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A B S T R A C T   

Multi-walled carbon nanotube (MWCNT) reinforced polylactide (PLA) nanocomposites were injected molded 
into a mold with micro needle patterns. In order to alleviate the hesitation effect caused by an increased melt 
viscositgy of PLA/CNT nanocomposites, the effects of the injection speed and holding pressure on the replication 
property were investigated. The effects of MWCNTs on the crystallization, thermal behavior, replication prop
erties, replication and surface properties of micro injection molded PLA/CNT nanocomposites were investigated. 
An analysis of crystallinity and thermal behavior indicated that the MWCNTs promoted the unique α’ to α crystal 
transition of PLA, leading to an enhancement of surface modulus and hardness, as measured using a nano
indentation technique. The specific interaction between PLA and MWCNTs was characterized using an equi
librium melting point depression technique. Furthermore, the MWCNTs increased the activation energy for 
thermal degradation of PLA due to the physical barrier effect. The improved replication quality of the micro
features in the PLA/MWCNT nanocomposites has been achieved by elevating injection speed and holding 
pressure, which enhances the polymer filling ability within the micro cavity. A replication ratio greater than 96% 
for the micro injection molded PLA/CNT nanocomposites were achieved at holding pressure of 100 MPa and 
injection speed of 120 mm/s. This study shows that processing conditions significantly influence the replication 
and surface properties of micro injection molded PLA/CNT nanocomposites.   

1. Introduction 

Micro injection molding is core technology for the fabrication of 
micro polymeric products such as micro gear, fluidic devices, electro
mechanical systems, and medical devices because of its cost- 
effectiveness and capability for mass production [1–4]. The effects of 
the internal structure of the injection mold products [5,6], process pa
rameters [7], and geometric factors [8–11] have been extensively 
investigated. In applications of micro injection molding, the replication 
quality of microfeatures is an important factor that determines the 
reliability of the selected processing route [12]. On the other hand, if 
polymer melt filling a cavity has the option of filling either a thick 
section or a thin section, the polymer tend to fill the thick section first. 
This results in the flow of polymer in the thin route stopping or slowing 
significantly, namely “hesitation effect” (Scheme 1). Since the hesitation 
can reduce part quality due to poor packing, high stresses, and 

non-uniform orientation, an optimization of process conditions is 
required. The flow of polymer melts, which determine surface quality in 
micro cavities is affected by various factors, including process parame
ters, material rheology, and machine design. With regard to process 
optimization, the mold temperature [13], holding pressure, and injec
tion speed [12] are regarded as the major factors, determining the sur
face quality of microfeatures. However, an increase in the mold 
temperature is not appropriate for improving surface quality because it 
increases the cycling time of the process, thus increasing production 
costs. Therefore, the effects of increasing the holding pressure and in
jection speed on the surface quality were evaluated in this research. 

Among the various polymer materials suitable for micro injection 
molding, renewable resources derived polylactide (PLA) has been 
intensively investigated [14] and is expected to replace petroleum-based 
polymers because of its biodegradability [15–17], biocompatibility [18, 
19], and lack of toxicity to the human body, which facilitates biomedical 
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and pharmaceutical applications [20,21]. Nevertheless, the widespread 
application of pure PLA is limited because of its extremely slow crys
tallization rate, which prolongs the processing cycle, resulting in 
increased production costs [22]. 

As PLA is a semi-crystalline polymer [23,24], its mechanical and 
physical properties are governed by controlling the crystallization pro
cess. Nanoscale reinforcement in order to enhance the polymer prop
erties is expected to change the crystallization behavior of PLA [25–27]. 
Therefore, research to promote the crystallization of PLA by incorpo
rating various nucleating agents such as talc [28], clay [29–32], starch 
[33], and cellulose nanocrystals [34], has been conducted. 

Among various nanofillers, carbon nanotubes (CNTs) are effective in 
enhancing the physical properties and crystallization of PLA [35–37] 
because of their own excellent physical properties, including their high 
aspect ratio and large surface area [38]. Our previous research [39] has 
indicated that CNTs have a significant nucleation effect on PLA even at a 
very low loading level of 0.2 wt%, at which the half crystallization time 
of isothermal crystallization is remarkably decreased, from 22.1 to 5.9 
min, at 120oC. PLA can be crystallized in α-, β-, and γ-phases, depending 
on the conditions [40–42]. The α-phase, the most common and stable 
polymorph, with a left-handed 10/3 helix, can be obtained from a melt 
or solution under normal conditions [40]. The β-phase, with a 
left-handed 3/1 helix, can be obtained by stretching the α-phase at 
higher draw ratios and drawing temperatures [41,43]. The γ–phase can 
be obtained by epitaxial growth on the hexamethylbenzene substrate 
[42,43]. A new crystal form, named the α0-form, is a disordered crystal 
form and presents in PLA crystallized at lower temperatures [44]. Pan 
et al. [43] reported that the transition of PLA crystals from the disor
dered crystal (α0-phase) to the ordered crystal (α-phase) occurred during 
the annealing process and depended on the annealing time and tem
perature. This transition is more prominent in the presence of CNTs 
[45]. Numerous studies on nanoindentation of injection molded poly
mers suggest that for the crystallinity affects both modulus and hardness 
[46,47]. Furthermore, the molded polymers may experience uneven 
cooling rates between outer and inner part. Therefore, the increased 
crystallization rate promoted by incorporation of CNT may affect surface 
properties. However, the addition of CNT into PLA leads to an increase 
in the complex viscosity, storage modulus, and loss modulus, which is 
more pronounced in the low frequency range than the high frequency 
range. This indicates that the PLA/CNT nanocomposites are more elastic 
that neat PLA, which can lead to the hesitation effect mentioned above 
in micro injection molding process. 

In this study, to overcome the drawbacks in replication of high 
loaded PLA/CNT nanocomposites, optimal conditions for micro injec
tion molding were studied. After the annealing process, the surface 

modulus and hardness of PLA were found to be improved by the addition 
of CNTs, which leads to an α-phase transition in the PLA/CNT nano
composites, and this transition was confirmed by thermal and crystal
linity analyses. The interaction between CNT and PLA, and thermal 
stability were also investigated. 

2. Experimental 

2.1. Materials and preparation of nanocomposites 

Commercial PLA (4032D, Mn ¼ 52,000 g/mol) in pellet form was 
purchased from Cargill-Dow Inc. and MWCNTs (purity >95%) synthe
sized by thermal chemical vapor deposition were obtained from Iljin 
Nanotech, Korea. The diameter and length of MWCNTs were 10–40 nm 
and 10–50 μm, respectively, yielding an aspect ratio of about 1000. The 
melt compounding of PLA with 0.02, 0.05, 0.1, and 0.2 wt% MWCNTs 
was conducted using a HAAKE rheometer (HAAKE Technik GmbH, 
Germany) equipped with a twin-screw extruder. The temperature of the 
heating zone was maintained at 185, 190, 195, and 185 �C from hopper 
to die with a constant screw speed of 20 rpm. 

2.2. Micro injection molding 

A small electric injection molding machine (ELJECT AU3E; Nissei 
Plastic Industrial Co., Ltd.) was used for micro injection molding. The 
processing conditions for micro injection molding are listed in Table 1. 
To investigate the effect of the injection molding conditions on surface 
replication quality, PLA/MWCNT nanocomposites were injection mol
ded at different injection speeds (V) and holding pressures (P). The ge
ometry of the mold with micro needle patterns is described in Fig. 1(a). 
A mold with micro needle patterns of 5ⅹ5 pieces inside the 10ⅹ10ⅹ1 
mm3 cavity was used. The hole and needle diameters were 100 and 26 
μm, respectively. The hole depth was 50 μm. 

Scheme 1. Scheme of a typical micro-injection molding process (upper) and a hesitation effect of the melt flow in micro needle patterns (lower).  

Table 1 
Experimental conditions for micro injection molding process.   

Process condition 

Injection temperature (oC) 210 
Injection pressure (MPa) 200 
Mold temperature (oC) 55 
Cooling time (s) 10 
Velocity-pressure position (s) 3 
Injection speed (V, mm/s) 30, 60, 90, 120 
Holding pressure (P, MPa) 60, 80, 100  
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2.3. Characterization 

2.3.1. Crystallinity 
Wide-angle X-ray diffraction (XRD) analysis was conducted using a 

D/MAX-2500 X-ray generator (Rigaku Denki) with Ni-filtered CuKα X- 
rays (λ ¼ 0.1542 nm) over the 2θ range of 5–45� at a scan speed of 2�/ 
min. 

2.3.2. Thermal properties 
The thermal behaviors of the PLA/MWCNT nanocomposites were 

investigated through differential scanning calorimetry (DSC), DSC7 
(PerkinElmer), over a temperature range of 30–200 �C at a heating rate 
of 10  �C/min under an atmosphere of nitrogen. To conduct Hoffman- 
Weeks plots, isothermal crystallizations of PLA/MWCNT nano
composites were performed by DSC. The samples were heated to 200 �C 
at a heating rate of 10  �C/min and maintained at 200 �C for 10 min to 
remove any previous thermal history, and then quenched at � 170  �C/ 
min to the desired crystallization temperature within a range of 90–130 
�C, and held for 60 min for complete isothermal crystallization. The 
second heating was performed at a rate of 10  �C/min. To obtain the 
equilibrium melting temperature (T0

m), the melting temperatures (Tm) 
measured from the endothermic peaks were plotted versus the crystal
lization temperatures (Tc), and the T0

m values were obtained from the 
extrapolated intersections of the Tm vs Tc lines for various MWCNT 
contents with the Tm ¼ Tc line. For investigation of thermal stability, 
thermogravimetric analysis (TGA) of the PLA/MWCNT nanocomposites 
was performed with a PerkinElmer Pyris 1 thermogravimetric analyzer 
over a temperature range of 30–600 �C at a heating rate of 15  �C/min in 
nitrogen. 

2.3.3. Replication quality 
The replication ratio was calculated as the ratio of the height of 

surface structure to the depth of the mold, as measured using laser 
spectroscopy (LEXT OLS 4000, Olympus, Japan) [4]. The morphology of 
microstructures in the micro injection molded nanocomposites was 
observed using a JEOL JSM-6340F scanning electron microscope (SEM). 
The melt flow rate (MFR) was measured to investigate the melt flow of 

PLA/MWCNT nanocomposites in the mold using a Melt Indexer F–F01 
(Toyoseiki, Japan). The MFR was obtained by measuring the amount of 
the extrudate for 10 min under a load of total mass of 2.16 kg at a 
temperature of 190 �C. 

2.3.4. Nanoindentation 
The nanoindentation measurements were performed using an MTS 

Nano Indenter XP (MES; Nano Instruments Innovation Center, TN, USA) 
with a continuous stiffness measurement technique [48]. The method of 
nanoindentation, including this technique, has been well described by 
Fischer-Cripps [49]. A three-sided pyramid (Berkovich) diamond 
indenter was used for the indentation tests. The best-replicated samples 
were utilized and annealed at 120 �C for 5 min for nanoindentation 
measurements. Before the experiments, micro injection molded 
PLA/MWCNT nanocomposites were mounted on flat aluminum stubs 
using superglue. The indenter was pressed into the smooth surface of the 
samples at a constant strain level to avoid any strain-hardening effect in 
the indentation experiments [50]. 

3. Results and discussion 

3.1. Crystallinity 

XRD patterns of PLA/MWCNT nanocomposites after an annealing 
process at 120 �C for 5 min and 60 min are shown in Fig. 2 (a) and (b). 
After the 5 min annealing process, the neat PLA exhibited weak 
diffraction peaks at 2θ ¼ 16.4� and 18.7�, corresponding to (200)/(110) 
and (203) reflections of the α0-phase of PLA [44], respectively; this form 
has looser chain packing and disordered packing of the side groups in 
the helical chains [51–53]. The disordered α0-phase of PLA is found to 
form when the crystallization temperature (Tc) is below 100 �C, while 
the ordered α-phase of PLA is found to form preferentially at a Tc above 
120 �C, implying that the two crystal forms of PLA coexist between 100 
and 120 �C [54]. As shown in Fig. 2(a), the intensity of the peak cor
responding to (200)/(110) increased with the MWCNT content, indi
cating a fast packing rate because of the strong nucleating ability of 
MWCNTs during the 5 min annealing process. The diffraction peaks 

Fig. 1. Geometry of the mold with micro needle patterns.  

Fig. 2. XRD patterns of the neat PLA and PLA/MWCNT nanocomposites after crystallization at 120 �C for 5 min (a) and 60 min (b).  
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around 16.7� and 19.1� are assigned to the ordered α-phase of PLA [55] 
and the two distinct diffraction peaks at 16.4� and 18.7� were shifted to 
16.6� and 18.9�. These results indicated that the MWCNTs assisted the 
disorder-to-order (α0-to-α) transition of PLA and led to more compact 
chain packing of the crystal lattice during the 5 min annealing process. 
However, after the 60 min annealing process, the intensity of the peak 
corresponding to the ordered α-phase decreased with the addition of 
MWCNTs, which might have acted as a barrier disturbing the chain 
compactness [45] given sufficient time for crystallization. Because the 
annealing temperature is much higher than the glass transition of PLA, 
and annealing times are sufficient for crystallization, almost all the chain 
segments of PLA have sufficient mobility and time to crystallize without 
a nucleating agent. Therefore, the neat PLA (without MWCNTs to 
disturb full chain packing) showed higher crystallinity than did the 
PLA/MWCNT nanocomposites. 

3.2. Thermal properties 

The thermal behavior of the PLA/MWCNT nanocomposites has been 
investigated using DSC. As shown in Fig. 3(a), the endothermic melting 
peaks decreased to lower temperature in the presence of MWCNTs, 
suggesting an interaction between PLA and MWCNTs [56]. The decrease 
in the cold crystallization temperature of the PLA/MWCNT nano
composites supported the nucleating effect of MWCNTs. Unusually, 
weak exothermic peaks were observed to the left of the endothermic 
melting peak of the PLA/MWCNT nanocomposites and were more 
prominent in the presence of MWCNTs. This phenomenon is the result of 
the transition of the α0-phase to the more stable α-phase during the DSC 
heating traces [43], supporting the interpretation that a 
disorder-to-order transition of the PLA crystal is effected by MWCNTs. 
The α0- and α-phases of PLA show distinct melting behaviors, as found in 
other studies [44,52,54]. After the annealing process at 120 �C, dual 
melting peaks were found, as shown in Fig. 3(b), because of two main 
mechanisms: the α0-to-α transition and melt recrystallization of the 
α-phase. The α0-to-α transition is generated and the complex system of 
the initial α0-phase and α-phase formed during the annealing process is 
generated. The existence of different crystal structures may result in the 
multiple melting peaks [44]. Theoretically, the α0-to-α transition is 
generally an exothermic process, while the melt recrystallization of the 
α-phase crystal formed in the annealing process is an endothermic 
process [43]. The second melting peak is more prominent in the 
PLA/MWCNT nanocomposites, while the first melting peak is more 
noticeable in the neat PLA. This result also supports the idea that an 
α0-to-α transition is induced by MWCNTs. 

3.3. Interaction between PLA and MWCNTs 

In previous studies [39], rheological analysis of PLA/MWCNT 
nanocomposites suggested a structural interconnection between PLA 
and MWCNTs because of their interaction. In order to quantify the 

interaction between PLA and MWCNTs, the depression of the equilib
rium melting point of PLA/MWCNT nanocomposites was investigated. 
The relationship between the Flory-Huggins interaction parameter (χ) 
and the equilibrium melting point depression can be analyzed using the 
following well-known Nishi-Wang equation [57,58]: 

T0
PLA � T0

NC ¼ �
BVu

ΔHu
T0

PLAð1 � φPLAÞ
2  

where T0
PLA and T0

NC are the equilibrium melting temperatures of the 

Fig. 3. DSC thermograms of the neat PLA and PLA/MWCNT nanocomposites before (a) and after crystallization process at 120 �C (b).  

Fig. 4. (a) Hoffman-Weeks plot for the neat PLA and PLA/MWCNT nano
composites and (b) Plot to obtain the interaction parameter in Nishi- 
Wang equation. 
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neat PLA and nanocomposites, respectively. ΔHu/Vu is the heat of fusion 
of PLA per unit volume and ФPLA is the volume fraction of PLA. B is the 
function of the interaction parameter (χ) and is defined as χRT/Vu. The R 
is the universal gas constant, and VPLA is the molar volume of PLA. The 
ΔHu and Vu values are calculated from the density of PLA (1.28 g/cm3) 

and the melting enthalpy of 100% crystalline PLA (93.7 J/g) [59]. 
The equilibrium melting temperature is one of the most important 

parameters for the comprehension of crystallization and is defined as the 
melting temperature of infinite stacking crystals. The T0

PLA and T0
NC 

values were determined from the Hoffman-Weeks plots [60], which use 
the extrapolated intersections of the Tm vs Tc lines for various MWCNT 
contents with the Tm ¼ Tc line. The Hoffman-Weeks plots for the 
PLA/MWCNT nanocomposites are shown in Fig. 4(a): the equilibrium 
melting temperatures of PLA/MWCNT nanocomposites decreased with 
increasing MWCNT concentration, implying the less perfect crystalli
zation of PLA in the presence of MWCNTs because of the hindrance ef
fect of the nanotubes, which disturb the polymer chain packing. 

The dependence of PLA content on the depression of the equilibrium 
melting temperature is shown in Fig. 4(b). The B value can be deter
mined from the slope of the plot of T0

PLA - T0
NC against (1- ФPLA)2 and the 

obtained B value is � 20.2 J/cm3, implying that PLA and MWCNTs can 
form a thermodynamically compatible mixture above the melting tem
perature [58]. The moderate interaction between PLA and MWCNTs 
results from the dipolar interaction between the π cloud of MWCNTs and 
the carbonyl group of PLA [56]. 

3.4. Thermal stability 

Thermal stability of polymer is an important property for applica
tions because it determines the upper limit of service temperature. The 
MWCNTs was well known as a good physical barrier in the polymer 
matrix, retarding the thermal degradation of the polymer nano
composites [61]. Initial degradation temperature (Tid), thermal degra
dation temperature at the maximum rate (Tdm), and residual yield (WR), 
which were associated with enhancement of the thermal stability, are 
summarized in Table 2. The overall results for thermal stability indi
cated that the MWCNTs improved the thermal stability of PLA. For 
characterizing the effect of the MWCNT on the thermal stability of PLA, 
the following Horowitz-Metzger integral kinetic equation [62] was used 
to obtain the activation energy for thermal degradation (Ea). 

Table 2 
Thermal degradation parameters and activation energy of the PLA.  

Materials Tid (oC) Tdm (oC) WR (%) Horowitz-Metzger 

Ea (kJ) r2 

PLA 316.2 397.7 0.7 21.3 0.99 
PLA/MWCNT 0.02 318.1 400.7 1.1 22.7 0.99 
PLA/MWCNT 0.05 328.2 405.8 1.2 24.8 0.99 
PLA/MWCNT 0.1 337.8 411 1.5 25.3 0.99 
PLA/MWCNT 0.2 340.2 421.7 2.3 30.1 0.99  

Fig. 5. Plots of Horowitz-Metzger method for PLA/MWCNT nanocomposites as 
a function of the θ. 

Fig. 6. SEM images of the micro needle surfaces of PLA at different injection speed (V) and holding pressure (P).  
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ln
�
lnð1 � αÞ� 1�

¼
Eaθ

RT2
dm  

where α and θ are the fractional weight loss and the difference between T 
and Tdm, respectively. The Ea can be calculated from the slop of the plots 
of ln[ln(1- α)� 1] against θ for all samples, as shown in Fig. 5. The ob
tained Ea values of PLA/MWCNT nanocomposites indicated that the 
physical barrier effect of the MWCNTs lead to higher Ea value, sug
gesting that the more energy was needed for thermal degrading of PLA/ 
MWCNT nanocomposites. 

3.5. Replication quality 

Varying the injection speed and holding pressure resulted in different 
melt flows of the PLA/MWCNT nanocomposites in the mold during 
micro injection molding, leading to changes in the surface morphology 
of the microfeatures. The surface morphology of PLA/MWCNT nano
composites is shown in Fig. 6. The micro needle patterns were well 
replicated at high holding pressures and injection speeds, while the 
microfeatures were not replicated at lower holding pressures and in
jection speeds. Smooth surfaces and clear edge definition in the micro
features of PLA/MWCNT nanocomposites emerged at holding pressure 
of 120 MPa and injection speed of 100 mm/s. The effect of holding 
pressure and injection speed on the replication ratio of microfeatures are 
shown in Fig. 7 (a) and (b), respectively. Representative confocal images 
for the all PLA/MWCNT nanocomposites are shown in Fig. S1. The 
replication ratio increased with an increase in pressure and speed, 

implying that an increase of both the holding pressure and injection 
speed promoted complete filling of the mold with the polymer melt. 
However, the replication ratio of the microfeatures decreased in the 
presence of MWCNTs, which seem to have disturbed the PLA melt flow, 
as confirmed by the MFR analysis (Fig. 8 (a)). A rheological analysis of 
PLA/MWCNT nanocomposites was conducted previously [39], and the 
interaction between PLA and MWCNTs through their interconnected 
structure was found to increase the melt viscosity of PLA/MWCNTs 
nanocomposites. In micro injection process, viscosity is influenced more 
by shear rate, which is caused by injection speed, than melt or mold 
temperature. The shear-thinning effect can decrease the polymer melt 
viscosities, which enhances the material filling ability within the micro 
cavity. Moreover, the polymer can be shaped more completely after 
suffering sufficient holding pressure to prevent shrinkage. Although 
MWCNTs disturbed the melt flow of PLA/MWCNT nanocomposites by 
increasing melt viscosity, high holding pressures and injection speed 
increased the replication ratio of PLA/MWCNT nanocomposites. As 
shown in Fig. 8 (b), the micro injection molded PLA/MWCNT nano
composites with replication ratio greater than 96%, were achieved at 
100 MPa holding pressure and 120 mm/s injection speed. 

3.6. Nanoindentation 

Nanoindentation provides valuable quantitative information 
regarding the mechanical properties of various materials at the first 
surface layers [63]. This useful technique has been employed for poly
meric systems, such as poly(ethylene oxide), poly(acrylic acid) [64], 

Fig. 7. Replication ratio of the neat PLA and PLA/MWCNT nanocomposites 
with (a) holding pressure at a constant injection speed of 90 mm/s and (b) 
injection speed at a constant holding pressure of 80 MPa. 

Fig. 8. (a) Melt flow index of PLA/MWCNT nanocomposites and (b) Replica
tion ratio of the neat PLA and PLA/MWCNT nanocomposites at certain pro
cessing conditions with various MWCNT contents. 
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poly(ethylene terephthalate) [65], and polyamide 6 and their compos
ites [66]. A nanoindentation analysis was performed to probe the sur
face mechanical properties of PLA/MWCNT nanocomposites in this 
research, and the surface modulus and hardness with respect to the 
indentation depth are shown in Fig. 9 (a) and (b). Both the surface 
modulus and hardness were enhanced as a function of MWCNT con
centration because of the addition of the stiff nanofiller into the matrix. 
Decrease in the surface modulus and hardness were also observed with 
increasing indentation depth because of the indentation size effect [67]. 
The surface modulus and hardness of PLA/MWCNT nanocomposites 
were roughly stabilized from 1500 nm onward. At 0.2 wt% MWCNTs, 
the surface modulus and hardness curves of the PLA were shifted up
ward slightly with increasing indentation depth. This upward shift 
might be the result of inhomogeneous MWCNT dispersion, because the 
neat PLA and PLA samples with lower MWCNT contents showed almost 
stable values of surface modulus and hardness [68]. From the results of 
our measurements, it appears that MWCNTs resulted in an improved 
hardness and surface modulus in the PLA, which are strongly related to 
the degree of crystallinity [69]. In many studies [35–37,39,70], the 
CNTs played a role as a nucleating agent in the PLA matrix and 
prompted heterogeneous nucleation. This nucleating effect of MWCNTs 
increased the crystallinity of PLA, leading to an improved surface 
modulus and hardness. 

4. Conclusions 

In this research, micro injection molded PLA/MWCNT nano
composites with high surface quality were achieved by increasing the 
holding pressure and injection speed which promoted complete filling of 
the mold with the polymer melt. The surface mechanical properties of 
the PLA/MWCNT nanocomposites have been evaluated using a nano
indentation technique, and the surface modulus and hardness were 
improved by the stiff MWCNTs which led to crystallinity improvement 
though the α0-to-α-phase crystal transition of PLA. The MWCNT induced 
α0-to-α transition was confirmed by XRD and thermal analysis. The 
interaction between the PLA and MWCNTs was investigated using DSC 
to determine the depression of the equilibrium melting point of PLA/ 
MWCNT nanocomposites. The estimated interaction parameter, B, was 
� 20.2 J/cm3 in the PLA/MWCNT system, indicating a thermodynami
cally compatible mixture. The activation energy for thermal degradation 
of the PLA/MWCNT nanocomposites reflected that the MWCNTs lead to 
improve thermal stability of PLA. This research has demonstrated the 
positive effect of MWCNTs on PLA for the development of micro injec
tion molded polymers with excellent performance. The micro needle 
arrays can be applied as optical devices and miniaturized electrical 
devices. 
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