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Although end-binding protein 1 (EB1) is well known to regulate microtubule dynamics, the role of EB1 in
apoptosis of non-small cell lung cancer (NSCLC) is poorly understood. Here, we investigated the molec-
ular mechanism by which EB1 regulates apoptosis in H460, A549, and H1299 cells. Depletion of EB1 in
A549 and H1299 cells, which express high levels of EB1, induced cell death in a p53-independent manner
through over-production of reactive oxygen species (ROS) and Bax induction. This phenomenon was
potentiated in radiation-treated EB1-knockdown cells and was largely blocked by N-acetyl-L-cysteine,
a scavenger of ROS. ROS accelerated the activation of nuclear factor-kappa B (NF-jB) to promote tran-
scriptional activity of Bax, an action that was accompanied by cytochrome c translocation and apopto-
sis-inducing factor (AIF) release. The NF-jB inhibitor, BAY 11-7082, potently inhibited the apoptosis
induced by EB1 knockdown and radiation treatment, in association with diminished activity of the mito-
chondrial death pathway. Conversely, ectopic overexpression of EB1 in H460 cells, which express low lev-
els of EB1, remarkably abrogated radiation-induced apoptosis and NF-jB-mediated mitochondrial
dysfunction. Our data provide the first demonstration that down-regulation of EB1 promotes NSCLC cell
death by inducing ROS-mediated, NF-jB-dependent Bax signaling cascades, a process in which cyto-
chrome c and AIF play important roles, indicating a potential therapeutic benefit of EB1 in lung cancer.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-SA license.
1. Introduction

When a lung tumor cannot be removed by surgery because of
its size or location, radiation therapy (often in combination with
chemotherapy) may be used as the main treatment. Despite the
effectiveness of radiotherapy in cancer treatment, lung tumor cells
may repopulate the primary tumor or metastatic sites, an outcome
largely attributable to radioresistance [1,2]. Non-small-cell lung
cancer (NSCLC) represents a heterogeneous group of lung cancers
that can occur as unusual histologic variants and thus are relatively
insensitive to radiotherapy compared with small-cell lung cancer
and other cancers [3,4]. Therefore, new strategies, such as bio-
marker-integrated targeted therapeutic approaches, are needed
to achieve improved survival in patients with locally advanced,
unresectable disease or advanced metastatic disease.

Mitochondria, the energy factories of the cell, play a key role in
the regulation of cell death as well as signaling and cellular differ-
entiation [5]. Mitochondrial molecules involved in reactive oxygen
species (ROS) generation, Bcl-2 down-regulation, Bax activation,
cytochrome c release, apoptosis inducing factor (AIF) release, and
caspase-3 activation have been reported to regulate apoptosis in
various cell lines [6,7]. It has been shown that the mitochondrial
membrane permeabilization pore is sensitive to the redox state,
and ROS can facilitate mitochondrial membrane permeabilization
both in vitro and in vivo [8]. Dysregulation of the levels of Bax
and Bcl-2 disrupts mitochondrial function, causing the release of
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cytochrome c from mitochondria into the cytosol and subsequent
activation of caspase cascades, the terminal step in the apoptotic
process [9,10]. Bax, a pro-apoptotic protein of the Bcl-2 family,
mainly resides in the cytosol of healthy cells; however, following
initiation of death signaling, it integrates and oligomerizes into
the outer mitochondrial membrane (OMM). These oligomers are
thought to induce permeabilization of the OMM, allowing the ef-
flux of apoptogenic proteins [11,12].

Human end-binding protein 1 (EB1) was originally identified as
an interacting partner of adenomatous polyposis coli (APC) that
acts to enhance APC function in colorectal cancer [13]. EB1, a mem-
ber of the plus-end-tracking protein family, acts as not only a
microtubule-stabilization factor but also as an anti-pausing factor,
promoting microtubule dynamics [14–16]. Recent studies suggest
that EB1 is associated with a variety of microtubule-mediated cel-
lular activities in various systems, including migration, cell divi-
sion, and morphogenesis [17–20]. Notably, EB1 has been
reported to be overexpressed in gastric adenocarcinoma [21],
hepatocellular carcinoma [22], esophageal squamous cell carci-
noma [23], and breast cancers [24]. This up-regulation might be in-
volved in tumorigenesis and promotion of tumor cell growth via
the Wnt signaling pathway or Aurora-B activation [23–25]. How-
ever, the molecular role of EB1 in regulating tumor cell death, espe-
cially in the context of lung cancer cells radioresistance, remains to
be elucidated.

In this study, we investigated the cytotoxicity of EB1 in NSCLC
cells and found that depletion of EB1 promoted apoptotic cell
death via mitochondrial ROS production. We further explored the
EB1 signaling mechanism to determine the downstream effectors
of accumulated ROS in radiation-treated lung cancer cells.

2. Materials and methods

2.1. Cell culture and treatment

BEAS-2B human normal bronchial cells, SiHa human cervical cancer cells, MCF-
7 human breast cancer cells, and H460, A549 and H1299 human NSCLC cells were
purchased from American Type Culture Collection (Manassas, VA, USA). HCT116
p53+/+ and p53�/� isogenic human colon cancer cell lines were kindly provided
by Professor Bert Vogelstein (The Johns Hopkins University, Baltimore, MD, USA).
BEAS-2B, H460, A549, and H1299 cells were grown in Roswell Park Memorial Insti-
tute (RPMI)-1640 medium. SiHa, MCF-7, HCT116 p53+/+, and HCT116 p53�/� cells
were maintained in Dulbecco’s modified Eagle’s medium. Cells were incubated at
37 �C in a humidified incubator with 5% CO2, and medium was supplemented with
10% fetal bovine serum, 50 lg/mL streptomycin, and 50 units/mL penicillin. The
cells were irradiated using a 137cesium-ray source (Atomic Energy of Canada Ltd.,
Mississauga, Canada) at a dose rate of 3.81 Gy/min. Where indicated, cells were
treated with 1 mM N-acetyl cysteine (NAC; Sigma, St. Louis, MO, USA) to scavenge
ROS or 1 lM BAY 11-7082 (BAY; Calbiochem, San Diego, CA, USA) to inhibit NF-jB
activity.

2.2. Cell proliferation

Cells were plated on culture dishes at a density of 5 � 104 cells/cm2 for the indi-
cated times with or without small interfering RNA (siRNA)-mediated EB1 knock-
down. Cell proliferation was determined by direct counting using a hemocytometer.

2.3. Assay for cell death

Cells seeded at a density of 2 � 105 cells per 60-mm dish were left untreated or
were treated with 10 Gy radiation under the indicated experimental conditions. For
quantification of cell death, cells were trypsinized, washed in phosphate-buffered
saline (PBS), dually stained with annexin V and propidium iodide, and analyzed
with a FACScan flow cytometer (Becton Dickson, Franklin Lakes, NJ, USA). Apoptotic
cell death was also determined by Western blot analysis of cleaved poly (ADP-ri-
bose) polymerase (PARP) and activated caspase-3. Alterations in cellular morphol-
ogy were observed by light microscopy.

2.4. Colony-forming assay

Cell survival before and after irradiation was determined using clonogenic as-
says, as described previously [26]. Cells were left untreated or were treated with
a single dose of radiation ranging from 0 to 5 Gy, according to the indicated exper-
imental conditions, and then were trypsinized, diluted, and seeded into 60-mm tis-
sue culture dishes. After 14 days, colonies were fixed with methanol and stained
with trypan blue solution. Colonies with 50 or more cells were counted as survivors
using a colony counter (Imaging Products, Chantilly, VA, USA).

2.5. Immunofluorescence confocal microscopy

H460 and A549 cells were fixed with 3.5% paraformaldehyde in PBS, as de-
scribed previously [27]. Cells were permeabilized by incubating for 30 min with
PBS containing 0.1% Triton X-100 and blocked by incubating with PBS/5% fetal bo-
vine serum for 30 min. Cells were washed with PBS and incubated with 10 lg/mL of
mouse monoclonal anti-EB1 primary antibody (Santa Cruz Biotechnology. Inc., San-
ta Cruz, CA, USA) for 1 h. The cells were incubated with fluorescein isothiocyanate
(FITC)-conjugated secondary antibody (Invitrogen, Carlsbad, CA, USA) and then ob-
served with a laser-scanning confocal microscope (Leica Microsystems, Heidelberg,
Germany). Cell nuclei were identified by staining with 4,6-diamidino-2-phenylin-
dole (DAPI).

2.6. ROS assay

H460 and A549 cells were left untreated or were treated with 10 Gy radiation in
the absence or presence of NF-jB inhibitor, as indicated. Cells were incubated with
10 nM 20 ,70-dichlorofluorescein diacetate (DCF-DA; Molecular Probes. Inc., Eugene,
OR, USA) to detect ROS, as described previously [28]. Cells were initially harvested
by trypsinization and then analyzed for DCF-DA fluorescence using a FACScan flow
cytometer. ROS levels were expressed as a histogram of the fluorescence generated
by 10,000 cells. Cell staining was subsequently examined with a laser-scanning
confocal microscope (Leica Microsystems) using on an excitation wavelength of
488 nm and a 525-nm emission filter. Mitochondrial superoxide generation was de-
tected by staining cells for 10 min at 37 �C with 5 lM MitoSOX Red, a mitochondrial
superoxide indicator for live-cell imaging (Invitrogen), and then washing three
times with PBS before imaging. Groups of cells were randomly selected from each
sample.

2.7. Reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was isolated using RNA STAT-60 (Tel-Test B, Inc., Friendswood, TX,
USA). RT reactions were performed using ImProm-II reverse transcriptase (Promega,
Madison, WI, USA) with rTaq polymerase (iNtRON, Gyeonggi-do, Korea) by incubat-
ing for 5 min at 70 �C (annealing) and 60 min at 42 �C (first strand extension). The
following conditions and primer pairs were employed for conventional PCR: EB1
(333 bp product; annealing temperature, 57 �C; 28 cycles), 50-CTG CGT ATT GTC
AGT TTA TG-30 (sense) and 50-GAG GTT TCT TCG GTT TAT TC-30 (antisense); glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) (305 bp product; annealing tem-
perature, 55 �C; 24 cycles), 50-CAT CTC TGC CCC CTC TGC TGA-30 (sense) and 50-
GGA TGA CCT TGC CCA CAG CCT-30 (antisense). The amplification signals of the tar-
get gene were normalized against that of GAPDH in the same reaction.

2.8. Knockdown of EB1 by siRNA

The following EB1-specific siRNA based on the sequence of human EB1 was syn-
thesized according to the manufacturer’s guidelines (Genolution, Seoul, Korea): 50-
UUG CCU UGA AGA AAG UGA AUU-30 (sense) and 50-UUC ACU UUC UUC AAG GCA
AUU-‘3 (antisense). A scrambled siRNA, which showed no significant homology to
known gene sequences and did not regulate gene expression, was used as a nega-
tive control. Cells were transfected with 100 nM siRNA in serum-free medium for
5 h using Metafectene reagent (Biontex, München, Germany) according to the man-
ufacturer’s protocol, as described previously [26]. The depletion of target protein
was determined by Western blot analysis.

2.9. Construction and transfection of EB1

EB1 cDNA from Beas-2B cells was amplified by RT-PCR using the primers de-
scribed above, which were designed to introduce KpnI and XhoI restriction sequences
at the 50 and 30 ends, respectively, of the amplified fragment. The resulting cDNA was
cloned into the corresponding restriction sites of the pcDNA3.1/myc-His A vector
(Invitrogen). H460 cells were transfected with control vector or EB1 expression vector
using Metafectene reagent (Biontex), following the procedure recommended by the
manufacturer. Briefly, the Metafectene-DNA complex was incubated at room temper-
ature for 20 min, diluted with serum-free transfection medium, and added to the
cells. After incubation in complete medium for 24 h, transfected cells were treated
with radiation and incubated for an additional 48 h.

2.10. Western blot analysis

Western blot analyses were performed as described previously [29], and blots
were probed with primary antibodies against EB1, Bcl-2, Bcl-xl, Bax, HSP60, cyto-
chrome c, AIF p53, Ij-B, a-tubulin (Santa Cruz Biotechnology Inc.); cleaved-PARP
(Asp214) and cleaved caspase-3 (Cell Signaling Technology, Beverly, MA, USA);
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and b-actin (Sigma). Blots were developed using a peroxidase-conjugated second-
ary antibody and enhanced chemiluminescence (ECL) system (Amersham Life Sci-
ences, Piscataway, NJ, USA).

2.11. Subcellular fractionation

The subcellular distribution of protein was determined by fractionating cells
into cytosolic and mitochondrial fractions, followed by Western blotting. For isola-
tion of the cytosolic fraction, cells were lysed with lysis buffer (20 mM HEPES, pH
7.5, 250 mM sucrose, 10 mM KCl, 2 mM MgCl2, 1 mM EDTA, 1 mM DTT, protease
inhibitor cocktail) for 20 min on ice. Samples were homogenized by 70 strokes of
a Dounce glass homogenizer with a loose pestle (Wheaton, Millville, NJ, USA).
The homogenate was centrifuged at 12,000 rpm for 20 min at 4 �C. Levels of cyto-
chrome c, AIF, and tubulin protein were determined by Western blot analysis. For
isolation of the mitochondrial fraction, the insoluble pellet remaining after collec-
tion of the cytosolic fraction was resuspended in buffer (20 mM Tris–HCl, pH 6.7,
0.15 mM MgCl2, 0.25 mM sucrose, 1 mM DTT, protease inhibitor cocktail). After
incubation for 30 min on ice, the pellet was centrifuged at 12,000 rpm for 20 min
at 4 �C. Mitochondrial levels of Bax and HSP60 protein were determined by Western
blot analysis.

2.12. Statistical analysis

Cell culture experiments were repeated at least three times. Statistical differ-
ences between groups were assessed by Students t-test, and a p-value < 0.05 was
considered significant.

3. Results

3.1. Depletion of EB1 alone suppresses the growth of lung cancer cells

We compared the proliferation rate among NSCLC cells (H460,
A549 and H1299) without any treatment. Although the relative cell
growth rates were different (H460 > A549 > H1299), 24 h was suf-
ficient for a population doubling after seeding for all tested cell
lines (Fig. 1A). An analysis of differential expression between
parental H460 and radioresistant H460 cell lines revealed the
EB1 gene as a radioresistance target (data not shown). We thus
examined the role of EB1, focusing on radiation-related cell death
in this study. Interestingly, EB1 transcript (Fig. 1B, top) and protein
(Fig. 1B, bottom) levels were lower in H460 cells than in A549 and
H1299 cells, suggesting that H460 cells would be the most sensi-
tive to radiation. Consistent with the results of Western blotting
of Fig. 1B, immunostaining experiments also revealed that EB1
expression was higher in A549 cells than in H460 cells although
EB1 was major distributed in the cytoplasm of both A549 and
H460 cells (Fig. 1C). To examine whether EB1 regulates cytotoxic-
ity of NSCLC cells, we used siRNA to knock down endogenous EB1
in A549 and H1299 cells, which express high levels of EB1. Deple-
tion of EB1 alone potently enhanced cytotoxicity in both cell lines
in a time-dependent manner (Fig. 1D) and dramatically decreased
colony formation (Fig. 1E). In addition, clonogenic survival assays
showed that EB1-knockdown cells were more sensitive than con-
trol cells to exposure to a single dose of radiation ranging from 0
to 5 Gy (Fig. 1F). Thus, our results suggest that EB1 is associated
with the development of radioresistance in lung cancer cells.

3.2. EB1 depletion plus radiation treatment induces p53-independent
cytotoxicity of lung cancer cells

As expected, H460 cells were the most sensitive to 10 Gy radi-
ation, whereas both A549 and H1299 cells showed a distinct radio-
resistance to the same radiation dose (Fig. 2A). To better
understand the relationship between EB1 expression and the
radioresistance phenotype of lung cancer cells, we analyzed the ef-
fects of EB1 loss-of-function in EB1 highly expressing A549 and
H1299 cells. FACS analyses showed that treatment with 10 Gy
radiation alone induced approximately 17% cell death in p53-wild
type A549 cells and transfection of EB1 siRNA alone induced
approximately 26% cell death; combined stimulation (radiation-
plus EB1-knockdown) induced approximately 42% cell death
(Fig. 2B, left). Western blotting showed that radiation treatment
and/or EB1 depletion caused a marked decrease in the level of
EB1 protein in A549 cells in association with a marked elevation
in the levels of cleaved PARP and active caspase 3, two important
apoptotic markers (Fig. 2B, right). Consistent with these results,
morphological changes characteristic of apoptosis were observed
in EB1-knockdown- and radiation-treated A549 cells, but not in con-
trol cells (Fig. 2C). Interestingly, radiation treatment did not change
EB1 protein levels in p53-null type H1299 cells, but the patterns of
cell death were very similar to those of A549 cells under the same
experimental conditions, as determined by FACS analysis (Fig. 2D,
left) and Western blotting (Fig. 2D, right). Taken together, our data
suggest the possibility that EB1 mediates a p53-independent apop-
totic signal and cross talks with the radiation pathway in a cell-type
dependent manner. We further examined whether the correlation
between EB1 level and radiosensitivity is universal in other cancer
and normal cell lines. Consistent with the results of A549 and
H1299 cells, BEAS-2B normal cells and SiHa cancer cells showed
strong correlation between EB1 knockdown and radiosensitivity
(Fig. 2E). However, EB1 depletion did not induce cell death in HCT
116 and MCF-7 cancer cells and had no effect on radiation-mediated
cell death of these cells (Fig. 2E). Therefore, these data suggest that
the contribution of an EB1 molecule to the regulation of radiosensi-
tivity can be cell type specific.

3.3. Depletion of EB1 promotes cell death via ROS-dependent Bax
induction

Bax translocation to mitochondria is a key event in the induc-
tion of apoptotic cell death in several cell lines [30,31]. Thus, we
examined whether depletion of EB1 is associated with ROS-depen-
dent activation of Bax in lung cancer cells. We found that knock-
down of EB1 alone or in combination with radiation led to
down-regulation of Bcl-2 and up-regulation of Bax levels in
whole-cell lysates of both A549 and H1299 cells, but did not mod-
ulate Bcl-xl levels (Fig. 3A). It is well known that radiation pro-
motes ROS generation during radiotherapy in the lung [32]. FACS
analysis (Fig. 3B, top) and cell staining (Fig. 3B, bottom) revealed
that EB1 depletion also induced a notable increase in ROS produc-
tion in A549 cells. This phenomenon of ROS generation could also
be detected in other lung cancer H1299 cells (Supplemental
Fig. 1A). Moreover, pretreatment with NAC, a ROS scavenger, com-
pletely inhibited the increase in Bax expression induced by radia-
tion stimulation of EB1-knockdown A549 cells, whereas the
decreased levels of Bcl-2 were not rescued by ROS inhibition
(Fig. 3C). These data suggest that EB1-mediated regulation of Bcl-
2 and Bax occur via ROS-independent and -dependent pathways,
respectively. We further confirmed Bax modulation by examining
subcellular fractions under the same experimental conditions. Wes-
tern blot analyses revealed that the pattern of Bax protein expres-
sion in the mitochondrial fraction was consistent with the results
obtained using whole-cell lysates (Fig. 3D). Notably, NAC treatment
reduced radiation-induced cell death in EB1-knockdown A549 cells
by approximately 50% (Fig. 3E, top) and robustly decreased the
two apoptotic markers, cleaved PARP and the active form of caspase
3, without rescuing EB1 protein levels (Fig. 3E, bottom), indicating
that ROS regulation is down-stream of EB1 in this signaling path-
way. The same effects of NAC treatment on cell death were also ob-
served in EB1-knockdown H1299 cells (Supplemental Fig. 1B).

3.4. Bax is a target of the transcription factor NF-jB during
EB1-depletion- and radiation-mediated cell death

To examine whether Bax accumulation induced by knockdown
of EB1 is associated with NF-jB activation, we investigated
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degradation of IjB, an NF-jB inhibitory protein. EB1 depletion
alone or in combination with radiation led to significant down-reg-
ulation of IjB protein in A549 cells (Fig. 4A, top). This effect was
completely prevented by scavenging ROS with NAC (Fig. 4A, bot-
tom), indicating that increased transcriptional activity of NF-jB
is down-stream of ROS signaling. In addition, direct inhibition of
IjB phosphorylation with BAY 11-7082 (BAY) clearly enhanced
the up-regulation of IjB and subsequent decrease in Bax expres-
sion induced by combined stimulation in A549 cells (Fig. 4B).
Bcl-2 levels were not altered by treatment with BAY, suggesting
that the Bcl-2-dependent mechanism of EB1-mediated A549 cell
death is NF-jB-independent (Fig. 4B). We further confirmed Bax
modulation by examining mitochondrial fractions under the same
experimental conditions, finding a Bax expression pattern that was
similar to that obtained with whole-cell lysates (Fig. 4C). Since ROS
induced NF-jB activation as above, we examined whether NF-jB
signaling maintains a positive feedback loop to induce ROS produc-
tion. Consistent with the results shown in Fig. 3B, FACS analyses
(Fig. 4D, left) and cell staining (Fig. 4D, right) showed that EB1
depletion and/or radiation treatment induced ROS production,
but these actions were not blocked by BAY treatment in both
A549 and H1299 cells, indicating that NF-kB activation is down-
stream of ROS signaling pathway. However, BAY treatment did re-
duce the cell death induced by combined stimulation in A549 cells
by approximately 48% (Fig. 4E, left). Consistent with the results of
FACS analyses, Western blotting showed that BAY treatment signif-
icantly decreased the levels of cleaved PARP and the active form of
caspase 3 in A549 cells without altering EB1 levels (Fig. 4E, right).
Taken together, our data suggest that induction of the NF-jB target
Bax is a key event in EB1-depletion-mediated cell death.
3.5. Ectopic overexpression of EB1 blocks radiation-induced cell death
in H460 cells

To further elucidate the role of EB1 in lung cancer cell death, we
examined the effects of EB1 gain-of-function by ectopically over-
- - +  +   siEB1

Bcl-2 

Bcl-xl 

Bax

β-actin 

A 

- - +  +   siEB1

Bcl-2 

Bcl-xl 

Bax

β-actin 

A549

H1299

R
O

S 
ge

ne
ra

tio
n 

(fo
ld

 in
du

ct
io

n)

B 

siEB1    - - +     +

A549
4 

3 

2 

1 

0 

0     10    0 10 (Gy)    

0     10    0 10 (Gy)    

   (Gy) 0    10 0 10   

0 Gy            10 Gy

si
EB

1 
Sc

ra
m

bl
e 

* 

**

* 

Fig. 3. Effects of EB1 on the expression of Bcl-2 family proteins and ROS generation. (A) W
death of A549 and H1299 cells, untreated or treated with 10 Gy radiation after transfect
used as a loading control. (B) ROS generation in A549 cells treated as in A. Top: FACS analy
microscopy (magnification, 100�). Data are expressed as means ± SD (⁄p < 0.05 and ⁄⁄p <
2 family proteins in A549 cells treated as in A in the absence or presence of 1 mM NAC. Im
fractions (D) using HSP60 as a loading control. (E) Apoptosis analysis in A549 cells treat
Data are expressed as means ± SD (⁄⁄⁄p < 0.0001 compared with unstimulated controls;
expressing EB1 in H460 cells, which express low levels of EB1.
Although ectopic overexpression of wild-type EB1 alone did not
affect the viability of H460 cells compared to control, it reduced
the radiation-induced death of these cells by approximately 45%
(Fig. 5A, top). Consistent with this pattern of cell death, Western
blotting showed that radiation treatment significantly decreased
EB1 levels and increased the levels of cleaved PARP and the active
form of caspase 3 in parental H460 cells (Fig. 5A, bottom). Notably,
the increases in these two apoptotic markers induced by irradia-
tion (10 Gy) of H460 cells were markedly reduced by overexpres-
sion of EB1 (Fig. 5A, bottom). Collectively, these data suggest that
EB1 might be a biomarker of the radioresistance phenotype in lung
cancer cells. We continued our analysis by examining whether EB1
regulates ROS and Bax signaling in H460 cells. In contrast to EB1
knockdown, ectopic EB1 overexpression inhibited radiation-in-
duced ROS production in H460 cells, as determined by FACS anal-
ysis (Fig. 5B, top) and cell staining (Fig. 5B, bottom). It also led to an
induction of Bcl-2 in parental H460 cells, an effect that was dimin-
ished in radiation-treated H460 cells (Fig. 5C, top). Although Bcl-xl
levels were unchanged by radiation treatment and/or EB1 accumu-
lation, EB1 overexpression caused a ROS-dependent reduction in
the radiation-induced increase in Bax levels in H460 cells
(Fig. 5C, top). The pattern of Bax alterations obtained in experi-
ments using the mitochondrial fraction was consistent with these
results (Fig. 5C, bottom). Moreover, overexpression of EB1 rescued
the radiation-induced down-regulation of IjB levels in H460 cells,
indicating that suppression of NF-jB activity is involved in inhibit-
ing Bax expression (Fig. 5D).
3.6. EB1 regulates cell death via p53-independent ROS generation and
mitochondrial dysfunction

Recent studies have revealed that ROS act as both an up-stream
signal and a down-stream target of p53 [33,34]. We therefore fur-
ther investigated the relationship between EB1 and p53 expres-
sion. siRNA-mediated down-regulation of endogenous EB1 did
C 
- - +     +     +  siEB1

- - - - +   NAC

D 

Bax

HSP60

Bcl-2 

Bcl-xl 

Bax

β-actin 

- - +     +     +  siEB1

- - - - +   NAC

E 

siEB1      - +      +

C
el

l D
ea

th
 (%

)

NAC - -  + 

A549
50

40

30

20

10

0 

β-actin 

Active- 
caspase 3

EB1

Cleaved-
PARP

   (Gy) 0     10 10   

0    10 0    10   10  (Gy)    

0    10 0    10   10  (Gy)    

*** **

estern blot analysis of Bcl-2 family proteins mediating EB1-dependent change in cell
ion with 100 nM scrambled or EB1 siRNA and then incubated for 48 h. b-actin was
sis using 10 nM DCF-DA. Bottom: cell staining analyzed by a laser-scanning confocal
0.005 compared with unstimulated controls). (C and D) Western blot analysis of Bcl-

munoblot analyses were carried out with whole-cell lysates (C) and mitochondrial
ed as in C. Top: FACS analysis. Bottom: Western blot analysis of cell-death markers.
⁄⁄p < 0.005 compared with radiation-treated EB1-knockdown cells).



IkB 

β-actin 

A 

- - +     + +   siEB1

- - - - +   NAC

- - +  +   siEB1

IkB 

β-actin 

0    10  0 10 (Gy)    

0 10    0    10   10  (Gy)    

B 

IkB 

Bcl-2 

Bcl-xl 

Bax

β-actin 

-  - +  +     +   siEB1

-  - - - + Bay
0 10    0    10 10  (Gy)    

C 

Bax

HSP60

- - + +  +   siEB1

- - - - +   Bay
0 10    0    10 10  (Gy)    

R
O

S 
ge

ne
ra

tio
n

(fo
ld

 in
du

ct
io

n)

siEB1  - - + +     +

Bay - -  - - + 

D 4 

3 

2 

1 

0 

(Gy)    0    10    0   10 10   

** x 

E 

siEB1     - +     +

C
el

l D
ea

th
 (%

)

- +      +   siEB1

- - +   Bay

Bay - - + 

50

40

30

20

10

0 

β-actin 

Active- 
caspase 3

EB1

Cleaved-
PARP

0 10 10 (Gy)    
*** **

   (Gy) 0 10   10   

R
O

S 
ge

ne
ra

tio
n

(fo
ld

 in
du

ct
io

n)

4 

3 

2 

1 

0 

** x 

A5
49

H
12

99

siEB1/10 G
y/Bay

siEB1/10 G
y

siEB1/Baysi
EB

1
C

on
 

10
 G

y

A549 H1299

si
EB

1
C

on
 

10
 G

y

siEB1/10 G
y/Bay

siEB1/10 G
y

siEB1/Bay

Fig. 4. Effects of NF-jB signaling on Bcl-2 family proteins and apoptosis. (A) Western blot analysis of the NF-jB inhibitor IjB in A549 cells, untreated or treated with
10 Gy radiation after transfection with 100 nM scrambled or EB1 siRNA and incubated for 48 h (top) in the absence or presence of 1 mM NAC (bottom). b-actin was used
as a loading control. (B and C) Western blot analysis of IjB and Bcl-2 family proteins in A549 cells, untreated or treated with 10 Gy radiation after transfection with
100 nM scrambled or EB1 siRNA and incubated for 48 h in the absence or presence of 1 lM BAY. Immunoblot analyses were carried out with whole-cell lysates (B) and
mitochondrial fractions (C) using HSP60 as a loading control. (D) ROS generation in A549 and H1299 cells treated as in B. Left: FACS analysis with 10 nM DCF-DA. Right:
cell staining analyzed by a laser-scanning confocal microscopy (magnification, 100�). Data are expressed as means ± SD (⁄⁄p < 0.005 compared with unstimulated controls;
� denotes no significance compared with radiation-stimulated EB1-knockdown cells). (E) Apoptosis analysis in A549 cells treated as in B. Left: FACS analysis. Right:
Western blot analysis of cell-death markers. Data are expressed as means ± SD (⁄⁄⁄p < 0.0001 compared with unstimulated controls; ⁄⁄p < 0.005 compared with radiation-
stimulated EB1-knockdown cells).

20 M.-J. Kim et al. / Cancer Letters 339 (2013) 15–24
not alter the expression level of p53 in H460, A549 or H1299 cells,
although it effectively knocked down EB1 in all cancer cells tested
(Fig. 6A). Moreover, ectopic overexpression of p53 had no effect on
EB1 levels in p53-null type H1299 cells (Fig. 6B). We further
analyzed this relationship using HCT116 p53+/+ and p53�/� cancer
cell lines treated with 10 Gy radiation. Although radiation induced
a time-dependent increase in the level of p53 protein in HCT116
p53+/+ cells, EB1 levels were unchanged in both cell lines
(Fig. 6C). In an attempt to elucidate the role of EB1 in Bax-mediated
mitochondrial dysfunction, we determined the levels of cyto-
chrome c and AIF in cytosolic fraction. EB1 depletion alone or
in combination with radiation treatment induced a significant re-
lease of cytochrome c and AIF from mitochondria into the cyto-
plasm in A549 cells, a phenomenon that was completely
blocked by BAY treatment (Fig. 6D). In addition, staining of
A549 cells with MitoSOX Red to detect mitochondrial ROS after
EB1 depeltion and/or radiation treatment in the presence or ab-
sence of BAY showed that all stimulation paradigms markedly
induced mitochondrial ROS in both A549 and H1299 cells, but
NF-jB inhibition with BAY did not diminish these elevated ROS
levels (Fig. 6E). Moreover, overexpression of EB1 in H460 cells
blocked the radiation-induced release of cytochrome c and AIF
(Fig. 6E) and the production of mitochondrial ROS (Fig. 6F). Taken
together, these data suggest that knockdown of EB1 acts through
ROS production and Bax redistribution to induce mitochondria-
mediated cell death.
4. Discussion

The EB1 protein, which is highly conserved from yeasts to hu-
mans, localizes to the growing tips of the microtubule plus end.
Therefore, the physiological roles of this protein in microtubule
dynamics, cell polarity, and genome stability have been largely re-
viewed [35,36]. However, the molecular pathways by which EB1
controls tumorigenesis and tumor cell growth are only now start-
ing to emerge. We previously identified EB1 as radioresistance- re-
lated-gene in laryngeal cancer cells using a proteomic analysis, but
the mechanism and extent of these functions are not investigated
[26]. Here, we characterized the role and molecular mechanism of
EB1 in regulating apoptosis of NSCLC cells in response to radiation
through EB1 loss-of-function and gain-of-function strategies.

Scolz et al. [37] suggested that, among its other biological roles,
EB1 is necessary for the increased invasive capacity of breast can-
cer cells through its induction of GTSE1 (G-2 and S-phase ex-
pressed 1) activation. Although the cell line used in this previous
study was different from those used here, this positive regulatory
role of EB1 in promoting tumor cell invasion and metastasis is
thoroughly consistent with our demonstration that EB1 inhibits
radiation-induced NSCLC cell death. Previous reports also sug-
gested that EB1 is overexpressed in several cancer cell lines and
thus might act as an oncogene [21–24]. These studies demon-
strated that EB1 functions are primarily attributable to complex
formation with APC and subsequently induction of the nuclear
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Fig. 7. Schematic summary of the signaling pathway underlying the apoptotic death of NSCLC cells induced by knockdown of EB1 and radiation treatment, alone and in
combination.
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accumulation of b-catenin through inhibition of direct interactions
between APC and b-catenin. The resulting increase in b-catenin en-
hances the transcriptional activity of T-cell factor/lymphoid
enhancing factor (Tcf/Lef). It is well established that the Wnt/b-
catenin pathway regulates tumorigenesis and the malignant phe-
notype of cancer cells by promoting the b-catenin-mediated
expression of Tcf/Lef target genes, such as cyclin D1 and c-Myc
[38–40]. Therefore, the effects of EB1 on b-catenin dynamics sup-
port the possibility that EB1 is an oncogene, although the signaling
mechanisms associated with the regulation of cell growth and tu-
mor-development remain to be elucidated. Moreover, information
about EB1 pathways that lead to resistance against radiation or
anti-cancer drugs is not yet available.

In this study, we added a new signaling pathway to the list of
EB1-regulated pathways, showing that EB1 regulates the apoptotic
cell death of NSCLC cells. As shown in Fig. 7, knockdown of EB1
expression promoted a remarkable increase in programmed cell
death and conversely, elevation of EB1 expression inhibited cell
death induced by radiation treatment. Notably, this apoptosis
was associated with a decrease in the expression of anti-apoptotic
Bcl-2 proteins and an increase in pro-apoptotic Bax. Recent report
has been showed that EB1 caused upregulation of the transcrip-
tional activity of c-Myc in 293 cells, and knockdown of c-Myc abro-
gated induction of EB1-dependent Bcl-2 expression [25]. In
addition, activation of NF-jB by hypoxia promoted aortic endothe-
lial cell death via the suppression of Bcl-2 [41]. In similar with
above results, our data showed that EB1 depletion with siRNA de-
creased in protein level of c-Myc (data not shown) and increased in
NF-kB activation (Fig. 4A) in A549 cells. Thus, both b-catenin and
NF-jB pathways altered by EB1 may be involved in the regulation
of Bcl-2 expression. Bcl-2 family members are known to play
prominent roles in controlling mitochondrial permeability and
altering cytochrome c release following the initiation of cell-death
signaling [6,7]. Therefore, our data define a direct role for EB1 in
mitochondrial outer membrane permeabilization. Consistent with
the potential function of EB1 as a modulator of Bcl-2 family pro-
teins, we demonstrated that EB1 directly inhibited apoptosis of
NSCLC cells by blocking mitochondrial dysfunction, thereby en-
abling cells to acquire a radiation-resistant phenotype. We further
showed that depletion of EB1 induced mitochondrial ROS
generation, confirming the functional relationship between EB1
and mitochondria. Moreover, ROS-dependent NF-jB activation
positively regulated the release of cytochrome c and AIF from
mitochondria to the cytosol by promoting Bax translocation from
the cytosol to mitochondria. Given that cytochrome c mainly medi-
ates caspase-dependent apoptotic pathway by activating caspase-3
[42] and AIF mediates caspase-independent apoptotic pathways
[43], our results suggest that both caspase-dependent and -inde-
pendent pathways are involved in the EB1-depletion-induced
apoptosis of NSCLC cells. Generally, downstream cascades of EB1
signaling in this paper are consistent with a role for apoptotic pro-
teins in the mitochondrial apoptosis pathway identified by previ-
ous reports [8–10]. For example, effects of ROS on cell
metabolism are well documented in a variety of species. ROS
actively contributes to cell-death signaling pathways by damaging
nucleic acids, proteins, and lipids in both mitochondria and the
cytosol [44]. Thus, we suggest that NSCLC cells with higher mito-
chondrial ROS production might be those in which EB1 mediates
earlier cell death.

The development of chemo- and/or radio-resistance in tumor
cells is a major obstacle in the treatment of advanced lung cancer.
Since this phenomenon is also associated with recurrence and
metastasis, potential tumor-resistance markers have been investi-
gated as prognostic and therapeutic indicators for chemotherapy
or radiotherapy. In addition, molecular-targeted therapy could be
an alternative to chemotherapy or radiotherapy in the treatment
of cancer. For example, gefitinib, a tyrosine kinase inhibitor of epi-
dermal growth factor receptor, exhibits antitumor activity in ad-
vanced NSCLC [45]. In the current study, we found that the
radiation-induced decrease in EB1 expression accelerated apopto-
sis of both p53+/+ (A549 and H460) and p53-null type (H1299) lung
cancer cells, indicating that the contribution of EB1 to the apopto-
tic response occurred via a p53-independent cell-death signaling
pathway. Furthermore, EB1 signaling tightly regulated the expres-
sion of Bcl-2 family proteins during the process of apoptotic cell
death. Anti-apoptotic proteins, such as Bcl-2 and Bcl-xL, and pro-
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apoptotic proteins, such as Bax and Bak, play important roles in
regulating the radioresistance phenotype of cancer cells. Thus, in
addition to advancing our understanding of the working mecha-
nisms of EB1, the results presented here strongly suggest the future
therapeutic potential of this protein in NSCLC.
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