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This paper proposes a neural network approach to improve the Bullington method by using parameters obtained from ignored
obstacles in mountainous areas. Measurements were performed in mountainous areas to compare the prediction accuracy of
propagation loss. And the measured data were used for neural network training. A detailed description of the input parameters
of the proposed neural network is presented. The prediction performances were improved by up to 3.20 dB in the average error
and 2.11 dB in the standard deviation of errors by the proposed method when compared to traditional diffraction methods.

1. Introduction

Propagation loss prediction is one of the main problems in
planning of radio communication links. And it is also very
important to design mobile radio systems [1]. In Korea, the
mountainous area is about 70% of the whole land area and
the hilly terrain can causemultiple obstacles to the signal path.
In hilly terrains, line-of-sight propagation is not possible at all
the places and the diffraction becomes dominant on propaga-
tion [2]. However, accurate prediction of the diffraction losses
is still challenging for realistic propagation environments such
as mountainous regions [3]. Practically simplified models are
used such asBullington,Deygout, Causebrook, andGiovanelli
for computational efficiency [3, 7]. Those models use knife
edges to replace the mountain peaks and ridges for comput-
ing diffraction losses [2, 3]. In contrast, more sophisticated
techniques such as UTD (uniform theory of diffraction) can
be used to improve accuracy but need much more computa-
tion time and detailed information of terrains and obstacles
such as conductivity of the materials [4].

Here, we propose a neural network with Bullingtonmodel
in the presence of three or more edges. To improve the pre-
diction accuracy of diffraction loss, the proposedmethod uses
ignored edges in the Bullington method to calculate additive

diffraction losses. Parameters obtained from terrain elevation
information were used as inputs to the neural network. The
details are described in Section 3.

Measurements were conducted in mountainous areas.
The measured data were used to evaluate the diffraction
loss prediction and train the neural network using train-
ing algorithm.

The structure of this paper is as follows. Section 2 intro-
duces the traditional diffraction models. And the proposed
method and training are described in Sections 3 and 4,
respectively. Section 5 illustrates the measurement campaign.
Section 6 gives the evaluation of the prediction performance.
Conclusions are drawn in Section 7.

2. Diffraction Methods

2.1. Bullington Method. In the Bullington method, the real
terrain is reduced to a single equivalent knife edge. The loca-
tion of the equivalent knife edge is the point at which the
extended lines joining the transmitter and receiver to their
respective dominant (the greatest angle of elevation as viewed
from transmitter or receiver) obstacles meet as shown in
Figure 1 [5]. Then the diffraction loss is computed using (1)
and (2) [4, 6]. This method has the advantage of simplicity
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but obstacles below the paths of the horizon rays can be
ignored. And this may cause large prediction errors. In gen-
eral, it underestimates path losses [4, 5].

The geometrical parameters are combined in a dimen-
sionless parameter denoted by ν as shown in [6]:

ν = h
2
λ

1
d1

+ 1
d2

, 1

where h is the height of the top of the obstacle above (or
below) the straight path line and d1 and d2 are the distances
of the path ends from the top of the obstacle. If the obstacle
is below the straight path line, then h is negative. The diffrac-
tion loss as a function of ν is presented in (2) for ν greater
than −0.78 [6]. It should be noted that the diffraction loss
can be avoided for ν≤−0.78 [6].

J ν = 6 9 + 20 log ν − 0 1 2 + 1 + ν − 0 1 dB 2

The approximated diffraction loss, LB, due to the equiva-
lent Bullington edge is equal to (2), and the total path loss
using the Bullington method is [4]

Lp = Lf s + LB dB , 3

where Lfs is free space loss [16].

2.2. Deygout Method. The Deygout method is drawn in
Figure 2 for a path with three obstacles. The first step is to
compute ν parameter using (1) for each edge alone, as if all
other edges were absent, that is, all ν parameters are calcu-
lated for the paths Tx-A-Rx, Tx-B-Rx, and Tx-C-Rx in
Figure 2. If edge B is the main edge in Figure 2, then the dif-
fraction losses, which are J(νD_A) and J(νD_C), for edge A and
edge C are found with respect to a line joining the main edge
to the Tx and Rx. And those are added to the main edge loss
(J(νD_B)) to obtain a total approximated diffraction loss (LD),
by Deygout method [4, 7]. The diffraction loss at each edge is
calculated using (2). The total path loss using the Deygout

method is presented in (4) [4]. This procedure can be
repeated until all the edges have been considered for more
than three edges [4, 8]. However, it is common to compute
the total loss as the sum of one main edge and two subsidiary
main edges on either side in practical applications [4, 8].

Lp = Lf s + LD = J vD B + J vD A + J vD C dB , 4

where Lfs is free space loss [16].

2.3. Causebrook Method (Correction). To reduce an overesti-
mation problem of the Deygout method, Causebrook pro-
posed an approximate correction derived from the exact
analysis of the two-edge solution [24]. The corrected form
is given in

LCorrected = Lp − C1 − C2 dB , 5

where LD is the diffraction loss from (4). The correction
factors C1 and C2 are presented below [24]:

C1 = 6 − L2 + L1 cos α1,
C2 = 6 − L2 + L3 cos α2,

6

where cos α1 = d1 d3 + d4 / d1 + d2 d2 + d3 + d4 , cos
α3 = d1 + d2 d4/ d1 + d2 + d3 d3 + d4 , and L1 and L3
are the losses due to edges A and C, as if they existed on their
own between the Tx and Rx. And d1, d2, d3, and d4 are shown
in Figure 2.

h
d2

d1

Tx Rx

Equivalent
knife edge

Ignored edge

Figure 1: Concept of Bullington method.
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Figure 2: Concept of Deygout method.
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2.4. Giovanelli Method. Another development of the Deygout
method has been proposed [24, 25]. The concept for the Gio-
vanelli method is shown in Figure 3. It is assumed that edge A
is the main edge in this case. Then a reference field point F′is
found by projecting AB onto F′F″and h1″ is defined in [24]

h1 = h1 −
d1H

d1 + d2 + d3
, 7

where H=h2 +md3 and m= (h2− h1)/d2. The effective height
for the secondary edge B is then given by [24]

h2 = h2 −
d3h1
d2 + d3

8

The total diffraction loss is now given in [24]

LGV = J v d1, d2 + d3, h1 + J v d2, d3, h2 dB , 9

where J(·) is the loss from (2). This method is conveniently
extended to more than two edges by recursively applying
the above procedure [24].

3. Proposed Method

As mentioned in Section 2, there may be ignored edges in the
Bullington method, which generally cause underestimation.
Therefore, for multiple edges on the path, we propose a
method to obtain the total diffraction loss by adding the loss
from the Bullington method and the loss from the ignored
edges. Where the diffraction loss from the ignored edges is
calculated using a neural network as shown in Figure 4. There
are 15 inputs of the proposed neural network, all of which
can be obtained from DTM (digital terrain model). Inputs 1
through 9 are consisted of the heights of Tx and Rx, the three
largest ν of ignored obstacles, the distances between Tx and
three ignored obstacles, and the distance of the total path.
Inputs 10 through 15 are approximate front and rear slopes
of ignored edges. An approximate slope is calculated as the
height difference between the edge and the point spaced by
30m from the edge as shown in Figure 5. The use of slopes
is intended to improve the prediction performance by con-
sidering the obstacle radius of curvature [9, 10]. This is an
approximate application for the obstacle radius of curvature
in the diffraction loss calculation. The proposed method is
applied when there are at least three edges to include an
ignored edge on the paths. For paths with three or more
edges, the prediction of the proposed method is compared
with the two traditional diffraction methods in Section 2,
and the results are presented in Section 6.

4. Training

Figure 6 shows a simple neuron. The neuron is presented
with inputs as shown in

x = x1 x2 ⋯ xn
T , 10

and an output value of a neuron is produced as shown in [11]

net =wTx, 11

where (·)T denotes the transpose, and the weights of a neuron
w are presented in

w = w1 w2 ⋯ wn b T 12

The activation function has been selected to be the com-
monly used hyperbolic tangent sigmoid transfer function
[11]. Figure 7 shows the architecture of the neural network
with inputs of the proposed method. The inputs in Figure 7
correspond to those shown in Figure 5. Prior to training, data
with three or more obstacles should be extracted from all of
the measurement data. And it is necessary to divide all the
measurement data with three or more edges into each of
the two disjoint sets which are training and testing sets. The
training sets are only used in the training procedure, and
the testing sets are used for the evaluation of prediction per-
formances. The training data are randomly chosen to be
about 50% of the measurement data with three or more edges
in this paper. The input vectors shown in Figures 5 and 7 can
be obtained from the DTM corresponding to the transmit-
ting and the receiving positions as described in Section 3.
The receiving power may be expressed in (13) in wireless
environments [12, 13].

Pr = Pt +Gt +Gr − Lp dBm , 13

where Pt is the transmitting power, Gt and Gr are the gains of
the Tx and Rx antennas. Lp is the path loss. Bullington pro-
posed that the diffraction loss has to be added to the free
space loss when the path is obstructed [4, 14, 15]. In order
to find target values, (14) can be obtained from (13) by using
the Bullington method as shown in (3).

Pr = Pt +Gt +Gr − Lf s − LB − Lt dB , 14

where Lfs is the free space loss and LB is the Bullington diffrac-
tion loss. Lt is the target value, which is desired loss due to
ignored edges for training. The target value can be obtained
using (14) where Pr is measured power in dBm, Gt and Gr
are 2.15 dBi gain, and Pt is 36 dBm as drawn in Figure 8. And
the free space loss Lfs is computed using [16]

Lfs = 32 4 + 20log f + 20log d dB , 15
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Figure 3: Concept of Giovanelli method.
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where f is the frequency (MHz) and d is distance (km).
Here, the error is defined for the feed-forward neural

network as shown in

eNN j = o j − Lt j dB , 16

where o(j) is the output of the neural network corresponding
to an input vector, Lt(j) is a target value, and j is the index
number of training data. In the backpropagation procedure,
the weights of the neural network are adjusted by minimizing
the mean square error as follows.

MSE = 1
N
〠
N

j=1
e2NN j 17

The Levenberg-Marquardt algorithm [17] is used to
update the weights of the proposed neural network. The
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algorithm has been introduced to training neural networks
faster than the standard gradient descent backpropagation
algorithm by more than 10 times [18, 19]. In the trials of
many cases, the numbers of neurons in the hidden layers
with the best results are N=20 and M=12. In the procedure
of the backpropagation training, the epochs are as follows:
109 epochs and 128 epochs for the west side of Mt. Maebong
and Mt. Ongma, respectively, in Figures 9 and 10.

5. Measurement Campaign

Measurements have been performed in the three mountain
areas as shown in Figures 9–11. The heights of the selected
mountains for measurement purposes are as follows:
746.7m, 533.1m, and 1420.2m for the west side of Mt.
Maebong in Inje, Mt. Ongma in Boryeong, and Mt. Hwaak
in Gapyeong, respectively, in Figures 9–11. The selected
mountains are typical hilly mountains in the Republic of
Korea. In these mountains, it was convenient and safe to con-
duct measurements using a vehicle. The red triangle marks in
Figures 9–11 are the transmitting positions, and the circles
are measuring points. The total number of measurement data
in Figures 9–11 is as follows: 80,163 for the west side of Mt.
Maebong, 77,215 for Mt. Ongma, and 35,057 for Mt. Hwaak.

The transmitting signal is 1399MHz continuous wave.
This frequency was temporarily allowed in UHF band for
themeasurement campaign. The transmitting antenna isfixed
on tripod of 6mheight, and the receiving antenna is placed on
the roof of a car at a height of 1.8 meter above ground. The
power of the transmitter is 36 dBm with a 2.15 dBi gain
antenna and a cable of 2.71 dB loss. The measurement data
are obtained from a spectrum analyzer connected to a
2.15 dBi gain antenna and a 40 dB gain low-noise-amplifier.
A measurement configuration diagram is shown in Figure 8.
The measurement data with three or more obstacles from
the real mountain areas are used to produce train sets for
the proposed method and later evaluate the performances

of Bullington, Deygout, and the proposed method. The
numbers of data with three or more obstacles are as follows:
1676, 5863, and 1147 for the west side of Mt. Maebong, Mt.
Ongma, and Mt. Hwaak, respectively. And the numbers of
training data are as follows: 838 and 2932 for the west side
of Mt. Maebong and Mt. Ongma. And all training data
consist of 70% for training and 30% for validation.

6. Comparison of Prediction Performance

The proposed method is applied to real mountainous envi-
ronments. Two scenarios are discussed for the comparisons
of diffraction methods in mountainous areas as shown in
Figures 12–14. The details of the scenarios are drawn in Sec-
tions 6.1 and 6.2.
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Figure 9: Measurements in the west side of Mt. Maebong.
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Figure 10: Measurements in Mt. Ongma.
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In Section 6.1, the area-specific performance of the pro-
posed method is investigated as shown in Figures 12 and
14. In Section 6.2, we try to find out the performance of the
proposed method in another area as shown in Figure 14.
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Figure 11: Measurements in Mt. Hwaak.
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6.1. Prediction Results of the ProposedMethod with Traditional
Methods. The proposed method is evaluated by comparing
with the four diffraction methods described in Section 2. As
described in Section 4, the testing sets are applied to the
proposed method, Bullington method, Deygout method,
Causebrook method, and Giovanelli method for the evalua-
tion of prediction performances. The error is defined as
shown in [2, 20, 21]

e i = p i −m i dB , 18

where p is the prediction of received power, m is the mea-
sured value, and i is the point number of measurement data.
The prediction values are obtained by using (14) with outputs
of the neural network. The prediction values are calculated
for each method as follows:

(1) Prediction values for the proposed method using (14)

p i = Pt +Gt + Gr − Lf s i − LB i − o i dB 19

(2) Prediction values for the Bullington method using (3)
and (13)

p i = Pt +Gt + Gr − Lf s i − LB i dB 20

(3) Prediction values for the Deygout method using (4)
and (13)

p i = Pt +Gt + Gr − Lf s i − LD i dB 21

(4) Prediction values for the Causebrook method using
(5) and (13)

p i = Pt +Gt +Gr − Lfs i − LCorrected i dB 22

(5) Prediction values for the Giovanelli method using (9)
and (13)

p i = Pt + Gt +Gr − Lf s i − LGV i dB 23

The average error and the standard deviation of errors

from (18) are considered to represent the prediction perfor-
mance [22, 23].

As described in Table 1 and Figures 15 and 16, the results
show that prediction performances are improved when using
the proposed method in mountain areas with three or more
obstacles on the paths.

6.2. Prediction Results of the Trained Neural Network in the
Area Where Data Are Not Used in Training. The proposed

Table 1: Comparison of prediction performance.

Area Method
Average
error (dB)

Standard deviation
of errors (dB)

Westside of
Maebong
mountain

Bullington 8.50 6.32

Deygout 4.92 5.27

Causebrook 3.53 5.19

Giovanelli 4.86 5.25

Proposed 2.75 4.66

Ongma mountain

Bullington 4.12 7.49

Deygout 6.51 7.41

Causebrook 7.17 7.51

Giovanelli 6.45 7.42

Proposed 0.92 5.30
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Figure 15: Comparison of the measurements and predictions in the
west side of Mt. Maebong.
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method which has been trained with measured data fromMt.
Maebong and Mt. Ongma is applied to Mt. Hwaak as illus-
trated in Figure 14. To validate the pretrained neural net-
work, the prediction accuracy is compared with Bullington,
Deygout, Causebrook, and Giovanelli methods in the area
where data are not used in training.

For the paths with three or more obstacles, neural
network has been trained with all of the training data from
the two areas in the previous subsection. The calculation
for the prediction of each method uses (19), (20), (21), (22),
and (23) as in Section 6.1. As shown in Table 2 and
Figure 17, the comparison results show that prediction per-
formance is improved by using the proposed method (pre-
trained neural network) in the area where data are not used
in training.

7. Conclusion

A neural network-based diffraction method is proposed, and
the method can be applied with the DTM in mountainous
areas which have three or more obstacles on the paths.
With a set of measured data of real mountain areas, the

proposed method was evaluated with Bullington, Deygout,
Causebrook, and Giovanelli methods and the results showed
that the prediction performances were improved by up to
3.20 dB in the average error and 2.11 dB in the standard devi-
ation of errors by the proposed method. The remaining
results are shown in Table 1.

In addition, the prediction performance of the proposed
method is validated by applying the proposed method which
was trained with data from two areas to the area where data
are not used in training. The results show that prediction per-
formance is improved as described in Table 2. We used 838
data as minimum train set within about 10 km between Tx
and Rx. To use the proposed method at longer distances, it
is recommended to train the neural network with data from
corresponding distances.

It is expected that the proposed method based on neu-
ral network would show better prediction results with
more measurement data in hilly mountainous areas with
multiple obstacles.
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