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Stiffening of graphene oxide films by soft
porous sheets
Lily Mao 1,6, Hun Park 2,3,6, Rafael A. Soler-Crespo4,6, Horacio D. Espinosa4,5,7, Tae Hee Han 2,7,

SonBinh T. Nguyen 1,7 & Jiaxing Huang 3,7

Graphene oxide (GO) sheets have been used as a model system to study how the mechanical

properties of two-dimensional building blocks scale to their bulk form, such as paper-like,

lamellar-structured thin films. Here, we report that the modulus of multilayer GO films can be

significantly enhanced if some of the sheets are drastically weakened by introducing in-plane

porosity. Nanometer-sized pores are introduced in GO sheets by chemical etching.

Membrane-deflection measurements at the single-layer level show that the sheets are

drastically weakened as the in-plane porosity increases. However, the mechanical properties

of the corresponding multilayer films are much less sensitive to porosity. Surprisingly, the co-

assembly of pristine and etched GO sheets yields even stiffer films than those made from

pristine sheets alone. This is attributed to the more compliant nature of the soft porous

sheets, which act as a binder to improve interlayer packing and load transfer in the multilayer

films.
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The large lateral dimension of high-aspect-ratio two-
dimensional (2D) materials facilitates property measure-
ments at the single-layer level1–4. They can also easily

assemble into bulk continuous solids5. Therefore, 2D sheets
provide a unique opportunity to study how nanoscale properties
scale to their bulk forms. A well-studied example is graphene
oxide (GO), an oxygenated derivative of graphene sheets that can
easily disperse in water6. Their excellent solution processability,
uniform thickness, and high-aspect ratio make GO sheets a good
model system to study how material properties scale from single-
layer building blocks to their bulk structures. When filtered or
casted from solution, GO sheets readily assemble into macro-
scopic films with a lamellar microstructure7–9. There is extensive
interest in understanding how the overall mechanical properties
of such multilayer lamellar films are affected by the nanoscale
structure of the constituent sheets and the interlayer interactions
between sheets7,10. Herein, we discover that the modulus of
multilayer GO films can be significantly enhanced if some of the
sheets are drastically weakened by introducing in-plane porosity.
At the single-layer level, the elastic modulus of GO sheets
decreases rapidly as their porosity increases, but becomes much
less sensitive for their corresponding multilayer films. Surpris-
ingly, co-assembly of pristine GO sheets and the much-weaker,
high-porosity sheets leads to even stiffer GO films. These results
help to reveal a dilemma in interlayer stacking, which prevents
the mechanical properties of pristine, un-etched GO sheets to
scale up in multilayer films. Since porous GO sheets are much
softer and compliant, they can effectively act as a binder to
improve interlayer interaction and packing, leading to GO films
with much higher modulus.

Results
Synthesis of porous GO. GO sheets were synthesized by a
modified Hummers method11,12 and purified by a two-step
washing procedure to remove ionic contaminations13, which have
been found to have a significant impact on the mechanical
properties of GO films14. Porous GO sheets were made by oxi-
dative etching using a mixture of ammonia solution and hydro-
gen peroxide (Fig. 1a). Etching starts preferentially at the less-
stable oxidized sp3 domains in GO sheets15,16, and the reaction
time can be varied to tune porosity without significantly altering
the average sheet size (Supplementary Methods and Supple-
mentary Fig. 1). The nanopores on GO sheets can be visualized by
high-resolution transmission electron microscopy (HR-TEM)
(Fig. 1b–e). A survey over an area of 500 nm2 of the TEM images
confirmed that both pore size (Fig. 1f) and the number of pores
(Fig. 1g) increased as the etching time was extended. After
etching, the degree of oxidation is also slightly decreased for the
porous sheets based on X-ray photoelectron spectroscopy (XPS)
studies (Supplementary Note 1 and Supplementary Fig. 2). The
conductivities of the starting GO and porous GO papers are in
the range of 10−5–10−4 S cm−1, which is 4–5 orders of magnitude
lower than the conductivity of typical reduced GO samples (e.g.,
1–10 S cm−1). This suggests that under the etching conditions,
GO sheets have not been significantly reduced. The main reason
for the small change in C/O ratios observed through XPS can be
attributed to selective removal of sp3-rich domains.

Nanomechanical properties of single-layer porous GO. Pristine
and etched GO single-layer sheets were suspended via
Langmuir-Blodgett deposition4,12 over an array of circular
microwells pre-fabricated on a silicon substrate (Supplementary
Methods). The center of the membranes was deflected with a
single-crystal diamond probe equipped on an atomic force
microscope (AFM), to determine mechanical properties

(Supplementary Methods). Figure 2a shows typical force-
deflection responses obtained for pristine, 1-h-etched, and 3-h-
etched GO sheets. In all cases, an abrupt increase in deflection
occurs as force drops due to film rupture. Representative AFM
images of 3-h-etched GO show visible pores prior to deflection
experiments (Fig. 2b), and complete membrane rupture after
indentation (Fig. 2c). Notably, the tapping force imparted on the
3-h-etched GO membranes during AFM topography scans had
to be significantly reduced to prevent membrane rupture before
deflection experiments. And the 5-h-etched GO was found to be
too weak to even suspend over the microwells for measurement
(Supplementary Methods).

The elastic modulus of pristine GO membranes (E= 282.8 ±
20.6 GPa), obtained from an analysis of the force-deflection
curves (Supplementary Fig. 3), is in good agreement with
previous reports in the literature2,4. This value drastically
decreases to 85.0 ± 12.0 GPa and 36.0 ± 10.9 GPa for 1 h and 3-
h-etched GO, respectively (Supplementary Table 1 and Supple-
mentary Fig. 4), suggesting a major impact due to porosity. While
the stiffness and rupture force of these porous GO samples also
substantially decreases, the deflection at rupture increases,
suggesting increased ductility (Fig. 2a). We attribute this
dichotomy to the presence of the nanopores in the etched GO
sheets, which can effectively inhibit crack propagation and delay
membrane rupture.

Mechanical properties of pristine and etched GO multilayer
films. Pristine and etched GO sheets were assembled by filtration
to form paper-like multilayer lamellar films with thickness in the
range of 7–11 µm. Uniaxial tensile tests were performed to
examine the effect of porosity on their mechanical properties
(See Supplementary Methods for experimental details). While
porosity greatly affects the stiffness and strength of GO sheets at
the single-layer level (Fig. 3a), its effects on the lamellar films are
not as pronounced (Supplementary Table 2 and Supplementary
Fig 5a, c, e). For example, while 1-h-etched GO single layers are
only 30% as stiff as pristine sheets, the corresponding films are
actually 87% as stiff as films made of pristine, un-etched GO.
Films comprising 3-h-etched and 5-h-etched GO sheets similarly
exhibited a much higher relative stiffness with regard to pristine,
un-etched GO (62% and 28%, respectively) than their single-layer
constituents (13% and ~0%, respectively) (Fig. 3b). For single-
layer GO sheets, the membrane-deflection measurements directly
probe their intrinsic mechanical properties. However, for multi-
layer films, their tensile properties are determined by both the
properties of the single-layer building blocks, as well as the
interlayer load transfer. While the presence of nanopores greatly
weakens the single layers, it does not significantly reduce the
overlapping area, hence load transfer between the layers in the
lamellar films. The striking difference in how porosity affects the
mechanical properties of GO at the single-layer vs. multilayer
level confirms that interlayer load transfer dominates the tensile
properties of the lamellar films2,10,17.

After tensile tests, the fracture surface of the multilayer films
was imaged by scanning electron microscopy (SEM), revealing
denser packing of constituent sheets with increased etching time
(Fig. 3c–f). While pristine GO films exhibit uneven fracture
surfaces with voids (Fig. 3c), 5-h-etched GO films exhibit very
smooth and uniform fracture surfaces (Fig. 3f), suggesting that
highly porous sheets can pack together more efficiently. These
SEM observation suggests that although the porous GO sheets
become much weaker and softer at the single-layer level, they can
pack more uniformly and tighter, thus allowing more effective
interlayer load transfer to offset porosity-induced decrease in
stiffness.
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Mechanical properties of mixed pristine and etched GO mul-
tilayer films. Inspired by the aforementioned results, we hypo-
thesized that the porous sheets may also improve the interlayer
load-transfer of the pristine, un-etched GO sheets. Thus, 5-h-
etched and pristine GO sheets were co-assembled to make mul-
tilayer films to test this hypothesis (Fig. 4 and Supplementary
Fig. 5b, d, f). A series of GO papers containing 10, 25, 50, 75, and
90 wt% of 5-h-etched GO sheets were fabricated and subjected to
uniaxial tensile testing (Supplementary Methods). Mixed films
containing 90 wt% of 5-h-etched GO sheets maintain 62% of the
strength of a pristine GO film, whereas pure 5-h-etched GO films
retain only 30% (Supplementary Table 2, cf. entries 9 and 4).
Furthermore, the tensile strength of the 10 wt% mixed film
remained similar to that of a pristine GO film (Supplementary
Table 2, cf. entry 5), confirming that the detrimental effects of
porosity can indeed be mitigated by co-assembling etched and
pristine sheets. Figure 4a compares the elastic modulus of films
made of mixed sheets, with regard to that of a pristine GO paper.
Surprisingly, the 75 and 90 wt% mixed films were nearly as stiff as
a pristine GO film (Supplementary Table 2, cf. entries 8 and 9 vs.
1), despite the majority of the sheets being highly porous. The 25
wt% and 10 wt% mixed films exhibited a 1.7 and nearly twofold
increase, respectively, in elastic modulus over that of the pristine
GO film (Supplementary Table 2, cf. entries 5 and 6 vs. 1). It is
quite remarkable that the modulus of GO films can actually be
significantly enhanced when a small fraction of the constituting
sheets become weaker.
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Fig. 1 Controlled oxidative etching of GO yields single layers with tunable porosity. a Schematic models of GO and porous GO. Red dots represent sites
with oxygen-containing functional groups, which are preferentially etched, leaving holes on the graphene sheet. HR-TEM images of GO sheets b before and
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Fig. 2 Nanomechanical characterization for pristine and porous GO single
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Together, the results shown in Figs. 3 and 4a imply that
optimized lamellar packing cannot be achieved with pristine GO
sheets alone. Although this may seem counter-intuitive, it can be
explained by the following dilemma in the stacking of 2D sheets.
GO papers comprise sheets with very large aspect ratios, which

are easily wrinkled and folded under external stress18. As
illustrated in Fig. 4c, these uneven features will disrupt the
interlayer packing of neighboring sheets and become weak
interlayer links, reducing load transfer. On the other hand, if
wrinkle-free sheets indeed pack conformally to form multilayers,
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it will generate thick slabs with drastically increased stiffness,
which would not pack conformally and densely in the final
lamellar structure (Fig. 4d). Therefore, 2D sheets alone are
unlikely to generate lamellar films without interlayer voids. And
such architectural defects can be compensated by introducing the
much more compliant, porous GO as a filler and binder to
improve interlayer load transfer. Figure 4b shows the stress–strain
curves of a pristine GO film and a 10 wt% mixed film. For the
pristine GO film, its stiffness decreases with increasing strain as
GO sheets slide past each other and the film experiences plastic
deformation7. In contrast, the stiffness of a 10 wt% mixed film
remains similar up to film fracture, suggesting that adding porous
sheets indeed has improved binding between layers, making the
film more resistant to tensile stress.

Lap-shear tests and fractographic study of delaminated sur-
faces. The interlayer binding strengths of three types of GO films
made from un-etched, pristine sheets, neat 5-h-etched sheets, and
pristine sheets mixed with a 25 wt% of 5-h-etched sheets,
respectively were studied using the lap-shear test configuration
shown in Fig. 5a. In each test, a rectangular GO film (3 × 4 mm)
was fixed in between two parallel rigid glass slides using an epoxy

adhesive. Next, shear stress was applied by pulling the slides in
the opposite direction at a rate of 0.3 mmmin−1. In all cases, the
films were delaminated from within the GO film rather than from
the GO/adhesive or adhesive/glass interface, so that the mea-
surement reflects the interlayer binding strength within the GO
film. Figure 5b–d shows the lap-shear stress–strain curves of the
three GO films, with 4–5 tests each. The values of the lap-shear
stress at delamination are summarized in Fig. 5e. Films made of
5-h-etched sheets are found to have the highest shear strength
(13.4 ± 1.1 MPa) and exhibit relatively simple elastic behaviors
before delamination without any obvious plastic deformation
(Fig. 5c). This is consistent with a uniform propagation of the
shear deformation throughout the film, indicative of a tight
interlayer binding between the porous sheets. In contrast, films
made of pristine, un-etched GO sheets have the lowest shear
strength (5.1 ± 1.0 MPa). Their shear stress–strain curves (Fig. 5b)
show evidence of initial flow before reaching a deformation state
similar to the elastic state observed in the 5-h-etched sample. This
behavior implies that the pristine GO sheets experience partial
interlayer sliding and rearrangement at the initial stage of
shearing that eventually leads to a more “tightly bound” state. The
mobility of the GO sheets during this stage of rearrangement
could be facilitated by the presence of the architectural defects
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illustrated in Fig. 4c, d. Consistent with these observations, the
films made from pristine GO mixed with 25 wt% of 5-h-etched
GO were found to have an intermediate shear strength 8.2 ± 0.6
MPa, and a plastic-to-elastic transition in their shear stress–strain
curves (Fig. 5d), similar to those of pristine, un-etched GO.

To better understand the delamination behaviors of the film,
we image the front and back sides of the delaminated GO surfaces
(Fig. 6a) using SEM. Figure 6b–e shows the morphology at the
front and back sides, respectively, of a delaminated film made
from un-etched, pristine GO sheets. Both sides have cellular
patterns of wrinkles with cells of hundreds of microns in size. The
wrinkles on the two sides are topologically complementary to
each other, which is indicative of poor shear load transfer within
the lamellar GO paper. In contrast, the delaminated surfaces of
the films made from 5-h-etched GO sheets exhibit terrace-like
fracture structures (Fig. 6f, g, front sides and Fig. 6h, i, back
sides), suggesting a crack propagation path across the layers as a
result of strong interlayer load transfer. Figure 6j–m shows the
SEM images of the front and back sides of a delaminated film

made from pristine GO mixed with 25 wt% of 5-h-etched GO
sheets, respectively. These films exhibit an intermediate mor-
phology, showing both wrinkles and terraces in-between the
wrinkles, which can be attributed to the presence of porous sheets
that act as a compliant filler and binder to enhance the interlayer
load transfer of pristine, un-etched GO sheets.

Discussion
GO sheets have been used as a model system to construct bulk
form of materials from 2D building blocks. The study here sug-
gests that 2D sheets alone cannot be used to construct bulk
lamellar structured papers with effective interlayer load transfer,
due to the dilemma in sheet-stacking. To this end, the modulus of
multilayer GO films can be significantly enhanced by adding
some porous sheets, which are drastically weaker than pristine,
un-etched ones but can enhance the interlayer load transfer of the
former. The work here also shows the drastically different effect
of in-plane porosity on the mechanical properties of single layers
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and multilayer papers. These insights should be largely materials
agnostics, and may be applicable to other bulk form of materials
made from 2D nanomaterials.

Methods
Synthesis of porous GO. Single-layer GO was prepared using a modified Hum-
mers method11,12, and porous GO was produced by etching the as-synthesized GO
with a mixture of ammonia solution and hydrogen peroxide (See Supplementary
Methods for experimental details).

Mechanical tests of single- and multi-layer samples. For AFM membrane-
deflection experiments, suspended single layers of pristine (un-etched) and etched
GO were prepared via Langmuir–Blodgett deposition onto patterned Si
substrates4,12. Multilayer lamellar films of pristine and etched GO were prepared
through vacuum-assisted filtration of the corresponding aqueous dispersions.
Mixed films were similarly obtained by vacuum filtration of premixed aqueous
dispersions of pristine and 5-h-etched GO. The mechanical properties of the
multilayer films were measured by uniaxial tensile testing and lap-shear tests. For
methodological details, see Supplementary Methods.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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