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Abstract: In public key broadcast encryption, anyone can securely transmit a message to a group
of receivers such that privileged users can decrypt it. The three important parameters of the
broadcast encryption scheme are the length of the ciphertext, the size of private/public key, and
the performance of encryption/decryption. It is suggested to decrease them as much as possible;
however, it turns out that decreasing one increases the other in most schemes. This paper proposes a
new broadcast encryption scheme for tiny Internet of Things (IoT) equipment (BESTIE), minimizing
the private key size in each user. In the proposed scheme, the private key size is O(log n), the
public key size is O(log n), the encryption time per subset is O(log n), the decryption time is
O(log n), and the ciphertext text size is O(r), where n denotes the maximum number of users,
and r indicates the number of revoked users. The proposed scheme is the first subset difference-based
broadcast encryption scheme to reduce the private key size O(log n) without sacrificing the other
parameters. We prove that our proposed scheme is secure under q-Simplified Multi-Exponent Bilinear
Diffie-Hellman (q-SMEBDH) in the standard model.

Keywords: broadcast encryption; public key encryption; subset difference; short key

1. Introduction

In a modern Internet of Things (IoT) infrastructure, the number of total devices tend to
increase on a large scale, while the size of individual equipment become smaller. When dealing
with secure communications for a massive number of resource-constrained devices, it is important
not only to support flexible access control but also to minimize transmission costs and device
computation/storage overhead. Broadcast encryption is the fundamental cryptographic primitive to
uphold secure communication to any group of privileged devices.

1.1. Broadcast Encryption

In the Broadcast encryption (BE) scheme, anyone can securely transmit a message to a group
of receivers such that privileged users can decrypt it. In BE protocol, the transmission consists of
(S, Hdr, CTsk): the S is a group (subset) of users, Hdr is a header which contains the encryption of
session key sk, and CTsk is the ciphertext of message encrypted with the key sk. When receiving the
following transmission, a user first extracts (or decrypts) the session key sk from Hdr; then, he/she uses
the following symmetric key sk for the decryption of CTsk. If the user is not covered in S, this indicates
that the user is revoked and should not be able to extract the key from Hdr. Moreover, the system
should guarantee that, even if all the revoked users collude, it should be impossible to learn any
information about the sk in the Hdr. The header is considered a real ciphertext in a BE field of research,
since it holds the security of transmissions.
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In BE systems, the main competitive issue was reducing the number of subsets to cut down
the ciphertext header size. The subset group S works as an encryption unit in most BE schemes and
privileged users are determined by multiple subsets. In this case, the header should include all of the
corresponding encryptions of sk. To be more concrete, suppose we have subsets of S1, · · · , Sn; then,
the header {Hdr} is a vector that consists of Hdr1, · · · , Hdrn. Namely, the header size is strictly linear
to the number of subsets, which clarifies that the number of subsets needs to be minimized.

Many schemes have been proposed [1–5] in different representations with the purpose of reducing
the number of subsets, i.e., the header size in BE. In particular, subset difference schemes [1,6] have
been received a lot of attention and adopted practically from DVD and Blu-ray disc standards (AACS)
to Pay-TV systems since SD schemes provide appropriate parameters of key size, execution time,
and ciphertext size. Hence, this paper concentrates on the SD-based approach.

By varying the SD framework, Lin’s group proposed an interval coverage [2] which achieves a
comparable header size to the SD approach. Moreover, Kim et al. [3] devised a combinatorial subset
difference (CSD), which extends the SD to be more general and expressive. Figure 1 shows an example
to visualize each representation. The SD represents a subset with a subtraction (difference) of two
subtrees, which is from a binary tree constructed with users mapped as leaf nodes. As an example,
in Figure 1a, the SD representation (1, 7) covers privileged users 4, 5, 6. The interval representation
lets a subset denote a range of privileged users. In the example of Figure 1b, (4, 6) can cover the
privileged users 4, 5, 6. The SD representation is likely to cover more users since subtrees provide more
flexible depth compared to the fixed range of interval representation. However, SD has a limitation:
it is bound to the tree hierarchy. When converting the binary tree to the bitwise representation (0, 1, ∗)
by translating the left edge as 0 and the right edge as 1 (Figure 1c), the wildcard (∗) cannot be placed
before the bit. The reason for this is that each bit is decided from top to bottom due to the hierarchy,
thus an unfixed bit (∗) can only exist when its parent is fixed. The SD and interval schemes, therefore,
show analogous results in terms of header sizes; the SD scheme shows a header size of 4r, and the
interval scheme shows a header size of 3r in the worst case, where r is the number of revoked users.
Note that it is hard to decide which scheme has a smaller header size, if not fixed in the worst cases.

Figure 1. Subset construction examples in (a) SD, (b) interval, and (c) combinatorial subset difference
(CSD) representations.

Similar to SD, the CSD also represents a subset with a subtraction of two sets, but each subset is
no longer a subtree; it is a label of binary bits which is a generalized expansion of the subset difference.
In the example of Figure 1c, the CSD subset (∗∗, ∗1) can cover the privileged users 00, 10. Note that the
representation ∗1 is impossible to visualize in the tree figure, since the tree is bound to the hierarchy.
The CSD has removed the limitation of hierarchy that lies in the subset difference, and it can cover
both the SD and the interval representation with a bit label. It is the most generalized form of subset
construction that can cover all existing representations. The CSD cuts the header size down to 2r, even
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in the worst case, and shows that it can always cover users with less (or at least the same) subsets than
SD representations.

The public key broadcast encryption scheme for the CSD representation [3] has shown that BE
can be applied efficiently to the secure multicast in IoT systems. Since the CSD can represent the
generalized binary bits, it can cover the bit string of IP addresses for devices in an IoT system network.
The experiments in Reference [3] show that the CSD scheme is practical and appropriate for IoT
multicasts within a large scale of devices.

1.2. BE for Tiny Equipment

While the number of IoT equipment increases, the size of the equipment itself decreases. In current
IoT infrastructures, devices are likely to have no more than a few kilobytes of secure on-chip storage.
Note that the key should not be stored in the off-chip flash storage (which could be larger), since they
are exposed to the public and commonly extractable [7]. In this setting, the keys of BE should be short
enough to be stored in the small-sized memory of tiny IoT equipment. To justify the usage of BE in
various IoT systems with tiny devices, we list some specific application examples:

• Secure multicast: The research of Reference [3] already justified the usage of BE for secure multicast.
To be more specific, an IoT system manager may want to broadcast and distribute secure messages
to the devices by using the subset difference of IPv6 address bit string. Current IoT equipment
commonly utilize chips that have 4 KB to 128 KB of non-volatile memory (EEPROM or on-chip
flash). Some devices tend to use trusted platform module (TPM) chips that can store and manage
keys securely, and the TPM key storage also has a size of no more than 16 KB. (ATmega 128
microprocessor has 128 KB flash and 4 KB EEPROM, and Atmel TPM series provide 16 KB of
non-volatile key storage [8]).

• Engine control unit (ECU) firmware management: The engine control unit (ECU) of a vehicle
is known to have a key storage for its code and data encryption. In time-to-time firmware
updates, the system needs to set privileged devices either to guarantee customized firmwares for
different vehicles or to revoke the disclosed keys that are often used by other vendors. BE can
provide an appropriate environment for the large scale of ECU firmware encryption management.
The non-volatile on-chip memory of the ECU usually has a size of no more than 12 KB.

Unfortunately, none of the existing BE schemes are capable of satisfying the requirement of small
sized keys in a setting with a massive number of devices. There were some noticeable works that focus
on the key size of BE, like Reference [6]. In Reference [6], the authors proposed a scheme that reduces
the private key (SK) size from O(log3 n) to O(log2 n), compared to the original SD-based schemes [4].
Interval scheme [2] also shows a same order of O(log2 n) for the SK size, while maintaining the same
transmission complexity as [4,6]. The size complexity O(log2 n), however, is not small enough to be
practically applied for tiny IoT devices. In the secure multicast example, the current IPv6 standard
considers 2128 users. Therefore, in the secure multicast for random devices, the system should provide
a full spectrum of representations for the 128-bit address combinations. The ECU firmware case is also
similar; the vehicle ECU has its own ID which usually consists of distinct 32 to 128 bits [9]. This leads
the private key to grow larger than 40 KB for 32 bits or 640 KB for 128 bits, which cannot be stored
in the small on-chip storage of 12 KB in ECU. In fact, it is an open problem to reduce the private
key size to O(log n) in the SD-based BE approach. This should be achieved with a reasonable cost;
Goodrich [10] proposed a symmetric BE with the SK size of O(log n), but the computation cost is O(n)
which is beyond practical (see Table 1 for details).

1.3. BESTIE with Short-Key

In this paper, we propose BESTIE, a new broadcast encryption scheme which has a short key size
for tiny IoT equipment. The proposed BESTIE has a key size of O(log n), which exceeds the current
boundary of the key size O(log2 n) among the existing subset difference-based broadcast encryptions.
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By applying BESTIE in the 128-bit ID systems, we can obtain a 7 KB private key (SK), which can be
easily stored in the secure on-chip memory of tiny IoT equipment. Moreover, the BESTIE does not
sacrifice any other factor, such as execution (encryption/decryption) times or header sizes.

Table 1. Comparison of costs between SD-based public-key Broadcast encryption (BE). ref. n = the
number of total users, and r = the number of revoked users.

BESTIE LKLP’14 Lin’10 DF’02 NNL’01 GST’04
(Ours) [6] [2] [4] [11] [10]

PK Size O(log n) O(1) O(log n) O(log n) N/A N/A
SK Size O(log n) O(log2 n) O(log2 n) O(log3 n) O(log2 n) O(log n)
CT Size O(r) O(r) O(r) O(r) O(r) O(kr)

Enc Time O(r) O(r) O(r) O(r log n) O(r log n) O(kr log(n/k))
Dec Time O(log n) O(1) O(log n) O(log n) O(log n) O(n1/k)
Enc type Asymmetric Asymmetric Asymmetric Asymmetric Symmetric Symmetric

Assumption q− SMEBDH q− SMEBDH q− BDHE q− BDHI One-way func. One-way func.

ROM No Yes No No No No

The main idea to reduce the key size in the proposed scheme is to share the same random value for
every key, while different random values are applied for each key in the existing subset difference-based
approaches. In the original CSD scheme [3], as well as most subset difference-based schemes, O(l) size
key is required for each bit in the ID, i.e., given a private key SK = (SKID1 , · · · , SKIDl ), each element
SKIDi contains a primary key and O(l) size auxiliary key for the other bit positions to build a decryption
key, where l denotes the bit-length or log n (for total n users). In the existing schemes, each auxiliary
key should contain an independent random value; otherwise, a combination of keys may generate
an unauthorized decryption key. The proposed BESTIE devises a novel and secure way to reuse the
O(l) auxiliary key for all primary keys. As a result, the BESTIE requires O(log n) size key. The detailed
construction is available in Section 4.

Another interesting feature is that, unlike most existing schemes, BESTIE does not demand a
public key (PK) for the decryption. Other schemes, such as SD [6] or interval schemes [2], reconstruct
the corresponding decryption key from the PK, as well as the SK in the decryption phase, and thus
need to maintain the PK in the device storage or receive the PK from the communication. On the other
hand, since the decryption in BESTIE relies on the computation with the secret key SK only, there is
no need to store the PK in the device. This indicates that BESTIE has an advantage in the PK storage
and/or PK transmission overhead.

1.4. Contributions

We formally summarize the contributions of our BESTIE as follows:

1. Theoretical advance: The proposed BESTIE resolves a challenging problem to reduce the
private key size to O(log n) in the SD-based BE approach, without sacrificing any other
efficiency. Moreover, BESTIE is compatible with even CSD, which is more expressive, and is thus
more compact than SD.

2. Practicality: The BESTIE is applicable to large scale IoT systems (2128 devices) with a reasonable
performance; it requires only 7 KB private key size while the private key size is more than 600 KB
in the other existing SD-based approaches.

3. Implementation: We implement the proposed protocol on the Intel Edison 500 Mhz IoT device.
The implementation result can be directly utilized for various IoT applications, such as secure
multicast and ECU firmware updates.

4. Security: We prove that the BESTIE is collusion resistant and IND-sID-CPA-secure under the
l-Simplified Multi-Exponent Bilinear Diffie-Hellman (l-SMEBDH) assumption (without the
random oracle model). We also provide an IND-sID-CCA-secure version of the scheme.
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Section 2 organizes related works. Section 3 describes a required background and definitions.
We present the construction and the security proof of our proposed BESTIE in Section 4 and extend it
to the CCA-secure scheme in Section 5. Section 6 analyzes experimental results. In Section 7, we draw
a conclusion.

2. Related Work

The broadcast encryption (BE) is a traditional cryptographic method, and there have been a
variety of researches with different features [1,4,5,10–25]. Known also as a revocation schemes, BE can
provide efficient revocation of individual users, while letting the privileged users remain available to
decrypt the broadcasted transmission. The listed categories below are the various viewpoints in BE,
and every existing BE scheme has its own feature due to the different purposes.

• Stateful vs. stateless: There are two types of BE schemes, which are stateful schemes [24,26,27]
and stateless schemes [1,10,22]. In the stateful BE scheme, the key exchange occurs more than
once. On the other hand, the stateless BE scheme allows the key exchange only once in the initial
setup. Stateful schemes can be useful in a setting that can allow users to interact after the initial
setup. However, in real practice, such as Pay-TV systems or IoT networks, once the devices are
deployed, it becomes a big burden to update all keys synchronously.

• Symmetric vs. asymmetric: The BE can be also categorized as a symmetric BE [10,25] and
asymmetric BE. In the symmetric BE, only a trusted user who has a symmetric key can encrypt
and broadcast the message to the receivers. An asymmetric BE, known as a public key broadcast
encryption (PKBE), enables any user to broadcast the encrypted information.

It is clear that a stateful BE scheme and a symmetric BE scheme have more limitations in terms of
its usage; this paper proposes a stateless public key (asymmetric) BE scheme. For a more practical use,
most optimizations of BE schemes are focused on reducing header or key sizes.

• lHeader size: The main objective of the BE research was to reduce the header size, which decides
the transmission overhead. Since the header size relies on the number of subsets, there were
many works that proposed subset construction/representation methods [2,10,11,22]. The most
common representations were the complete subtree (CS) [11], the subset difference (SD) [11],
and the interval encryption [2]. The CS method covers users with root nodes of subtrees. The SD
method covers users with a subtraction of two subtrees. The interval encryption covers users with
ranges of privileged users. Recently, the work of Reference [3] proposed a combinatorial subset
difference (CSD), which covers users with a subtraction of two non-hierarchical bit-labels. The SD
scheme has a header size of 4r, the interval scheme has a header size of 3r, and the CSD scheme
has a header size of 2r, each for the worst cases when r is the number of revoked users.

• Key size: Some works have focused on reducing the PK/SK size of BE, although there usually is a
trade-off between the size and the encryption/decryption time. The work of Reference [6] has
succeeded on reducing the SK size to the order of O(log2 n) in the subset difference. The interval
scheme also obtained an order of O(log2 n) for the SK size. Until now, even a symmetric key BE
(which is limited, but more generally efficient) has a boundary of O(log2 n) for the size of SK.

2.1. SD-Based BE

Among the existing BE schemes, our main focus is on the SD-based methods (e.g., SD, interval,
CSD), which achieves the header size of O(r). In methods that do not use SD, the header size is
impractical since it depends on the number of total users n instead of the number of revocation r.
For instance, Boneh et al. [5] proposed a notable scheme which covers the users as groups of indices;
their general construction gains the header size of O(

√
n) (PK size: O(

√
n), SK size: O(1), encryption

time: O(n), decryption time: O(
√

n)). However, in general practice, the revocation tends to remain
small while the total user grows large in various applications: the number of revocation r is much
smaller than the

√
n.
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Table 1 shows the order of costs in SD-based BE schemes that achieve the header (CT) size of O(r),
where n is the number of total users, and r is the number of revoked users. NNL’01 [11] is the original
SD scheme which is a symmetric key BE. DF’02 [4] proposed a transformation technique that converts
a symmetric key BE to public key BE by utilizing hierarchical identity-based encryption (HIBE);
the shown results are obtained by applying the BBG-HIBE [20] scheme to the NNL’01. (DF’02 [4] states
O(1) PK size and O(log2 n) SK size, but it refers to the HIBE keys; remind that the BBG-HIBE key has
O(log n) elements). Lin’10 [2] refers to the interval encryption, which is similar to the SD in a way
that the users are represented in a binary tree; the secret key size is O(log2 n). LKLP’14 [6] proposes
a more efficient SD scheme with utilizing the random oracle, which also achieves the secret key size
of O(log2 n). GST’04 [10] is a symmetric key BE which focuses on the O(log n) SK size. However,
it sacrifices the decryption time to O(n), or increase CT size and encryption time by a given constant
k to mitigate the decryption time. Compared with all existing SD-based BE schemes, BESTIE is the
first approach to obtain a O(log n) SK size while providing overall decent performance. Moreover,
since BESTIE does not sacrifice any other factors, it retains a small CT size, a small PK size, and fast
encryption/decryption performance.

2.2. Attribute-Based Encryption

From a high-level perspective, BE can be considered as a special case of attribute-based encryption
(ABE) [28–31]; if we let each bitwise ID be an attribute and define subset inclusion as an access policy
of ciphertext-policy ABE (CP-ABE), it can provide the same functionality of BE. However, as most
general cases are not as efficient as special cases, ABE cannot achieve time and size costs comparable
to BE. For instance, in the CP-ABE with constant-size ciphertext [31], the key size grows linear to the
number of attributes. Since the access policy requires a bitwise representation of the ID and subsets,
the key size roughly grows to O(2n), which is beyond practical.

3. Preliminaries

In this section, we provide backgrounds and preliminary definitions. Section 3.1 describes the
basic definition of public key broadcast encryption (PKBE). Section 3.2 defines the formal security
model for our proposed system. Section 3.3 gives a remark for the mathematical background about
bilinear maps and pairings in elliptic curve groups. In Section 3.4, we describe the cryptographic
assumption which our system is based on. Section 3.5 gives a summary for the combinatorial subset
difference, which is a subset cover method our system adopts.

3.1. Public Key Broadcast Encryption

In a public key broadcast encryption (PKBE) system, the original message m is commonly
encrypted to CK, which is often called the broadcast body, with a simple symmetric key algorithm
(e.g., AES block cipher). Then, the symmetric key M is encrypted with the PKBE encryption, so that
the legitimate receivers can obtain the symmetric key M and use it for the symmetric decryption of
CK to obtain m. In the following decryption of BE systems, the symmetric key M is considered as a
message; the symmetric key encryption/decryption process (i.e., m, CK) is common and often omitted
in BE schemes.

The PKBE encryption is required for each subset, and the header (or the broadcast ciphertext)
Hdr for each subset is collected into a vector {Hdr} = {(Si, HdrSi )}

w
i=1 where w is the number of total

subsets. A legitimate user decrypts the message by looking for the HdrSi corresponding to the subset
Si where it belongs to, obtaining M from HdrSi with the PKBE decryption, and finally decrypting the
message m from the broadcast body CK. Formally, a PKBE system Π consists of four algorithms:

Setup(l, λ) takes user’s ID bit-length l and session key length λ as inputs. It outputs public parameters
PK and a master key MK.

KeyGen(ID, MK, PK) takes user’s l-bit ID, master key MK, and public key PK as inputs. It outputs a
private key set SKID.
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Encrypt(S, PK, M) takes a subset S, and a public key PK and a message M as inputs. It outputs a
broadcast ciphertext HdrS for the subset S.

Decrypt(S, ID, SKID, HdrS) takes a subset S, a user id ID ∈ {0, 1}l , private key SKID for user ID,
and a header HdrS as inputs. If ID ∈ S, then it outputs message M.

The system is correct if every user in S can get the message M. Namely, for all S and all ID ∈
S, if (PK, MK) ← Setup(l, λ), SKID ← KeyGen(ID, MK, PK), and HdrS ← Encrypt (S, PK, M) then
Decrypt (S, ID, SKID, HdrS) extracts M.

3.2. Security Model

In this section, we describe a selective semantic security (IND-sID-CPA) and a selective
CCA-security (IND-sID-CCA) for broadcast encryption as in Reference [3,5]. Depending on whether
the number of challenged sets is represented as a single subset or as multiple subsets, we separate
security notions as a single-set security and a multi-set security. Consequently, the single-set security
implies a multi-set security as shown in Reference [3].

The single-set security is defined as a following game between an adversary A and a challenger C.
Both C andA are given l and λ, the user ID length and the key length, respectively, as inputs. Note that
the collusion resistance is straightforward, since the secret keys for all users (except the selected target)
are distributed before the challenge.

Init: Algorithm A outputs a set S∗ of users to attack.
Setup: The challenger C performs Setup(l, λ) to obtain a public key PK and a master key MK.
KeyGen: The challenger C runs KeyGen(ID, MK, PK) to obtain private keys SK0l , · · · , SK1l . C then

provides Awith the public key PK and all private keys SKID for ID /∈ S∗.
Phase 1: (optional for CCA) Attacker A adaptively issues decryption queries q1, · · · , qd where a

decryption query consists of the triple (S, ID, HdrS) with S ⊆ S∗ and ID ∈ S. C responds
with Decrypt(S, ID, SKID, HdrS).

Challenge: For the challenge, algorithm A outputs two messages M0 and M1. C picks ξ ∈ {0, 1},
encrypts the message Mξ by running Encrypt(S∗, PK, Mξ) to obtain Hdr∗S, and gives Hdr∗S to the
attacker A.

Phase 2: (optional for CCA) Attacker A continues to adaptively issue decryption queries qd+1, . . . , qD
where a decryption query consists of (S, ID, HdrS) with S ⊆ S∗ and ID ∈ S. The only constraint
is that HdrS 6= Hdr∗S. C responds as in query phase 1.

Guess: Attacker A produces its guess ξ ′ ∈ {0, 1} for ξ and wins the game if ξ = ξ ′.

Let AdvSSBrA,Π(l, λ) be the advantage that Awins the above game.

Definition 1. A public key broadcast encryption Π is (t, ε, l, λ)-single-set-CPA secure if for every t-time
adversary A we have that |AdvSSBrA,Π (l, λ) − 1/2| < ε.

Definition 2. A public key broadcast encryption Π is (t, ε, l, λ, d, D)-single-set-CCA secure if |AdvSSBrA,Π
(l, λ) − 1/2| < ε for every t-time adversary A with at most D decryption queries.

The multi-set security game is defined similar to the single-set security game, except the challenged
set is given as multiple subsets.

Init: Algorithm A outputs a set S∗ = {S∗1 , · · · , S∗w} of users to attack.
Setup: The challenger C executes Setup(l, λ) to obtain a public key PK and a master key MK.
KeyGen: The challenger C runs KeyGen(ID, MK, PK) to obtain private keys SK0l , · · · , SK1l . C gives A

all private keys SKID for ID /∈ S∗i where i = 1, · · · , w.
Phase 1: (optional for CCA) Attacker A adaptively issues decryption queries q1, · · · , qd where a

decryption query consists of the triple (S, ID, HdrS) with S ⊆ S∗ and ID ∈ S. C responds
with Decrypt(S, ID, SKID, HdrS).
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Challenge: For the challenge, algorithm A outputs two messages M0 and M1. C picks ξ ∈ {0, 1},
encrypts the message Mξ by running Encrypt(S∗i , PK, Mξ) to obtain Hdr∗Si

for i = 1, · · · , w,
and gives all Hdr∗Si

to the attacker A.
Phase 2: (optional for CCA) Attacker A continues to adaptively issue decryption queries qd+1, . . . , qD

where a decryption query consists of (S, ID, HdrS) with S ⊆ S∗ and ID ∈ S. The only constraint
is that HdrSi 6= Hdr∗Si

. C responds as in query phase 1.
Guess: Attacker A provides its guess ξ ′ ∈ {0, 1} for ξ and wins the game if ξ = ξ ′.

Let AdvMSBrA,Π(l, λ) be the advantage that Awins the above game.

Definition 3. A public key broadcast encryption Π is (t, ε, l, λ)-multi-set-CPA secure if |AdvMSBrA,Π(l, λ)−
1/2| < ε for every t-time adversary A.

Definition 4. A public key broadcast encryption Π is (t, ε, l, λ, d, D)-multi-set-CCA secure if for every t-time
adversary A with at most D decryption queries we have that |AdvMSBrA,Π(l, λ)− 1/2| < ε.

In Reference [3], it is shown that the single-set security implies the multi-set security.

Theorem 1 ([3]). Suppose the public key broadcast encryption Π is (t, ε, l, λ)-single-set-CPA secure
((t, ε, l, λ, d, D)-single-set-CCA secure). Then, public key broadcast encryption Π is (t, ε′, l, λ)-multi-set-CPA
secure ((t, ε′, l, λ, d, D)-multi-set-CCA secure) for ε′ < ε ∗ w, where w is the number of subsets.

3.3. Bilinear Groups

We briefly examine bilinear maps and bilinear map groups. We adopt the following notation [32–34].

1. G1, G2 and GT are (multiplicative) cyclic groups of prime order p.
2. g1 and g2 are generators of G1 and G2, respectively.
3. e : G1 ×G2 → GT denotes a bilinear map.

Let G1, G2, and GT be groups as above. A bilinear map is a map e : G1×G2 → GT with satisfying
the following properties:

1. Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab

2. Non-degenerate: e(g1, g2) 6= 1.

We say that G1 and G2 are bilinear groups if the group action in G1 and G2 can be computed
efficiently and there exist a group GT and an efficiently computable bilinear map e : G1 ×G2 → GT
as above.

3.4. Computational Complexity Assumptions

The security of our system is based on a complexity assumption called q-simplified multi
exponent bilinear Diffie-Hellman (q-SMEBDH) assumption. The q-SMEBDH assumption was originally
introduced in Reference [6], but without formal analysis on the hardness of the assumption. In this
paper, we formally show that the q-SMEBDH is a weaker assumption than the q-bilinear Diffie-Hellman
exponent known as q-BDHE, by reducing q-SMEBDH to the q-BDHE.

Assumption 1. (q-Simplified Multi-Exponent Bilinear Diffie-Hellman, q-SMEBDH). Let (p,G1,G2,GT , e)
describe the bilinear group of prime order p with the security parameter λ. Let g1 and g2 be generators of G1

and G2, respectively. The q-SMEBDH assumption is that, if the challenge tuples P = ((p,G1,G2,GT , e),

g1, g2, gc
1, gc

2, {gai
1 , gai

2 , gb/ai
1 , gb/ai

2 }1≤i≤q, {gbai/aj
1 , g

bai/aj
2 }1≤i,j,i 6=j,≤q) and T are given, no PPT algorithm B

can distinguish T = T0 = e(g1, g2)
bc from T = T1 = e(g1, g2)

d with more than a negligible advantage.
The advantage of B is defined as Advq−SMEBDH

B (λ) = Pr[B(P, T0) = 0] − Pr[B(P, T1) = 0], where the
probability is taken over the random choice of a1, . . . , al , b, c, d ∈ Zp.
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We prove that the q-SMEBDH is weaker than the well-known q bilinear Diffie-Hellman exponent
assumption (q-BDHE). The (decisional) q-BDHE problem is stated as follows [5,20,35,36]: given a
vector of elements,

(g1, h1, {gαi

1 }i∈[2q],i 6=q+1, g2, h2,

{gαi

2 }i∈[2q],i 6=q+1) ∈ G2q+1
1 ×G2q+1

2

as input, it should be hard to distinguish e(g1, h2)
αq+1

( = e(h1, g2)
αq+1

) from random where
logg1

h1 = logg2
h2.

Lemma 1. If there is an adversary A which solves a q-SMEBDH problem with ε advantage in time τ, then
there is an adversary which solves a q-BDHE problem with ε advantage in time τ + q2.

Proof. We will reduce a q-BDHE problem to a q-SMEBDH problem. Assume that
(g′1, {g′1αi}i∈[2q],i 6=q+1, g′2, h, {g′2αi}i∈[2q],i 6=q+1) is given. To reduce it to q-SMEBDH, choose random
exponents v1, . . . , vq ∈ Zp. Let ai = αi · vi. Let b = αq+1.

gai
1 = g′1αivi . gai

2 = g′2αivi .

gb/ai
1 = g′1αq+1−iv−1

i . gb/ai
2 = g′2αq+1−iv−1

i .

g
baj/ai
1 = g′1

αq+1+j−ivjv
−1
i . g

baj/ai
2 = g′2αq+1+j−ivjv

−1
i .

Note that, since i 6= j, q + 1 + j− i 6= q + 1 and 2 ≤ q + 1 + j− i ≤ 2q. Let gc
1 = h1 and gc

2 = h2.
If, for a given q-SMEBDH, there is an adversary A which decides whether T = e(gb

1, gc
2) with ε

advantage, then using A, we can decide whether T = e(g1, h2)
αq+1

with ε advantage since e(g1, h2)
αq+1

= e(g1, gc
2)

b.

3.5. Combinatorial Subset Difference

The subset cover representation method of our system is based on the combinatorial subset
difference (CSD) proposed in Reference [3]. The CSD uses a more general, thus, more compact
representation method which is extended from the subset difference (SD). The subset difference
is the most common representation method in the broadcast encryption (BE) in literature, which
denotes a subset with a difference of two subtrees. To be more specific, the SD method constructs a
binary tree by mapping the users to the leaf nodes, and represents the subset of privileged users by
subtracting the two complete subtrees denoted as the root node of each subtree (i.e., (CL, RL), where
CL is a covered set, and RL is a revoked set).

CSD [3] is a more universal type of representation method that consists of a subtraction of
two non-hierarchical labels. It is similar to the SD method, but CL and RL are no longer subtrees;
labels are bit-strings which consist of {0, 1, ∗}, where a wildcard ∗ includes both 0 and 1. CSD is a more
generalized expression compared to the SD and includes all possible SD combinations. The number of
subsets in CSD is always smaller than that of SD, or at least the same. The header sizes in CSD are 2r
in the worst case, while they are 4r in the SD in the worst case (r = the number of revoked users).

A secure and efficient BE construction compatible with CSD is more challenging than a
construction based on SD. Since the key structure is not bound to the tree structure anymore, there are
more representation cases that a privileged user has to decrypt using its key. Thus, the BE scheme with
CSD may cause key size growth to cover additional cases and is even harder to reduce the key size.
In this paper, we propose the first BE scheme, which minimizes the key size to be logarithmic and is
compatible with even CSD, as well as SD.
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4. Proposed Broadcast Encryption Scheme

In this section, we propose BESTIE, a broadcast encryption scheme applicable to tiny IoT
equipment and prove its security. In Section 4.1, we describe our intuitions of how to compress
the key size. We construct our proposed BE scheme in Section 4.2, analyze the complexity in Section 4.3,
and prove its security in Section 4.4.

4.1. Main Idea

Before the formal description, we informally elaborate a sketch of the idea that lies behind the
BESTIE. The main contribution of the BESTIE is to compress the private key size from O(log2 n)
to O(log n).

As mentioned in Section 1, most subset difference-based schemes require O(l) size key for each bit
in the ID. i.e., given a private key SK = (SKID1 , · · · , SKIDl ), each element SKIDi contains a primary key,
and O(l) size auxiliary key. In the existing schemes, each auxiliary key should contain an independent
random value; otherwise, a combination of keys may generate an unauthorized decryption key.

In Reference [3], the CSD subset is represented as (CL, RL) where CL is a covered set and RL is a
revoked set and a user with an ID should be able to construct its decryption key only if it belongs to
the covered set but NOT to the revoked set, i.e., ID ∈ CL and ID ∈ ¬ RL. The combination of key
elements derives a decryption key. However, the combination should be performed in a restricted
way to prevent from generating any unauthorized decryption key. To ensure that the combination
generates only legitimate keys, the scheme has the auxiliary keys with different random exponents ri
for each primary key. The resulting SK for the user with ID = ID1 · · · IDl in the CSD is summarized
as follows.

SKIDi = {g
α(. . . ki,IDi

)ri}

∪ {kri
j,0, kri

j,1 |j 6= i, j ∈ [1, l]},
(1)

where sets {gα(. . . ki,IDi
)ri} and {kri

j,0, kri
j,1 |j 6= i, j ∈ [1, l]} include a primary key and auxiliary keys,

respectively.
Thus, the key size becomes O(log2 n), since i ∈ [1, l]. (i.e., O(log n) per combination × log n

combinations). Existing subset difference-based BE schemes [2,6] have the similar approach. Hence,
the known lower key size bound has been O(log2 n).

In our approach, we detach ki,IDi
from the primary key gα(. . . ki,IDi

)ri of SKIDi in Equation (1) by
splitting the master key α into a pair (α− αw, αw), and apply the same random r to the auxiliary keys
as follows:

SKID = {gα−αw(· · · )r}
∪ {gαw kr

j,IDj
, kr

j,IDj
|j ∈ [1, l]}. (2)

Now, the key is divided into two parts such that a decryption key can be constructed only if both
conditions ID ∈ CL and ID ∈ ¬ RL are satisfied. Note that, if at least a single bit in ID is different
from RL (i.e., ID /∈ RL), then gαw and gα−αw can be combined, outputting the decryption key gα.

The full construction is more complex, and we describe it in the next section.

4.2. Construction

In this section, we describe the formal construction of the proposed BESTIE, which is a public
key broadcast encryption scheme. As defined in Section 3.1, the public key broadcast encryption can
allow any user (or device) to broadcast messages. When the system begins, each user is grouped into a
specific subset. To broadcast the message, the broadcaster needs to run encryption for each subset to
obtain subset header.

Figure 2 visualizes the overall workflow of the public key broadcast encryption. The manager
runs the setup to initiate the system, publishes the public key PK, and keeps the master secret key MK.
Then, by using MK, the manager runs key generation for each device and provides corresponding
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secret keys SKID. When a device wants to broadcast a message, it runs encryption for each subset
to obtain corresponding header, and gathers all headers to broadcast the vector of headers. When a
device receives the headers, it searches the header for its own subset, and runs decryption with the
header and its own secret key to obtain the message.

Figure 2. The general workflow of the public key broadcast encryption.

In the following construction, we denote IDi, CLi, and RLi the ith bit of a bit-string ID, CL, and RL,
respectively. In addition, we denote H(ID) = h0 ∏l

i=1 hi,IDi , K(ID) = k0 ∏l
i=1 ki,IDi , hi,∗ = hi,0 · hi,1 and

ki,∗ = 1.

Setup(l, λ): This algorithm first generates the bilinear groups G1, G2 of prime order p of bit size θ(λ).
It selects random elements g1 ∈ G1 and g2 ∈ G2. It selects a random exponent α ∈ Zp. It chooses O(l)
random group elements h0, h1,0, h1,1, . . . , hl,0, hl,1, k0, k1,0, k1,1, . . . , kl,0, kl,1 ∈ G1. It outputs a master key
MK = gα

1 and a public key as

PK =((p,G1,G2,GT , e), g, h0, h1,0, h1,1, . . . , hl,0, hl,1,

k0, k1,0, k1,1, . . . , kl,0, kl,1, Ω = e(g1, g2)
α).

KeyGen(ID, MK, PK): This algorithm takes as input ID = ID1 . . . IDl , the master key MK, and the
public key PK. It chooses random exponents αw and r ∈ Zp and outputs a private key SKID as

SKID = (x0, x1, . . . , xl , y0, y1 · · · , y2l , z)

= (gα−αw
1 H(ID)r, hr

1,ID1
, . . . , hr

l,IDl
,

kr
0, gαw

1 kr
1,ID1

, kr
1,ID1

, . . . , gαw
1 kr

l,IDl
, kr

l,IDl
, gr

2).
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Encrypt(S, PK, M): This algorithm takes S = (CL,RL) = (CL1 . . . CLl , RL1 . . . RLl) as input labels,
the public key PK, and a message M ∈ GT as inputs. It selects a random exponent t ∈ Zp and
outputs a ciphertext by implicitly including S = (CL, RL) as

HdrS = {C0 = Ωt ·M, C1 = gt
2, C2 = H(CL)t, C3 = K(RL)t}.

Decrypt(S, ID, SKID, HdrS): This algorithm takes a subset S = (CL, RL), a user’s ID, a private
key SKID, and a ciphertext HdrS for S as inputs. Let P = {i|IDi 6= RLi ∧ RLi 6= ∗} and
Q = {i|IDi = RLi ∧ RLi 6= ∗}. Let d denote the number of bits, which, in ID, are different from RL or
d = |P|.

If d > 0, it parses SKID = (x0, x1, . . . , xl , y0, y1 · · · , y2l , z).

Then, it computes
x′ = x0 ∏

CLi=∗
xi

y′ = (y0 ∏
i∈P

y2i−1 ∏
i∈Q

y2i)
d−1

and outputs a message as
M = C0 · e(x′ · y′, C1)

−1 · e(C2 · Cd−1

3 , z).

Otherwise, it outputs ⊥.
The correctness is verified by the following equation.

x′ = x0 ∏
CLi=∗

xi = gα−αw
1 (h0

l

∏
i=1

hi,IDi )
r · ∏

CLi=∗
hr

i,IDi

= gα−αw
1 (h0 ∏

CLi 6=∗
hi,IDi ∏

CLi=∗
hi,∗)

r = gα−αw
1 H(CL)r

y′ = (y0 ∏
i∈P

y2i−1 ∏
i∈Q

y2i)
d−1

= (kr
0gαwd

1 ∏
RLi 6=∗

kr
i,RLi

)d−1

= gαw
1 (k0 ∏

RLi 6=∗
ki,RLi )

rd−1
= gαw

1 K(RL)rd−1
.

Since x′ = gα−αw
1 H(CL)r, y′ = gαw

1 K(RL)rd−1
, and x′ · y′ = gα

1 H(CL)rK(RL)rd−1
,

e(x′ · y′, C1)

e(C2 · Cd−1
3 , z)

=
e(gα

1 H(CL)rK(RL)rd−1
, gt

2)

e(H(CL)tK(RL)td−1 , gr
2)

= e(g1, g2)
αt = Ωt.

4.3. Complexity Analysis

In this section, we analyze the complexity of the key sizes and the execution time of the proposed
public key broadcast encryption scheme. The main complexity relies on the parameter l, which is the
number of bits for total users n (or log n).

For the key sizes, the public key size requires four fixed elements g, h0, k0, Ω and l elements
hi,0, hi,1, ki,0, ki,1, which is total 2l + 4 elements where the default element size is 20 bytes. The secret key
requires total 2l + 3 elements where the default element size is 20 bytes, which reduces the order to O(l)
or O(log n). The header size for a single subset requires four fixed elements, which is constant-size.

For the execution time, the encryption time for a single subset requires four elliptic curve
computations, which is almost negligible as O(1). Since the number of subsets depend on the subset
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representation, the complexity is determined by the number of subsets in the CSD, which is O(r).
The decryption time requires O(l) computations, which is O(log n) for n total users.

4.4. Security Proof

Theorem 2. Let G1 and G2 be bilinear groups of prime order p. Suppose the (decision) (t, ε, 4q)-SMEBDH
assumption holds in G1 × G2. Then, the proposed public key broadcast encryption system is (t′, ε, q, λ)

semantically secure for arbitrary q, and t′ < t + O(eq2), where e is the maximum time for an exponentiation in
G1 and G2.

Proof. Suppose A has advantage ε in attacking the proposed public key broadcast encryption system.
Using A, we construct an algorithm B that solves the (decision) 4q-SMEBDH problem.

For generators g1 ∈ G1 and g2 ∈ G2, and b ∈ Zp, algorithm B is given as input random tuples

P = ((p,G1,G2,GT , e), g1, g2, {gai
1 , gai

2 , gb/ai
1 , gb/ai

2 }1≤i≤4q, {gbai/aj
1 , g

bai/aj
2 }1≤i,j,i 6=j,≤4q, gc

1, gc
2) and T

that is either sampled from PSMEBDH (where T = e(g1, g2)
bc) or from RSMEBDH (where T is uniform

and independent in GT ). Algorithm B’s goal is to output 1 when the input tuple T is sampled from
PSMEBDH and 0 otherwise. Note that we let l = q in this proof. Algorithm B interacts with A in a
selective subset game as follows:

Init: The game begins withA outputting a subset S∗ = (CL∗, RL∗) to attack where CL∗, RL∗ ∈ {0, 1, ∗}l .

Setup: To generate the public key, algorithm B chooses random exponents γ1, γ2, v1, · · · v4l ∈ Zp,
and sets hi,j = g

a2i−1+j
1 · gv2i−1+j

1 , ki,j = g
a2l+2i−1+j
1 · gv2l+2i−1+j

1 for i ∈ {1, . . . , l} and j ∈ {0, 1}, h0 =

(∏l
i=1 hi,CL∗i

)−1 · gγ1
1 and k0 = (∏l

i=1 ki,RL∗i
)−1 · gγ2

1 . Let α = b.

KeyGen: To generate a private key SKID for user ID ∈ {0, 1}l , algorithm B considers the following
three cases.

(i) ID 6∈ CL∗ :

Algorithm B chooses random exponents r′ and αw ∈ Zp and sets r = −b
a2j−1+IDj

+ r′ where

IDj 6= CL∗j .

Algorithm B can easily compute gvir
1 ,

since gvir
1 = g

−b
a2j−1+IDj

·vi

1 · gvir′
1 .

Algorithm B computes x0 as follows:

l

∏
i=1

hr
i,IDi

=
l

∏
i=1

(g
a2i−1+IDi
1 )

−b
a2j−1+IDj

+r′

· g
v2i−1+IDi

r
1

=
l

∏
i=1,i 6=j

g
−b·

a2i−1+IDi
a2j−1+IDj

1 · g−b
1 ·

l

∏
i=1

(g
a2i−1+IDi
1 )r′ · g

v2i−1+IDi
r

1 .

hr
0 = ((

l

∏
i=1

hi,CL∗i
)−1 · gγ1

1 )r

= (
l

∏
i=1

g
−a2i−1+CL∗i
1 · gγ1

1 )
−b

a2j−1+IDj
+r′

· g
−v2i−1+CL∗i

r

1

=
l

∏
i=1

g
b·

a2i−1+CL∗i
a2j−1+IDj

1 · g
−b

a2j−1+IDj
γ1

1 · g
−v2i−1+CL∗i

r

1 · hr′
0 .
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x0 = gα−αw
1 H(ID)r = gb−αw

1 · hr
0 ·

l

∏
i=1

hr
i,IDi

= gb−αw
1

l

∏
i=1

g
b·

a2i−1+CL∗i
a2j−1+IDj

1 · g
−b

a2j−1+IDj
γ1

1 · g
−v2i−1+CL∗i

r

1 · hr′
0

·
l

∏
i=1,i 6=j

g
−b

a2i−1+IDi
a2j−1+IDj

1 · g−b
1 ·

l

∏
i=1

(g
a2i−1+IDi
1 )r′ · g

v2i−1+IDi
r

1

= g−αw
1

l

∏
i=1

g
b·

a2i−1+CL∗i
a2j−1+IDj

1 · g
−b

a2j−1+IDj
γ1

1 · hr′
0 ·

l

∏
i=1,i 6=j

g
−b·

a2i−1+IDi
a2j−1+IDj

1

·
l

∏
i=1

(g
a2i−1+IDi
1 )r′ · g

−v2i−1+CL∗i
r

1 · g
v2i−1+IDi

r
1 .

Algorithm B computes xi, y0, yi, and z as follows:

xi = hr
i,IDi

= g
a2i−1+IDi

·( −b
a2j−1+IDj

+r′)

1 · g
v2i−1+IDi

r

1

= g
−b·

a2i−1+IDi
a2j−1+IDj

1 · (g
a2i−1+IDi
1 )r′ · g

v2i−1+IDi
r

1 .

y0 = kr
0 = ((

l

∏
i=1

ki,RL∗i
)−1 · gγ2

1 )
−b

a2j−1+IDj
+r′

=
l

∏
i=1

g
b·

a2l+2i−1+RL∗i
a2j−1+IDj

1 · g
γ2· −b

a2j−1+IDj
1 · kr′

0 · g
−v2l+2i−1+RL∗i

r

1

y2i−1 = gαw
1 kr

i,IDi
= gαw

1 · g
−b·

a2l+2i−1+IDi
a2j−1+IDj

1 · (g
a2l+2i−1+IDi
1 )r′ · g

v2l+2i−1+IDi
r

1 .

y2i = kr
i,IDi

= g
−b·

a2l+2i−1+IDi
a2j−1+IDj

1 · (g
a2l+2i−1+IDi
1 )r′ · g

v2l+2i−1+IDi
r

1 .

z = gr
2 = g

−b
a2j−1+IDj

+r′

2 = g
−b

a2j−1+IDj
2 · gr′

2 .

(ii) ID ∈ CL∗ and ID ∈ RL∗ :

Algorithm B selects random exponents r′ and u ∈ Zp and sets r = ∑l
j=1

−b
a2l+2j−1+IDj

+ r′. It sets

αw = b− u.

Algorithm B can compute gvir, since gvir
1 = g

∑l
j=1

−b
a2l+2j−1+IDj

·vi

1 · gvir′
1 .

Algorithm B computes x0 as follows:
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l

∏
i=1

hr
i,IDi

=
l

∏
i=1

(g
a2i−1+IDi
1 )

∑l
j=1

−b
a2l+2j−1+IDj

+r′

· g
v2i−1+IDi

r
1

=
l

∏
i=1

l

∏
j=1

g
−b·

a2i−1+IDi
a2l+2j−1+IDj

1 ·
l

∏
i=1

(g
a2i−1+IDi
1 )r′ · g

v2i−1+IDi
r

1 .

hr
0 =((

l

∏
i=1

hi,CL∗i
)−1 · gγ1

1 )r

=(
l

∏
i=1

g
−a2i−1+CL∗i
1 · gγ1

1 )
∑l

j=1
−b

a2l+2j−1+IDj
+r′

·
l

∏
i=1

g
−v2i−1+CL∗i

r

1

=
l

∏
i=1

l

∏
j=1

g
b

a2i−1+CL∗i
a2l+2j−1+IDj

1 ·
l

∏
j=1

g

−b
a2l+2j−1+IDj

γ1

1 · hr′
0 ·

l

∏
i=1

g
−v2i−1+CL∗i

r

1 .

x0 = gα−αw
1 H(ID)r = gu

1 hr
0

l

∏
i=1

hr
i,IDi

.

Algorithm B computes xi, y0, yi, and z as follows:

xi = hr
i,IDi

= g
a2i−1+IDi

·(∑l
j=1

−b
a2l+2j−1+IDj

+r′)

1 · g
v2i−1+IDi

r

1

=
l

∏
j=1

g
−b·

a2i−1+IDi
a2l+2j−1+IDj

1 · (g
a2i−1+IDi
1 )r′ · g

v2i−1+IDi
r

1 .

y0 = kr
0 = ((

l

∏
i=1

ki,RL∗i
)−1 · gγ2

1 )
∑l

j=1
−b

a2l+2j−1+IDj
+r′

=
l

∏
i=1

l

∏
j=1

g
b·

a2l+2i−1+RL∗i
a2l+2j−1+IDj

1 ·
l

∏
j=1

g

−b
a2l+2j−1+IDj

·γ2

1 · kr′
0 ·

l

∏
i=1

g
−v2i−1+RL∗i

r

1 .

Note that RL∗i = IDi if RL∗i 6= ∗.

If RL∗i = ∗ then a2l+2i−1+RL∗i
= 0 since ki,∗ = 1.

y2i−1 = gαw
1 · k

r
i,IDi

= gb−u · g
∑l

j=1 −b·
a2l+2i−1+IDi
a2l+2j−1+IDj

1 · (g
a2l+2i−1+IDi
1 )r′ · g

v2l+2i−1+IDi
r

1

= gb−u
1

l

∏
j=1,j 6=i

g
−b·

a2l+2i−1+IDi
a2l+2j−1+IDj

1 · g−b
1 · (g

a2l+2i−1+IDi
1 )r′ · g

v2l+2i−1+IDi
r

1

= g−u
1

l

∏
j=1,j 6=i

g
−b·

a2l+2j−1+IDj
a2l+2j−1+IDj

1 · (g
a2l+2i−1+IDi
1 )r′ · g

v2l+2i−1+IDi
r

1 .
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y2i = kr
i,IDi

= g
∑l

j=1 −b·
a2l+2i−1+IDi
a2l+2j−1+IDj

1 · (g
a2l+2i−1+IDi
1 )r′ · g

v2l+2i−1+IDi
r

1

z = gr
2 = g

∑l
j=1

−b
a2l+2j−1+IDj

+r′

2 =
l

∏
j=1

g

−b
a2l+2j−1+IDj
2 · gr′

2 .

(iii) ID ∈ CL∗ and ID 6∈ RL∗:

Algorithm B does not require the SKID, since ID ∈ S∗.

Challenge: Algorithm A submits challenge labels (CL′, RL′) and two messages M∗0 , M∗1 .
If (CL′ 6= CL∗) ∨ (RL′ 6= RL∗), then Algorithm B aborts the simulation since it failed to guess the
challenge labels. Otherwise, B flips a random coin ξ ∈ {0, 1} internally. B implicitly sets t = c and
creates a challenge ciphertext as

(C0, C1, C2, C3) = (T ·M∗ξ , gc
2, (gc

1)
γ1 , (gc

1)
γ2).

Guess: Finally, A outputs a guess ξ ′ ∈ {0, 1}. Algorithm B concludes its own game by producing a
guess as follows. If ξ = ξ ′ then B outputs 1 meaning T = e(g1, g2)

bc. Otherwise, it outputs 0 meaning
that T is random in GT .

To complete the proof, we show that public keys, private keys, and the challenge ciphertext are
correctly distributed. The public keys are correctly distributed since new random elements vi are
chosen from Zp. The private keys are correctly distributed as shown in the query phase. The challenge
ciphertext is correctly distributed since it satisfies the following equation:

C0 = e(g1, g2)
αt M∗ξ = e(g1, g2)

bc M∗ξ ,

C1 = gt
2 = gc

2,

Ct−1

2 = H(CL∗) = h0

l

∏
i=1

hi,CL∗i

= (
l

∏
i=1

hi,CL∗i
)−1gγ1

1

l

∏
i=1

hi,CL∗i
= gγ1

1 ,

Ct−1

3 = K(RL∗) = k0

l

∏
i=1

ki,RL∗i

= (
l

∏
i=1

ki,RL∗i
)−1gγ2

1

l

∏
i=1

ki,RL∗i
= gγ2

1 .

When the input tuple is sampled from PSMEBDH (where T = e(g1, g2)
bc), thenA’s view is identical

to its view in a real attack game, and, therefore, A satisfies |Pr[ξ = ξ ′]− 1/2| ≥ ε. When the input
tuple is sampled from RSMEBDH (where T is uniform in GT), then Pr[ξ = ξ ′] = 1/2. Therefore, with g1

uniform in G1, g2 uniform in G2, b and c uniform in Zp, and T uniform in GT , we have that

|Pr[B(P, e(g1, g2)
bc) = 0]− Pr[B(P, T) = 0]|

≥ |(1/2 + ε)− 1/2| = ε

as required, which completes the proof of the theorem.

5. CCA-Secure Broadcast Encryption

In this section, we extend our proposed BESTIE to the chosen-cipertext-secure broadcast
encryption, similar to Reference [3,37] by attaching an unforgeable one-time signature scheme to
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the semantically secure PKBE scheme. To utilize the CCA extension in Reference [3,37], we require
our broadcast encryption to support general IDs such that wildcards (∗) can be used in IDs for key
generation. Thus, we first describe a general ID scheme as a building block. Then, we represent a
CCA-secure scheme with a complexity analysis and security proof.

5.1. General ID Scheme

In this section, we explain a general ID scheme as described in Reference [3], which can include
wildcards (∗) in the IDs for key generation. Similar to Section 4.2, we denote IDi, CLi, and RLi the ith
bit of bit-strings ID, CL, and RL, respectively. In addition, we denote H(ID) = h0 ∏l

i=1 hi,IDi , K(ID) =
k0 ∏l

i=1 ki,IDi , hi,∗ = hi,0 · hi,1 and ki,∗ = 1.

Setup(l, λ): The setup is equivalent to the main scheme in Section 4.2.

MK = gα
1 ,

PK =((p,G1,G2,GT , e), g, h0, h1,0, h1,1, . . . , hl,0, hl,1,

k0, k1,0, k1,1, . . . , kl,0, kl,1, Ω = e(g1, g2)
α).

KeyGen(ID, MK, PK): Private key generation is similar to the main scheme, except for the wildcards
(*). We set hi,∗ = 1 and populate hr

i,0 and hr
i,1 for hr

i,∗̄ . Similarly, the interpretation of ki,∗ covers both ki,0
and ki,1. Therefore, if IDi = ∗, SKID includes both g1

αw kr
i,0 and g1

αw kr
i,1, as well as hr

i,0 and hr
i,1. The key

generation is summarized as follows:

SKID = (x0, x1, . . . , xl , y0, y1, · · · , y2l , z), where

x0 = gα−αw
1 H(ID)r,

xi = hr
i,IDi

(1 ≤ i ≤ l)

y0 = kr
0y2i−1 = gαw

1 kr
i,IDi

y2i = kr
i,IDi

 (1 ≤ i ≤ l), if IDi 6= ∗{
y2i−1 = gαw

1 kr
i,0

y2i = gαw
1 kr

i,1

}
(1 ≤ i ≤ l), if IDi = ∗

z = gr
2.

Encrypt(S, PK, M): The encryption is equivalent to the main scheme in Section 4.2.

HdrS = {C0 = Ωt ·M, C1 = gt
2, C2 = H(CL)t, C3 = K(RL)t}.

Decrypt(S, ID, SKID, HdrS): Similar to the decryption in Section 4.2, for IDi 6= ∗, let P = {i|IDi 6=
∗ ∧ IDi 6= RLi ∧ RLi 6= ∗} and Q = {i|IDi 6= ∗ ∧ IDi = RLi ∧ RLi 6= ∗}. We define new sets for
wildcards as P∗ = {IDi = ∗ ∧ RLi = 1} and Q∗ = {IDi = ∗ ∧ RLi = 0}.

Then, let d = |P|+ |P∗|+ |Q∗|, where |P| denotes the number of bits which in ID are different
from RL, and |P∗|+ |Q∗| indicates the number of ∗ in ID.

If d > 0, it parses SKID = (x0, x1, . . . , xl , y0, y1 · · · , y2l , z).

Then, it computes

x′ =x0 · ∏
CLi=∗∧IDi 6=∗

xi · ∏
CLi 6=∗∧IDi=∗

hr
i,CLi
· ∏

CLi=∗∧IDi=∗
hr

i,0hr
i,1

y′ =(y0 · ∏
i∈P∪P∗

y2i−1 · ∏
i∈Q∪Q∗

y2i)
d−1
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and outputs a message as
M = C0 · e(x′ · y′, C1)

−1 · e(C2 · Cd−1

3 , z).

Otherwise, it outputs ⊥.

5.2. CCA-Secure Scheme

In the following notation, a vector V = (v1, · · · , vn) is interchangeably presented as v1 . . . vn.
With vectors V = (v1, · · · , vn) and V′ = (v′1, · · · , v′m), we denote the concatenation of V and V′ or
V||V′ = (v1, · · · , vn, v′1, · · · , v′m).

We extend our semantically secure broadcast encryption scheme using a similar technique
presented in Reference [3,37] to attain the chosen ciphertext security. We can construct an
l-level public key broadcast encryption system Π = (Setup,KeyGen,Encrypt,Decrypt) secure
against chosen-ciphertext attacks using the (l + z)-level Π′ = (Setup′,KeyGen′,Encrypt′,Decrypt′)
semantically secure broadcast encryption scheme with a strong one-time signature scheme
(SigKeyGen, Sign, Veri f y) with verification keys which are mapped to {0, 1}z. The main idea is
that ID = (b1, · · · , bl) ∈ {1, 0, ∗}l in Π is transformed to ID′ = ID||∗z = (b1, · · · , bl , ∗, · · · , ∗) ∈
{1, 0, ∗}l+z in Π′. Therefore, the secret key SKID for ID in Π becomes the secret key SKID′ in
Π′. When encrypting a message M for the ID in Π, the sender constructs a z-bit verification key
Vsig = (e1, · · · , ez) ∈ {0, 1}z and then encrypts M to the ID′ = ID||Vsig using Π′.

For more detail, l-level Π is built using (l + z)-level Π′ and a one-time signature scheme as
the following:

Setup(l, λ): Let 2l be the maximum number of users and lambda be the session key length. Assume that
the signature verification key space is {0, 1}z.

Perform a semantically secure broadcast encryption scheme Π′ to generate the public key PK and
master secret key MK, and output PK and MK.

PK, MK ← Setup′(l + z).

KeyGen(ID, MK, PK): To generate a private key SKID for an identity ID = b1 . . . bl utilizing the master
secret key, encode ID to ID′ = ID|| ∗ ∗ · · · ∗︸ ︷︷ ︸

z

. The key generation algorithm in KeyGen′ of Π′ generates

the secret key SK′ID′ .
Let SKID = SK′ID′ = (SK′ID′ ,1, . . . , SK′ID′ ,l+z) and output {SKID}ID∈{0,1}l .

{SK′ID′}ID′∈{0,1}l+z ← KeyGen′(ID′, MK, PK).

Encrypt(S, PK, M): Perform SigKeyGen(1z) algorithm to get a signature signing key Ksig and a
verification key Vsig. Assume that Vsig = e1 . . . ez. For a given S = (CL||Vsig, RL||Vsig), run Encrypt′ to
obtain header HdrS and sign the header as

HdrS ← Encrypt′(S, PK, M)

σ← Sign(HdrS, Ksig)

and output the tuple Hdr as (HdrS, σ, Vsig).

Decrypt(S, ID, SKID, Hdr):
Parse Hdr = ((C0, C1, C2, C3), σ, Vsig).

1. Verify if σ is valid against (C0, C1, C2, C3) under the key Vsig. If invalid, output ⊥.

2. Otherwise, encode ID to ID′ = ID|| ∗ ∗ · · · ∗︸ ︷︷ ︸
z

, execute

Decrypt′(S, ID′, SKID, Hdr) and output the message M.
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Correctness can be shown with a similar computation to the one in Section 4. It is noted that the
user key size is enlarged from O(l) to O(l + z), and the header size increases by the size of a signature
and a verification key.

5.3. Complexity Analysis

In this section, we analyze the complexity of the key sizes and the execution time of the proposed
public key broadcast encryption scheme. The general complexity is increased from l to l + z where z
is a bit-length of the one-time signature verification key, since the CCA-secure extension requires z
additional depth from the original scheme.

For the key sizes, the public key size requires 2(l + z) + 4 elements, and the secret key size
requires 2(l + z) + 3 elements. The header size is 5 fixed elements, since the CCA-secure header
requires one-time signature in addition to the original header.

The encryption additionally requires one-time signature singing time and the decryption
additionally requires one-time signature verifying time. However, one-time signature processing time is
very fast and negligible: the execution times remain almost the same as the original CPA-secure scheme.

5.4. Security Proof

Theorem 3. Let G be a bilinear group of prime order p. For any integer l, the public key broadcast encryption
system Π is (t, ε1 + ε2, l, λ, D) CCA-secure if the public key broadcast encryption system Π′ is (t′, ε1, l + z, λ, 0)
semantically secure in G and the signature scheme is (t′′, ε2, z, 1) strongly existentially unforgeable. Moreover,
t < t′ − (2(l + z)a + 2p) · D− ts, where a is point addition time, p is pairing time, and ts presents the sum of
SigKeyGen, Sign and Veri f y computation time.

Proof. Assume that there exists a t-time adversary A such that |AdvBrA,Π − 1/2| > ε1 + ε2. We
construct an algorithm B that has advantage |AdvBrB,Π′ − 1/2| > ε1 in G. Algorithm B proceeds
as following.

Init: Algorithm B performs A and receives set S∗ in which users A challenges on. B executes the
SigKeyGen algorithm to obtain a signature signing key K∗sig and a verification key V∗sig ∈ {0, 1}z. Let
V∗sig = e1 . . . ez; then, B builds S∗∗ = {U||V∗sig | U ∈ S∗} and outputs it.

Setup: B gets the public key PK of Π′ from challenger C.

KeyGen: B obtains secret keys SKID′ for revoked ID′ 6∈ S∗∗ from challenger C. Note that ID′ 6∈ S∗∗ iff
∀X ∈ S∗∗, ∃i, ID′i 6= Xi ∧ Xi 6= ∗, and ID′ ∈ S∗∗ iff ∃X ∈ S∗∗, ∀i, ID′i = Xi ∨ Xi = ∗.

Since Π′ can generate secret keys using ∗, ID′ can be classified into the following two forms:

1. ID′ = ID|| ∗ ∗ · · · ∗︸ ︷︷ ︸
z

for ID 6∈ S∗

2. ID′ = ID|| ∗ · · · ∗︸ ︷︷ ︸
k−1

ēk ∗ · · · ∗︸ ︷︷ ︸
z−k

for ID ∈ S∗ and k ∈ {1, . . . , z}.

Algorithm B responds with PK and secret keys SK′ID′ of the first type of ID′. Note that the secret
key SKID = SK′ID′ where ID′ = ID|| ∗ ∗ · · · ∗︸ ︷︷ ︸

z

. The secret keys SK′ID′ of the second type of ID′ are used

to respond to the decryption queries of A as following.

Phase 1: Algorithm A issues decryption queries.
Let (ID, S, Hdr) be a decryption query where S ⊆ S∗ and ID ∈ S. Let Hdr = (HdrS, σ, Vsig).
Algorithm B responds as following:

1. Perform Veri f y to check the signature σ against HdrS = (C0, C1, C2, C3) with verification key Vsig.
If the signature is invalid, then B returns ⊥.

2. If Vsig = V∗sig, then a forge event happens, and algorithm B outputs a random bit b $← {0, 1} and
aborts the simulation.
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3. Otherwise, B decrypts the header using the second type of secret keys.

Let V = ∗ · · · ∗︸ ︷︷ ︸
k−1

ēk ∗ · · · ∗︸ ︷︷ ︸
z−k

, where k ∈ {1, . . . , z}. Using SKID||V , B can obtain M ←

Decrypt′(S, ID, SKID||V , HdrS) since Vsig is covered by V.

Challenge: WhenA outputs M0 and M1 for the challenge, B bypasses them to C and gets the challenge
Hdr∗S. To generate a challenge for A, B calculates Hdr∗ as the following:

σ∗ ← Sign(Hdr∗S, K∗sig)

Hdr∗ ← (Hdr∗S, σ∗, V∗sig).

B replies with Hdr∗ to A.

Phase 2: Same as in query phase 1.

Guess: Algorithm A outputs a guess b ∈ {0, 1}. Then, B outputs 1 if b = b′, or outputs 0 otherwise.
Notice that algorithm B can simulate all queries to run A, B’s success probability as the following:

|AdvBrB,Π′ −
1
2
| ≥ |AdvBrA,Π −

1
2
| − Pr[forge]

> (ε1 + ε2)− Pr[forge].

It is required to compute the probability of B aborting the simulation as a result of a forge to
conclude the proof of Theorem 3. We argue that Pr[forge] < ε2. Otherwise one can utilize A to forge
signatures with a probability of at least ε2. Shortly, we can build another simulator that knows the
private key, but receives K∗sig as a challenge in an existential forgery game. In the above experiment,
A aborts by submitting a query that includes an existential forgery under K∗sig on some ciphertexts.
Our simulator can use this forgery to win the existential forgery game. During the game the adversary
makes only one chosen message query to generate the signature for the challenge ciphertext. Hence,
Pr[forge] < ε2. It now follows that B’s advantage is at least ε1, as required.

6. Experiment

In this section, we show and compare the implementation results by constructing the BESTIE
protocol on the real IoT system, which can let many useful IoT applications, such as secure multicast, be
available. We present the experimental results in terms of three main factors—the ciphertext header size,
the execution time, and the key size—in the proposed scheme (BESTIE) and existing PKBE schemes.
We programmed and tested the BESTIE and other schemes on the Intel Edison board environment
with a 32-bit 500 Mhz processor, which is commonly utilized as a small IoT device. We performed real
encryption protocols based on ublinux 3.10.17 system and pairing-based cryptography (PBC) library
(element type set as type F, or fparam, which is size-friendly), from setup to encryption/decryption,
and measured the time and size of parameter results.

The number of subsets define the ciphertext header sizes in broadcast encryptions. Figures 3 and
4 compares the number of subsets in the BESTIE, CSD [3], SD [4], and interval schemes [2]. Note that
the header sizes are equivalent in BESTIE and CSD since they share the same CSD representation
method. In Figure 3, the y axis represents the number of subsets as varying the number of randomly
chosen revoked users (x axis) varies. The number of total users is 2128. The result shows that the
number of subsets is strictly linear to the number of revoked users. In Figure 4, instead of a random
revocation, we vary the number of randomly chosen secure multicast subsets. Secure multicast
subsets are non-hierarchical subsets that include wildcards (∗) in the middle of covering labels
(e.g., 1 ∗ ∗01− 10 ∗ ∗1). BESTIE,CSD-15, SD-15, and Interval-15 indicate 215 total users. BESTIE, CSD-20,
SD-20, and Interval-20 indicate 220 total users. Since the CSD representation supports a non-hierarchical
representation (∗ can be placed anywhere), it can cover the non-hierarchical example within a single
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CSD subset; the number of subsets in BESTIE and CSD is identical to the number of non-hierarchical
groups. However, the number of subsets in the SD and interval schemes is large since they only support
hierarchical representations.
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Figure 3. The number of subsets in the broadcast encryption scheme for tiny Internet of Things (IoT)
equipment (BESTIE), CSD, SD, and interval schemes for random revocation (2128 users).
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Figure 4. The number of subsets in the BESTIE, CSD, SD, and interval schemes for secure
multicast revocation.

Figure 5 represents the encryption time in the BESTIE, CSD, and interval schemes by measuring
the time of encrypting a fixed message with using each protocol. The y-axis represents the encryption
time measured in seconds, and the x-axis represents the bit-length of users. The SD scheme follows the
encryption of Reference [20], thus it requires point exponentiation for the increasing bit-length. In the
figure, the encryption time in SD increases dramatically when the bit-length gets longer. The results
show that, other than the SD scheme, the encryption time remains similar, and BESTIE shows the best
encryption performance among the BE schemes.
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Figure 5. Encryption time in the BESTIE, CSD, SD, and interval schemes.

Figure 6 represents the decryption time in the BESTIE, CSD, and interval schemes, by measuring
the time of decrypting a fixed message with using each protocol. Since the decryption is generally
performed in a slow IoT (or embedded) system, the decryption performance should be improved.
Since the decryption algorithm mostly performs multiplication of secret keys with constant number of
pairings and exponentiations in BESTIE and CSD, the decryption time does not increase as the number
of users increases. On the other hand, since the interval scheme performs key derivation using a public
parameter for decryption, the decryption time is proportional to the depth of users. Hence, BESTIE
and CSD are IoT-friendly PKBE schemes in decryption.
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Figure 6. Decryption time in the BESTIE, CSD, SD, and interval schemes.

Table 2 shows the public key and secret key size in the bestie, CSD, SD, and interval schemes.
When the number of users is 2128, BESTIE requires 7.56 KB of SK storage, while CSD, SD, and interval
schemes require 960 KB, 40,960 KB, and 640 KB, respectively. Overall, the encryption and decryption
performance results show that the BESTIE achieves the fastest encryption and decryption time both
less than 200 ms; it indicates that the performance overhead is not an issue in the IoT implementation.
The main issue is the secret key size: The key storage sizes in most resource-constrained devices are less
than 8 KB. The key size results show that the BESTIE achieves the smallest key size due to the smaller
order of O(log n), which is the only available result for the restricted key storages in IoT devices.
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Table 2. Key size of BESTIE, CSD, SD, and interval schemes.

Depth BESTIE CSD SD(HIBE) Interval
(bits) (Ours) [3] [4,20] [2]

PK size
(KB)

8 bit 0.66 0.66 0.20 0.39
16 bit 1.29 1.29 0.35 0.70
32 bit 2.54 2.54 0.66 1.33
64 bit 5.04 5.04 1.29 2.58

128 bit 10.04 10.04 2.54 5.08

SK size
(KB)

8bit 0.53 3.79 10.04 2.58
16 bit 1.00 15.04 80.04 10.08
32 bit 1.93 60.04 640.04 40.08
64 bit 3.81 240.04 5120.04 160.08

128 bit 7.56 960.04 40960.04 640.08

7. Conclusions

This paper proposes a broadcast encryption scheme for tiny IoT equipment (BESTIE) that reduces
the key size suitable for a large scale IoT systems. The proposed BESTIE is a public key broadcast
encryption scheme for the combinatorial subset difference (CSD) representation. BESTIE has the most
efficient ciphertext header size, which is 2r in the worst case, where r is the number of revoked users.
Most importantly, BESTIE is the first scheme to reduce a key size to O(log n) from O(log2 n), which
was the minimal key size in existing subset difference-based approaches, without sacrificing any
other factor.

The experimental results show that the BESTIE has the best performance in key generation,
encryption, and decryption. Furthermore, in BESTIE the SK size is no more than 7 KB, even for the
IPv6 128 bit settings (or 2128 devices). We prove that the proposed BESTIE is secure under q-Simplified
Multi-Exponent Bilinear Diffie-Hellman (q-SMEBDH) assumption without the random oracle model.
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