations
using AORSA-ECOM-CQL3D for (a) 115MHz ICRF off-axis damping and (b) 118MHz ICRF on-axis damping.
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the RF wave injection (without the neutron beam and ohmic
heatings) for simplicity. A simple energy balance equation using
the pressure is

dð3nTÞ
dt

¼ PRF �
3nT
se

; (23)

where PRF is the power density of the RF wave energy transfer
and se is the plasma confinement time. In a steady state, the bal-
ance between two terms on the right hand side of Eq. (23) deter-
mines the temperature profiles by the given density profile.
Using the scaling of Pabs in Eq. (19) and PRF / Pabs/R3, the power
density has the scaling PRF ¼ a4PRF.

Due to the complicated characteristics of micro/macro-
turbulence in a tokamak, there is no complete formula for the
confinement time se. In the next three subsections, the consis-
tency is investigated using three different types of estimation
for sewhich have been obtained experimentally or theoretically.

A. Goldston empirical scaling

One of the simple confinement scalings is Goldston scaling2

that is obtained empirically in a simple form

se ¼
I2

nT
f1

R
a
;
b
a

� �
; (24)

where f1 is a geometric factor in terms of the aspect ratio R/a
and the elongation parameter b/a. In the scaling of this paper,
the plasma current as well as the geometric shape does not
change by Eq. (11). Thus, the scaling of the confinement time is
determined by se/ 1/nT, and Eq. (23) in a stead state results in

ð�n�TÞ2 / PRF ; (25)

which is consistent with the scalings in Eq. (19). Thus, the trans-
port by the Goldston scaling for the confinement is consistent
with the scalings for the RFwaves in Sec. II.

B. Gyro-Bohm scaling

It has been found that the energy transport in the modern
tokamak is likely determined by micro-turbulence, which is
experimentally measured and theoretically estimated to follow
the Gyro-Bohm scale transport.3,24,25 The diffusion by the Gyro-
Bohm scale can be described by

DGB ¼ csqsq
?f2ð�?;b; qÞ; (26)

where f2 can be a complicated function in terms of dimension-
less parameters for collisionality �?, b, and q.24,25 Here, the
dimensionless parameters are defined by

q? ¼ q=a;

�? ¼ ðR=rÞ3=2qR�e=v1=2te :
(27)

Because q? / 1/aB and �? / Rn, the scaling in Eq. (19) results in
�b ¼ b; q? ¼ q?, and �? ¼ a�?.

If one ignores the weak dependency of collisionality �? in f23

for simplicity, the scaling results in

DGB ¼ a�1DGB;
se ¼ a�1se;

(28)

where se ¼ a2/D is used. By the scalings �n ¼ a2n and PRF

¼ a4PRF in Eq. (19), Eqs. (23) and (28) result in

�T ¼ aT; (29)

which is not consistent with the scaling for the temperature in
Eq. (19). The transport by the Gyro-Bohm scaling results in the
increase in the temperature by a.

FIG. 3. Comparison of coupled Maxwell’s equations/Grad-Shafranov equation/Fokker-Planck equation using AORSA-ECOM-CQL3D for 115MHz ICRF off-axis damping
between a ¼ 1.0 (solid lines) and a ¼ 0.1 (dashed lines): (a) The distribution function f in the normalized momentum for various pitch angles at r/a¼ 0.14 and (b) the energy
of minority species in time for various normalized minor radii r/a.
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C. Empirical scaling for ITER design

Using the empirical fitting formula for the confinement
time based on many experimental results of the ELMy H-mode,
which is used for ITER design3

se ¼ 0:0503HHI0:91B0:15n0:44P�0:65abs R2:05j0:72M0:13 a
R

� �0:57

; (30)

the scaling of se according to Eq. (19) is

se ¼ a0:15þ2�0:44�0:65�2:05se ¼ a�1:67se: (31)

As a result of Eqs. (23) and (31), the temperature changes by

�T ¼ a0:33T; (32)

which is also inconsistent with the scaling for the temperature
in Eq. (19). However, the degree of the temperature scaling by a
is much smaller than that of the Gyro-Bohm parameter in Eq.
(29), and so, the scaling of Eq. (32) may be acceptably consistent
with the scaling in Eq. (19), if a is sufficiently close to 1 (e.g., 0.5
< a < 2 results in 0.75< a0.33< 1.26).

V. DISCUSSION

This paper investigates the scaling relations of many
parameters of the RF wave system in a tokamak, which satisfy
three types of equations (Maxwell’s equations, Grad-Shafranov
equation, and Fokker-Planck equation) and their consistency
with the transport scalings. One can suggest a test system (wind
tunnel) similar to the original RF system using the scaling rela-
tions in Eq. (19). For example, the existing parameters for ICRF
3He minority damping in ITER are shown in the left column of
Table I, while the scaled parameters by a ¼ 2 are shown in the
right column of the table. The test system by a ¼ 2 can have the
reduced size, which is similar to the size of the JET tokamak,10

and so, building the test system may cost much less than ITER.
However, there are several practical problems in building the
test system, which increase the cost significantly. First, the
background magnetic fields need to increase by twofold, which
are about three times larger than JET. Second, the plasma cur-
rent needs to be the same as ITER, which is about four times
larger than JET. The RF frequency and power, which are twice as
large as ITER, also increase the cost significantly. Physically,
even if one assumes that the plasma density that is four times
larger is achievable, obtaining the same temperature as ITER is
still questionable, as shown in Secs. IVB and IVC.

The scaling relations in Eq. (19) are not valid, if the magnetic
drift of particles is not negligible in the Fokker-Planck equation
for RF waves. In this case, the second and third terms on the left
hand side in Eq. (13) are comparable, and the second term has
the scaling relation

ðvD þ vkbÞ � r ¼ aðvD þ vkbÞ � r; (33)

which is different from that of the collision term in the equation.

The perturbed particle orbit due to RF waves can result in a
scaling of the RF wave power that is different from Eq. (18). As
the wave energy density becomes larger, the perturbed orbit
effect becomes more important and the quasilinear wave diffu-
sion may become problematic. In this case, the nonlinear diffu-
sion in the phase space needs to be considered, and the radial
particle diffusion also becomes more important.33,34

The similarity of this study may conclude that there are
many physical and engineering possibilities to invalidate the
practical test system for the RF wave system in a tokamak.
Nevertheless, there are two types of lessons learned from this
study. First, for the same wave physics, the scaling of the
machine size is in the opposite direction to the scalings of mag-
netic fields and wave frequency and power. These inverse rela-
tions are likely to prohibit the cost reductions for the test
system. Particularly, the increase in the RF total power for the
reduced size system is non-intuitive, but it is necessary for the
same kinetic effects due to non-Maxwellian distribution because
of the increased plasma density and collisionality. Second, the
coupled codes (e.g., TORIC-ECOM and AORSA-ECOM-CQL3D)
are verified to satisfy the similarity relations within the allowable
range of errors. It is also useful to evaluate the accuracy of the
coupling between the codes and diagnose a possible numerical
problem. For example, it is found that the numerical error of the
coupling in a certain radius range [e.g., r/a<0.1 in Fig. 2(b)] is
notably larger than other radii, which means that some calcula-
tions are treated differently between the codes at the particular
radius.
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APPENDIX: SCALING FOR THE SPECIES MASS AND
CHARGE FLEXIBILITY

The scaling relations in Eq. (19) can be different when the
plasma mass and charge are adjustable. One may imagine the
situations, in which electron mass and charge are flexible or
the contribution of electrons to the wave propagation and

TABLE I. A possible test system for the ITER ICRF system.

ITER ICRF a ¼ 2 test system

Wave frequency 50 MHz 100 MHz
Major radius 6.2 m 3.1 m
Magnetic fields 5.3 T 10.6 T
Plasma current 18.7 MA 18.7 MA
Density 1.0 � 1020 m�3 4.0 � 1020 m�3

Temperature 25 KeV 25 KeV
RF power 20 MW 40 MW
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damping is negligibly small. Then, the species mass and charge
in the scaling can be modified by selecting ion species of
different mass and charge.

Then, the four scaling parameters can be used: the wave
frequency by a multiplication factor a, the mass by b, the major
radius by c, and the charge by f

�x ¼ ax; �m ¼ bm; �R ¼ cR; �Z ¼ fZ; (A1)

where the overline of the variable denotes the change in the
variable after the scaling.

For the same dimensionless variables in the dielectric
tensor by the scalings in Eq. (A1), it needs to satisfy

B0 ¼ abf�1B0; �n ¼ a2bf�2n; �T ¼ bT; (A2)

where Eq. (5) is used.
The scalings of Eqs. (A1) and (7) result in
�̂
D �x;B0 ; �n; �R; �m; �Z; �T
� �

¼ f2

b2 aD̂ x;B0;n;R;m;Z;Tð Þ: (A3)

Because the collision frequency, � / nZ2/m2v3, depends on
the mass, the collision operator scaling follows

�CðfÞ ¼ a2

b
CðfÞ: (A4)

To match the scalability between the RF wave diffusion term
and the collision term, the RF power needs to have the
scalability

Pabs ¼
ab

f2
Pabs: (A5)

The scalings for the flexible mass and charge can be summa-
rized by

�x ¼ ax; �R ¼ 1
a
R; �m ¼ bm; �T ¼ bT; �Z ¼ fZ;

B0 ¼ abf�1B0; �n ¼ a2bf�2n; Pabs ¼
ab

f2
Pabs:

(A6)
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Kiptily, K. Lawson, M. Laxåback, E. Lerche, P. Lomas, A. Lyssoivan, M.-L.
Mayoral, F. Meo, M. Mironov, I. Monakhov, I. Nunes, G. Piazza, S.
Popovichev, A. Salmi, M. I. K. Santala, S. Sharapov, T. Tala, M. Tardocchi, D.

Van Eester, B. Weyssow, and JET EFDA Contributors, Nucl. Fusion 46,
391–400 (2006).

9M.-L. Mayoral, P. U. Lamalle, D. Van Eester, E. A. Lerche, P. Beaumont, E.
De La Luna, P. De Vries, C. Gowers, R. Felton, J. Harling, V. Kiptily, K.
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