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The mammalian target of rapamycin (mTOR) is a highly
conserved serine–threonine kinase activated in response to
growth factors and nutrients. Because of frequent dysregu-
lation of the mTOR signaling pathway in diverse human
cancers, this kinase is a key therapeutic target. Redd1 is a
negative regulator of mTOR, mediating dissociation of
14-3-3 from tuberous sclerosis complex (TSC)2, which allows
formation of a TSC–TSC2 complex. In the present study, we
identify TXNIP that inhibits mTOR activity by binding to
and stabilizing Redd1 protein. Redd1 and TXNIP expression
was induced by a synthetic glucose analog, 2-deoxyglucose
(2-DG). Moreover, Redd1 expression in response to 2-DG
was regulated by activating transcription factor 4 (ATF4).
Overexpression of TXNIP was associated with reduced
mTOR activity mediated by an increase in Redd1 level,
whereas knockdown of TXNIP using small interfering RNA
resulted in recovery of mTOR activity via downregulation
of Redd1 during treatment with 2-DG. Interestingly, Redd1
was additionally stabilized via interactions with N-terminal-
truncated TXNIP, leading to suppression of mTOR activity.
Our results collectively demonstrate that TXNIP stabilizes
Redd1 protein induced by ATF4 in response to 2-DG,
resulting in potentiation of mTOR suppression. To the
best of our knowledge, this is the first study to identify
TXNIP as a novel member of the mTOR upstream that
acts as a negative regulator in response to stress signals.
Oncogene (2011) 30, 3792–3801; doi:10.1038/onc.2011.102;
published online 4 April 2011
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Introduction

The mammalian target of rapamycin (mTOR) is a
highly conserved serine–threonine kinase that integrates

signals from growth factors and nutrients to coordinate
cell growth and proliferation by controlling cap-
dependent translation (Schmelzle and Hall, 2000;
Sudarsanam and Johnson, 2010). Dysregulation of
mTOR signaling is implicated in various human
diseases, including cancer, diabetes, obesity, neurode-
generative disorders and life-span extension (Sudarsa-
nam and Johnson, 2010). mTOR is frequently
hyperactivated in cancer (Inoki et al., 2003; Shor
et al., 2009), and is thus a clinical target of drug
development (Shor et al., 2009). mTOR is controlled by
cellular energy status via the energy sensor, AMP-
activated protein kinase (AMPK) (Inoki et al., 2003). A
decrease in intracellular ATP is associated with elevated
AMP levels, which, in concert with the upstream kinase
LKB1, stimulate full activation of AMPK (Hawley
et al., 1996; Stein et al., 2000; Hardie and Hawley, 2001;
Shaw et al., 2005). Next, AMPK coordinates cellular
events to restore the energy balance by promoting
cellular ATP production and reducing ATP consump-
tion via shutdown of mTOR-dependent protein transla-
tion, a major consumer of cellular energy (Inoki et al.,
2003; Towler and Hardie, 2007). Low-glucose condi-
tions, or treatment with the synthetic glucose analog 2-
deoxyglucose (2-DG), depletes the energy of cancer cells
and concurrently induces a fall in mTOR activity,
mediated via LKB1/AMPK, an energy stress-sensing
signaling pathway (Dennis et al., 2001). However, the
molecular mechanisms underlying mTOR suppression
under conditions of energy stress are yet to be clearly
defined. Recent studies have shown that Redd1 has a
key role in signal integration, depending on the
activation status of LKB/AMPK, to promote inhibition
of mTOR activity in a TSC-dependent manner during
energy stress (Sofer et al., 2005; Schneider et al., 2008).

Redd1 was initially identified as a gene induced by
hypoxia and DNA damage via the actions of hypoxia-
inducible factor 1 and p53/p63 (Ellisen et al., 2002;
Brugarolas et al., 2004). Hypoxia or energy stress
promotes binding of Redd1 to the 14-3-3 protein,
releasing TSC2 to suppress mTOR activity (DeYoung
et al., 2008). In addition, Redd1 is required to inhibit
mTOR activity under other conditions of cellular stress,
including endoplasmic reticulation (ER) and oxidative
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stress (Whitney et al., 2009; Jin et al., 2009b), and
glucocorticoid treatment (Wang et al., 2006a).

TXNIP (also known as VDUP1 or TBP2) interacts
with thioredoxin (TRX) and negatively modulates TRX
expression and TRX antioxidant function during redox
regulation (Fidler and Radinsky, 1996; Chung et al.,
2006; Nakamura et al., 2006). TXNIP is induced by
various types of cellular stress, including oxidative
stress, UV irradiation, heat shock and apoptotic signa-
ling (Fidler and Radinsky, 1996), and is often sup-
pressed in various human tumors (Goldberg et al., 2003;
Nakamura et al., 2006). Overexpression of TXNIP
inhibits proliferation via cell-cycle arrest and promotes
apoptosis (Sheth et al., 2006). We here demonstrate that
TXNIP interacts specifically with Redd1 using a yeast
two-hybrid screen.

In the present study, we show that both Redd1 and
TXNIP are induced by 2-DG. Redd1 expression is
dominantly regulated by activating transcription factor
4 (ATF4) in response to 2-DG. TXNIP stabilizes Redd1
by binding to the protein, resulting in inhibition of
mTOR activity. These findings support a novel role for
TXNIP, a newly identified member of the mTOR
upstream signaling pathway, as a negative regulator in
response to stress signals.

Results

2-DG stimulates Redd1 expression and inhibits mTOR
activity in a LKB1/AMPK-dependent or -independent
manner
In view of the earlier finding that 2-DG activates
AMPK/Redd1 signaling leading to inhibition of mTOR
activity in head-and-neck squamous cell carcinoma
(Schneider et al., 2008), we initially determined whether
AMPK activity was required for Redd1 expression and
consequent suppression of mTOR activity in response to
2-DG. 2-DG-induced Redd1 expression was evaluated
in various cancer cell lines with or without LKB1, and
phosphorylation of AMPK at Thr172 was assessed to
evaluate the functional status of LKB1. As expected,
2-DG stimulated phosphorylation of AMPK in H1299
cells containing wild-type LKB1, but not in HeLa or
H460 cells expressing mutant LKB1 (Figure 1a). In
contrast, Redd1 was induced by 2-DG in all cell lines,
even in the absence of AMPK activation (Figures 1a and
b), suggesting that 2-DG stimulates Redd1 expression
via a mechanism independent of LKB1/AMPK signal-
ing. Furthermore, 2-DG treatment led to suppression of
mTOR activity, estimated by measuring the decrease in
S6 phosphorylation, in all cancer cell lines (Figure 1a).

0
2
4
6
8

10
12
14
16

R
T

-P
C

R

R
ed

d1
 e

xp
re

ss
io

n
(r

el
at

iv
e 

to
 C

T
L)

0
1
2
3
4
5
6

0
2
4
6
8

10
12

H460

0 20 40

Redd1 

HeLa

2-DG (mM)0 20 400 20 40

H1299

LKB1

�-actin

�-actin

Redd1

p-AMPK (T172) 

S6

p-S6 (S240/244) 

0 20 40

2-DG (mM)

0 20 40

2-DG (mM)

H460 HeLa

0 20 40

2-DG (mM)

H1299

Figure 1 2-DG induces Redd1 expression in a LKB1/AMPK-independent manner. H1299, H460 and HeLa cells were treated with the
indicated concentrations of 2-DG for 6 h. The indicated protein levels were measured using western blot analysis (a). The indicated
mRNA levels were measured with real-time PCR (upper panel) and RT–PCR (low panel) (b). Experiments were performed in
triplicate.

TXNIP inhibits mTOR activity via stabilization of Redd1
H-O Jin et al

3793

Oncogene



Next, we investigated whether 2-DG-induced Redd1
expression required LKB1/AMPK signaling. LKB1 and
AMPK small interfering RNAs (siRNAs) were transi-
ently transfected into the wild-type LKB1-containing
cell line, H1299. Downregulation of LKB1/AMPK
signaling activation led to a slight decrease in Redd1
expression induced by 2-DG, indicating regulation of
this process by LKB1/AMPK (Figure 2). Our results
suggest that 2-DG induces Redd1 expression and
inhibits mTOR activity via mechanisms that are both
dependent and independent of LKB1/AMPK signaling.

ATF4 is responsible for upregulation of Redd1 expression
in response to 2-DG
The results discussed above (Figure 1) supported the
possibility that 2-DG induced Redd1 expression inde-
pendently of the LKB1/AMPK signaling pathway. In
view of our previous finding that Redd1 is regulated by
ATF4 in response to ER stress (Whitney et al., 2009; Jin
et al., 2009b), and as other studies have found that
2-DG induces ER stress (Little et al., 1994; Kang and
Hwang, 2006), we further investigated whether 2-DG
triggered Redd1 expression via ATF4 activation. ATF4
protein expression and an upstream protein thereof,
eIF2a phosphorylation were induced by 2-DG in a dose-
and time-dependent manner in all tested cell lines
(Figures 3a and c). To evaluate the transcriptional
activity of ATF4, we examined the expression patterns
of ATF4 downstream genes, including VEGF, CHOP
and hTRB3, via reverse transcription (RT)–PCR

analysis, in H460 and HeLa cells during 2-DG treat-
ment. Such treatment led to enhanced levels of VEGF,
CHOP and hTRB3 mRNAs (Figure 3b). Next, we
explored whether ATF4 was responsible for upregula-
tion of Redd1 expression in response to 2-DG. Western
blotting analysis disclosed that ATF4 siRNA almost
completely blocked upregulation of Redd1 in the
presence of 2-DG in H1299, H460 and HeLa cells
(Figure 4). Our results thus suggest that Redd1 is
predominantly regulated by ATF4 activation in re-
sponse to 2-DG.

Redd1 protein interacts with TXNIP
We found that TXNIP interacted strongly with Redd1
in a yeast two-hybrid screen (data not shown). To
further explore the interactions between Redd1 and
TXNIP, we initially performed an in vitro binding assay.
[35S]-labeled His6-TXNIP protein was prepared by
in vitro translation, and glutathione S-transferase
(GST)–Redd1 protein was purified from recombinant
Escherichia coli. GST–Redd1 protein interacted with
[35S]-labeled His6-TXNIP in vitro, as shown using the
GST pulldown assay (Figure 5a). We then analyzed
whether Redd1 interacts with TXNIP in vivo. We
performed immunoprecipitation assays using green
fluorescent protein (GFP)- and haemagglutinin (HA)-
tagged expression vectors. HA-Redd1 bound efficiently
to GFP-TXNIP in both 293T and H1299 cells, as shown
in Figures 5b and c. Next, we examined whether
endogenous Redd1/TXNIP protein interaction is pro-
moted by 2-DG. As shown in Figures 5d, 2-DG
enhanced the endogenous interactions of these two
proteins. To further clarify the relationship between
Redd1 and TXNIP, localization of the two proteins
was assessed following co-transfection of plasmids
GFP-Redd1 (Green) and HA-TXNIP (Red) into H460
cells. Both proteins were in the same compartments
(Figure 5e), supporting interactions between Redd1 and
TXNIP within cells.

TXNIP expression is induced in response to 2-DG
Next, we investigated TXNIP expression in the presence
of 2-DG. As shown in Figure 6, 2-DG promoted
TXNIP protein and mRNA expression in both H460
and HeLa cells, as observed by western blotting and
RT–PCR analyses, respectively. However, we could not
detect TXNIP mRNA or protein in H1299 cells despite
2-DG treatment. The data indicate that 2-DG promotes
TXNIP expression at the transcriptional level.

TXNIP potentiates Redd1-induced mTOR suppression
via stabilization of Redd1 protein
We observed a slight increase in Redd1 expression level
at baseline in H460 and HeLa cells containing detectable
amounts of TXNIP mRNA and protein. However,
Redd1 expression was low in H1299 cells, consistent
with the absence of TXNIP (Figures 1 and 6). We thus
hypothesized that TXNIP expression was correlated
with that of Redd1. Accordingly, we investigated the
involvement of TXNIP in Redd1 expression and
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Figure 2 2-DG-induced Redd1 expression is dependent on LKB1/
AMPK. H1299 cells were transfected with siCTL or siLKB1 (a) or
siCTL or siAMPK (b) for 20 h, followed by 30mM 2-DG for 6 h.
Protein levels were measured using western blot analysis.
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consequent mTOR inhibition. Knockdown of TXNIP
expression using specific siRNA blocked upregulation of
Redd1 protein and attenuated mTOR activity in HeLa
cells growing in the presence of 2-DG, as shown in
Figure 7a. Next, HeLa and H1299 cells were transfected
with HA-TXNIP plasmids and GFP-Redd1 and differ-
ent concentrations of HA-TXNIP plasmids, respec-
tively. Overexpression of TXNIP was associated with
increased endogenous Redd1 protein expression and a
fall in S6 phosphorylation in HeLa cells (Figure 7b).
Similar results were obtained with H1299 cells. Specifically,
TXNIP overexpression led to an increase in endogenous
and exogenous Redd1 protein expression, and decreased
S6 phosphorylation (Figure 7c). To test the possibility that
TXNIP promoted ATF4 expression, we examined ATF4
protein levels by western blotting. However, ATF4 protein
levels were identical in the presence and absence of
TXNIP, as shown in Figures 7a and b.

Next, we investigated whether TXNIP promoted
Redd1 transcription. RT–PCR revealed that Redd1

mRNA levels were similar in the presence and absence
of TXNIP, implying that Redd1 upregulation by
TXNIP does not occur at the transcriptional level
(Figure 8).

Recent studies have found that Redd1 is degraded
through the ubiquitin–proteasome pathway (Katiyar
et al., 2009). Accordingly, we explored whether TXNIP
regulated Redd1 protein stability. We transiently
expressed Flag-TXNIP plasmids in H1299 cells and
TXNIP siRNAs in HeLa cells, followed by 2-DG
treatment and then, upon 2-DG removal, the cells
were incubated for different times with cycloheximide
treatment to inhibit protein synthesis. As shown in
Figures 9a and b, overexpression of TXNIP resulted in
significant retardation of Redd1 protein degradation
compared with empty vector in the absence or presence
of 2-DG (Figure 9a). In contrast, knockdown of TXNIP
led to a rapid decrease in the Redd1 protein level
compared with control siRNAs (Figure 9b). On the
basis of these results, Redd1 protein stability might be
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promoted by TXNIP. Next, H1299 cells were trans-
fected with GFP-Redd1, Flag-TXNIP or both, followed
by treatment with the proteasome inhibitor, MG132.
Exogenous Redd1 protein levels were examined to
exclude the possibility that MG132 induced Redd1

expression via ATF4 (Jin et al., 2009a). As shown in
Figure 9c, MG132 treatment increased both exogenous
(GFP-Redd1) and endogenous Redd1 protein levels. In
H1299 cells, co-treatment with TXNIP and MG132
resulted in a more significant increase in Redd1 protein
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level than was seen when MG132 was used alone. The
data collectively indicate that stabilization of Redd1
protein by TXNIP is sufficient to inhibit mTOR activity.

Redd1-induced mTOR inhibition is mediated via binding
of TXNIP
To further investigate the importance of TXNIP inter-
actions with Redd1 in mTOR inhibition, we generated
N-terminal- (TXNIP-DN) and C-terminal-truncated pro-
teins (TXNIP-DC), and examined the binding of these
proteins to Redd1 in vitro. As shown in Figure 10a, GST–
Redd1 interacted with [35S]-labeled His6-TXNIP-DN
protein. To determine whether N-terminal-truncated
TXNIP (TXNIP-DN) interacted with Redd1 in vivo and
whether TXNIP-DN was indeed capable of inducing
Redd1 protein stability, 293T cells were co-transfected
with HA-Redd1 and GFP-TXNIP-DC or GFP-TXNIP-
DN and an immunoprecipitation assay was performed
using an anti-HA antibody. As shown in Figure 10b,
Redd1 interacted with N-terminal-truncated TXNIP in
293T cells. Overexpression of TXNIP-DN led to an
increase in Redd1 protein level in cell lysates and Redd1
immunoprecipitates, and a fall in S6 phosphorylation
level. The results suggest that Redd1 protein interacts with
the C-terminus of TXNIP to increase protein stability,
leading to negative regulation of mTOR activity.

Discussion

In the present study, we investigated the mechanism by
which Redd1-induced inhibition of mTOR activity is
regulated by 2-DG. We report the following: (1) 2-DG
induces Redd1 and TXNIP expression; (2) 2-DG-
induced Redd1 expression is regulated by ATF4; (3)
TXNIP interacts with Redd1 in the cytoplasm; and (4)
TXNIP negatively regulates mTOR activity through
stabilization of Redd1 protein. To the best of our
knowledge, this is the first report of the involvement of
TXNIP in Redd1-induced inhibition of mTOR activity
in response to 2-DG.

mTOR is a central regulator of protein synthesis, and
the activity thereof is modulated by growth factors and
nutritional status (Schmelzle and Hall, 2000; Sudarsa-
nam and Johnson, 2010). Dysregulation of mTOR
signaling is implicated in cancer (Inoki et al., 2003;
Shor et al., 2009). To date, considerable effort has been
focused on elucidating the mechanisms of mTOR
signaling, which have emerged as important targets in
anti-cancer therapy (Shor et al., 2009). A number of
proteins, including FKBP38, PRAS40, DEPTOR and
Redd1, are involved in regulation of mTOR activity
(Sofer et al., 2005; Vander Haar et al., 2007; Peterson
et al., 2009). Recently, the stress response gene, Redd1,
has been identified as an essential regulator of mTOR
activity mediated through the TSC1/2 complex (Sofer
et al., 2005; DeYoung et al., 2008; Schneider et al.,
2008). Redd1 has a key role in integration of signals,
depending on activation of LKB1/AMPK, to promote
inhibition of mTOR activity in a TSC-dependent
manner (Sofer et al., 2005; Schneider et al., 2008).
Consistent with previous findings, we show that 2-DG
inhibits mTOR activity by promoting Redd1 expression
via AMPK activation in wild-type LKB1 H1299 cells.
However, 2-DG can induce Redd1 expression even in
the absence of AMPK activity in the LKB1 mutant
cancer cells H460 and HeLa. On the basis of these
findings, we propose another possible manner by which
2-DG promotes Redd1 expression. Several reports have
shown that 2-DG induces energy depletion and ER
stress (Little et al., 1994; Kang and Hwang, 2006).
Recently, we showed that ER stressor-induced Redd1
expression is regulated by ATF4 (Whitney et al., 2009;
Jin et al., 2009b). In our above experiments, 2-DG
triggered Redd1 expression via ATF4 activation. These
findings suggest that 2-DG-stimulated Redd1 expression
occurs via both LKB1/AMPK-dependent and -indepen-
dent signaling mechanisms, and is regulated through
ATF4 activation.

TXNIP inhibits the antioxidative function of TRX by
binding to it (Fidler and Radinsky, 1996; Chung et al.,
2006; Nakamura et al., 2006). Additionally, TXNIP is
an important tumor suppressor that inhibits cell
proliferation and promotes apoptosis (Sheth et al.,
2006). In our above experiments, 2-DG stimulated
TXNIP mRNA and protein expression in both HeLa
and H460 cells. However, in contrast to Redd1, TXNIP
expression was not regulated by ATF4 (data not
shown). A number of transcriptional factors, including
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heat shock factor, glucocorticoid receptor, Mondo A
and FOXO1, control TXNIP expression under different
conditions (Kim et al., 2004; Wang et al., 2006b;
Stoltzman et al., 2008). Further studies are required
to elucidate the mechanism of TXNIP transcription in
the presence of 2-DG.

A yeast two-hybrid screen using Redd1 as bait led to
the identification of TXNIP as a binding partner (data
not shown). Clearly, Redd1 interacts with TXNIP, both
in vitro and in vivo. Redd1 has been reported to be
colocalized with TSC1/2 within membranes in keeping
with the rapid and potent effect of Redd1 for mTOR
regulation (DeYoung et al., 2008). However, a signifi-
cant portion (410%) of endogenous Redd1 is localized
to the mitochondria, which regulates reactive oxygen
species (ROS) (Horak et al., 2010). TXNIP is present in
both the cytoplasm (Junn et al., 2000; Schulze et al.,
2002, 2004) and nucleus (Nishinaka et al., 2004; Saxena
et al., 2010). TXNIP has also been reported to be present
in mitochondria and has been shown to bind the mito-
chondrially localized TRX (Oka et al., 2006). TXNIP
localization varies depending on specific cell conditions
and cell types (Han et al., 2003; Saxena et al., 2010).

TXNIP mRNA and protein were detected in H460
and HeLa cells, but not H1299 cells. We observed a
slight increase in Redd1 expression at baseline in H460
and HeLa cells that had detectable levels of TXNIP
mRNA and protein. However, Redd1 was expressed at
a low level in H1299 cells and TXNIP was not present.
Accordingly, we postulate that the expression patterns
of Redd1 and TXNIP are correlated. Redd1 over-
expression did not affect TXNIP mRNA or protein
levels. However, TXNIP overexpression was found to
promote Redd1 protein expression, concomitant with
more reduced mTOR activity in H1299 cells. Knock-
down of TXNIP expression using specific siRNA
blocked upregulation of Redd1 protein and attenuated
mTOR activity in HeLa cells growing in the presence of
2-DG. Our observations support a model whereby the
protein stability of Redd1 protein is increased in the
presence of TXNIP, leading to increase in Redd1
protein expression in cells, and a consequent increment
of mTOR inhibition. Therefore, TXNIP might be
needed for an efficient suppression of mTOR in response
to metabolic stress. Redd1 additionally bound to the
N-terminal-truncated form of TXNIP, which was
capable of stabilizing Redd1 protein, leading to inhibi-
tion of mTOR activity.

In conclusion, Redd1-induced mTOR inhibition is
mediated by ATF4 in response to 2-DG, and TXNIP
binds to Redd1 and blocks protein degradation. Our
study provides preliminary evidence that TXNIP
enhances the stability of Redd1 protein, resulting in
inhibition of mTOR activity in response to 2-DG.

Materials and methods

Cell cultures and reagents
HeLa, H1299, H460 and 293T cell lines were obtained from
the American Type Culture Collection (Manassas, VA, USA)
and cultured in the recommended growth medium (Invitrogen,
Carlsbad, CA, USA) under 5% CO2 at 37 1C. 2-DG was
purchased from Sigma–Aldrich (St Louis, MO, USA).
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siTXNIP for 20 h, followed by treatment with 30mM 2-DG for 6 h. (b) HeLa cells were transfected with HA-TXNIP for 30 h. (c) H1299
cells were transfected with increasing concentrations of HA-TXNIP, along with GFP-Redd1 for 30 h. Protein levels were measured
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Isolation of RNA and RT–PCR analysis
Total RNA was isolated from cells using the Easy BLUETM
Total RNA extraction kit, according to the manufacturer’s
directions (iNtRON Biotechnology, Seoul, Republic of
Korea). cDNA primed with oligo dT was prepared from 2mg
of total RNA using M-MLV reverse transcriptase (Invitrogen).
The following specific primers were used for PCR: Redd1
(50-AGCCAGTTGGTAAGCCAGG-30 and 50-GCCAGAGT
CGTGAGTCCAG-30, 199 bp product), TXNIP (50-CCTCTG
GGAACATCCTCCAA-30 and 50-ATTGGCAAGGTAAGT
GTGGC-30, 349 bp product), VEGF (50-GCATTGGAGCC
TTGCCTTGC-30 and 50-GCTCATCCTCCTATGTGC-30,
340bp product), CHOP (50-CAGACTGATCCAACTGCAG-30

and 50-GACTGGAATCTGGAGAGTG-30, 280bp product),
hTRB3 (50-GCCACTGCCTCCCGTCTTG-30 and 50-GCTGCC
TTGCCCGAGTATGA-30, 539bp product) and b-actin (50-GG
ATTCCTATGTGGGCGACGA-30 and 50-CGCTCGGTGAGG
ATCTTCATG-30, 438bp product).

Real-time PCR
Real-time PCR was conducted as described previously (Jin
et al., 2009a). Primer sequences for real-time PCR were as
follows: Redd1 (50-GAACTCCCACCCCAGATCGG-30 and
50-CCACTGTTGCTGCTGTCCAG-30, 123 bp product) and
b-actin (50-GGATTCCTATGTGGGCGACGA-30 and 50-GA
GTCCATCACGATGCCAGTG-30, 315 bp product). Data
were expressed as means±s.d. of three independent experi-
ments for fold induction, relative to the control groups.

Immunoprecipitation experiments
293T and H1299 cell lines were transfected with various
combinations of expression vectors. Cells were washed with
ice-cold phosphate-buffered saline (PBS) and lysed in lysis
buffer (0.5% NP40, 2mM EDTA, 20mM Tris-HCl, pH 8.0,
100mM NaCl, 50mM b-glycerophosphate, 10mM NaF) sup-
plemented with a protease inhibitor cocktail (Roche,
Mannheim, Germany). Cell lysates were precleared with pro-
tein A/G plus agarose (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), and incubated with antibody and protein A/G plus
agarose overnight at 4 1C. Pellets were washed four times with
lysis buffer, resuspended in sample buffer, and analyzed using
SDS-polyacrylamide gel electrophoresis (SDS–PAGE).

Plasmids and siRNAs
Full-length Redd1 cDNA was cloned into the EcoRI sites of
pcDNA-HA (Invitrogen) encoding HA, EcoRI/BamHI sites of
pEGFP-C1 (Clontech, Mountain View, CA, USA) encoding
GFP for expression in mammalian cells, and BamHI/EcoRI
sites of pGEX-6P-3 (Amersham Pharmacia Biotech, Uppsala,
Sweden) encoding GST for expression in E. coli. Constructs of
full-length TXNIP cDNA in mammalian pEGFP-C1 (BD
Bioscience Clontech, San Diego, CA, USA) and E. coli
pRSET-C (Invitrogen) were kindly provided by Dr Junji
Yodoi (Kyoto University, Kyoto, Japan). Full-length and
truncated TXNIP (TXNIP-DC; 1–154 aa and TXNIP-DN;
155–391 aa) incorporating EcoRI sites at the ends were
generated by PCR and cloned into the corresponding sites of
pCMV Tag 2B encoding Flag, pcDNA-HA and pEGFP-C2.
All constructs were verified by DNA sequencing.
TXNIP (#1, SC-44943; #2, J-010814-05-0005), ATF4

(#1, sc-35112; #2, J-005125-10-0005), LKB1 (#1, sc-35816;
#2, J-005035-07-0005), AMPKa1/2 (#1, sc-45312; #2,
J-005027-06-0005 and J-005361-06-0005) and control siRNAs
(#1, sc-37007; #2, D-001810-01-05) were purchased from Santa
Cruz Biotechnology and Thermo Scientific Dharmacon

(Chicago, IL, USA). Transfection experiments with plasmids
and siRNAs were performed using Lipofectamine Plus and
Lipofectamine 2000, respectively, according to the manufac-
turer’s instructions (Invitrogen).

Preparation of recombinant proteins and in vitro binding assay
In vitro-translated full-length and truncated TXNIP proteins
were prepared using a TNT-coupled rabbit reticulocyte transla-
tion system (Promega, Madison, WI, USA) and 35S-Methionine.
For preparation of GST and GST–Redd1 proteins, E. coli
strain BL21 transformed with each expression plasmid was
treated with 0.2mM isopropyl-b-D-thiogalactoside for 3 h.
Pelleted cells were lysed in PBS containing 1% Triton X-100
and protease inhibitor cocktail by sonication. After centri-
fugation, supernatant fractions were applied to glutathione
agarose and in vitro-translated full-length and truncated
TXNIP proteins for 3 h. Beads were washed three times with
PBS and resuspended in sample buffer. Bound proteins were
subjected to electrophoresis on an 8–18% gradient gel, which
was subsequently processed for autoradiography.

Immunofluorescence microscopy
H460 cells were plated onto 12-well plates containing 13mm
non-coated glass coverslips (Fisher Scientific, Pittsburgh, PA,
USA) for 24 h. Cells were transfected with HA-TXNIP and
GFP-Redd1. The coverslips were incubated with anti-HA
antibody, followed by rhodopsin-conjugated anti-mouse sec-
ondary antibody (Vector Laboratories, Burlingame, CA,
USA). Nuclei were counterstained using DAPI (Invitrogen–
Molecular Probes, Eugene, OR, USA). Next, coverslips were
mounted with Vectashield mounting medium (Vector Labora-
tories) and analyzed via confocal microscopy (LSM-510, Carl
Zeiss, Oberkochen, Germany).

Western blot analysis
Cell lysates and immunoprecipitates were separated by SDS–
PAGE and transferred to nitrocellulose membranes, followed
by immunoblotting with the specified primary antibodies and
horseradish peroxidase-conjugated secondary antibodies. Im-
munoreactive bands were visualized with SuperSignal West
Pico Chemiluminescent Substrates (Thermo Scientific Pierce,
Rockford, IL, USA). The antibody to Redd1 was obtained
from the ProteinTech Group (Chicago, IL, USA), antibody to
TXNIP from Medical & Biological Laboratories (Nagoya,
Japan), antibodies to p-eIF2a (Ser51), p-S6 (Ser240/244)
and S6 from Cell Signaling Technology (Beverly, MA,
USA), and antibodies to ATF4, eIF2a, His, HA, GFP, and
TRX from Santa Cruz Biotechnology. b-Actin was acquired
from Sigma–Aldrich.
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