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ABSTRACT Lithium-ion batteries are used as energy sources for energy storage systems, electric vehicles,
consumer electronic devices and much more. Prediction of the remaining useful life (RUL) of such sources
is vital to improve the safety and reliability of battery-powered systems. Even though several prognostic
methods have been extensively explored for the RUL prediction of lithium-ion batteries, these methods
are focused on adopting a single empirical / phenomenological degradation model which best describes
the degradation behavior. However, certain lithium-ion battery materials exhibit two distinct degradation
behaviors with an evident inflection point. In such cases, a single empirical model no longer holds good.
Hence, we propose a piecewise degradation model along with a novel methodology to determine the
inflection point. The proposed model is incorporated into a particle filter framework to predict the battery’s
degradation trajectories. The effectiveness of the proposed model is verified by adding a 50dB noise to the
measurement data. The prognostic results of the proposed piecewise model are compared with the existing
single empirical model. We use prediction error and execution time as the prognostic metrics for comparison.

INDEX TERMS Particle filters, remaining useful life, lithium-ion batteries, piecewise degradation model,
inflection point.

I. INTRODUCTION
Due to their high energy density and light weight, lithium-ion
batteries are widely employed in portable electronics, mobile
devices, and electric vehicles as the main source of energy.
However, the lifespan and performance of the battery tends
to deteriorate during its operation with cycling and aging.
Hence, diagnosis and prognosis of capacity degradation are
essential for the safe and reliable usage of these battery pow-
ered devices. Specifically, predicting the remaining useful
life of lithium-ion batteries is a widely researched domain as
it reduces the risk of undue downtime or unforeseen catas-
trophic failures by giving advancewarnings and providing the
user ample time to take necessary corrective measures.

Battery degradation cannot be measured directly, and bat-
tery capacity is the most widely used health indicator to
deduce the state of health (SoH) of the battery. Battery capac-
ity is defined as the amount of electric charge the battery
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can hold in its fully charged state. Hence, battery capacity
decreases as the battery degrades. In general, end of perfor-
mance (EoP) of battery is set as the time instant at which the
maximum available battery capacity is reduced to 80% of its
rated capacity.

In general, most RUL prediction methods can be cat-
egorized as data-driven methods, model-based and hybrid
methods. Data-driven methods extract useful features from
the degradation data using statistical and machine learning
approaches. These data-driven methods learn the inherent
degradation trend of the system from the extracted features
and use it for RUL estimation. Data-driven methods do not
require any prior knowledge about the system’s behavior.
Prognosis within the domain of data-driven approaches can
be broadly categorized into statistical methods and machine
learning approaches. In the sub-domain of statistical meth-
ods, Barraza et al. [1] proposed three autoregressive models
with exogenous variables (ARX) with self-starting capabil-
ities for RUL estimation of aluminum plate based on crack
growth. The proposed models do not require large historical
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data unlike most of the statistical approaches available in
literature. These ARX models rely only on available knowl-
edge of the degradation process and operating conditions to
estimate the RUL. Also, the authors incorporated recursive
parameter estimation techniques along with a forgetting fac-
tor for the ARX model to adapt to changing operating con-
ditions. Similarly, Pham et al. [2] proposed a hybrid model
combining linear autoregressive moving average (ARMA)
model and the non-linear generalized autoregressive condi-
tional heteroscedasticity (GARCH) model to predict the fault
condition of methane compressors in a petrochemical plant.
However, these statistical approaches work well only when
there is at least one set of run-to-failure data available and
also for modeling lesser complex failures in the system.

Machine learning based approaches, on the other hand,
include neural networks [3], fuzzy logic [4], support vector
machine [5], relevance vector machine [6] and many others.
Loutas et al. [7] proposed a probabilistic support vector
regression (e-SVR) method for prediction of RUL of ball
bearings. The authors had performed time-frequency analysis
on the available historical data and proposed a new feature
named Wiener entropy (WE) for the purpose of condition
monitoring. The RUL prediction of the e-SVR model using
WE under two different operating conditions was analyzed.
Liu et al. [8] proposed a deep learning based long short-term
memory (LSTM) network along with a Bayesian model
averaging strategy for RUL prediction of lithium-ion batter-
ies. Moreover, several neuro-fuzzy inference systems have
also been developed for prediction of machine condition in
mechanical systems using the vibration data collected from
the equipment [9], [10].

However, the major drawback of all the above-mentioned
prognostic approaches is the dependency on large amount
of historical failure data for training the data-driven model.
Moreover, data pertaining to a wide range of operating con-
ditions are also needed from the system to achieve acceptable
prediction accuracy. Availability of such data is scarce espe-
cially for complex or newly designed systems.

In contrast, model-based methods (or physics-based meth-
ods) use a physical model which describes the degrada-
tion behavior of the system to estimate the fault evolution
trend. These methods require adequate knowledge of the
system’s life cycle, loading conditions, material properties
and the physics of underlying failure mechanisms to predict
the density function of the RUL. Availability of an accurate
degradation model can aid in the precise prediction of failure
progression and eventual prognosis. The commonly used
model-basedmethods in literature are theKalman filter-based
methods such as Kalman filters (KF), extended Kalman fil-
ters (EKF) [11], unscented Kalman filters (UKF) [12] and
particle filter-based methods such as standard particle filters
(PF) [13], unscented particle filters (UPF) [14], regularized
particle filters (RPF) [15] etc.

Bressel et al. [16] used an extended Kalman filter approach
to predict the state of health and RUL of a proton exchange
membrane fuel cell (PEMFC). A single empirical model

was deduced from the polarization curves and the Levenberg
Marquardt (LM) algorithm was used to optimize the model
parameters. The prognostic results obtained were accurate
even for dynamic loading conditions. An extension of their
work was then proposed by Zhang et al. [17] wherein the
empirical model was replaced by a physics-based degradation
model representing the relationship between the operating
conditions and the degradation rate of the electro-chemical
surface area in the PEMFC. An unscented Kalman filter-
based framework which can handle the non-linearities in
the system model was also proposed for health monitor-
ing. Although Kalman filter based methods predict the RUL
with good accuracy, noise in the system is always assumed
to be Gaussian. Also, a precise initial state is required to
achieve good prediction accuracy thus limiting its applicabil-
ity to practical applications which mostly possess non-linear
system dynamics with non-Gaussian noise embedded in it.
Saha et al. [18] proposed an exponential empirical model
describing the lithium-ion battery degradation behavior for
each discharge cycle. A particle filter framework was again
used to make predictions for the RUL for individual discharge
cycles as well as for the entire lifecycle of the battery.

Particle filters (PF) are extensively used for the purpose of
prognosis because of its ability to handle non-linear systems
with non-Gaussian noise. Recent studies have shown that
particle filters exhibit higher prediction accuracy over EKF,
UKF, regression-based methods and non-linear least square
methods etc. even when there are only few measurement
data available from the system being monitored [19]–[21].
Even though physics-based methods can obtain accurate pre-
dictions, the mathematical model used in these methods are
based on specific knowledge of the system under specific
operating conditions. Uncertainty in the physical model or a
phase-wise transition in the physics inhibits the quick appli-
cation of PF for real-time scenarios where the component /
system degradation dynamics is complicated and/or is not
fully known.

Several attempts have been made to overcome the uncer-
tainty in the damage propagation models used in filtering
techniques-based RUL predictions. Some of the proposed
models include one-term exponential model for Li-ion bat-
tery capacity degradation using spherical cubature particle
filters [22], quadratic polynomial model [23], two-term expo-
nential model [24] and ensemble model [25] etc. Although
the above-mentioned models work well to predict the RUL
of lithium-ion batteries, they are designed for devices which
follow a single degradation behavior throughout the lifecycle
of the device. Rolling element bearings for instance are used
in harsh working environments and are subjected to rapid
degradation over time. To assess the degradation of bearings,
health indicators constructed from vibration signals are used.
The bearing degradation process can be classified into two
phases. The first phase comprises the normal working con-
dition with constant rate of degradation whereas the second
phase is where the bearing degrades exponentially. In such
cases, the application of a single analytical model leads to
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poor prediction accuracy as it is difficult to estimate or infer
the time instant at which there is a transition of the degrada-
tion trend into the second phase. Knowledge of this transition
/ inflection point would be essential for taking adequate pre-
ventive actions.

Some of the very recent works have tried to address this
complexity partially.Wang et al. [26] proposed a novel mixed
effects model to analytically model the bearing degrada-
tion process. A joint posterior distribution was formulated
based on the two mixed effect models and the RUL was
predicted incorporating multiplicative errors and Brownian
motion errors. Similarly, Banerjee et al. [27] proposed a two-
stage degradationmodel based on the Paris law for the estima-
tion of impact damage propagation in glass fiber reinforced
polymers (GFRP). The authors further extended their work
for prognostic study of matrix stiffness degradation of GFRP
plates due to fatigue testing as well [28]. As the stiffness
parameters were estimated using different nondestructive
evaluation (NDE) techniques simultaneously, a multi-sensor
particle filter framework was proposed. Since the physics
behind each NDE technique is different, a joint likelihood
function of the particles was proposed which dynamically
updates the particle weight based on each individual sensor
measurement. The authors however evaluated their proposed
methodology only on a network of two sensors and the pre-
diction error was found to be around 20%. Also, the authors
did not consider the determination of the inflection point
where the second mechanism starts to kick in. On the other
hand, Diao et al. [29] proposed a new algorithm based on
the slope-changing ratio of the tangent lines to determine the
knee-point of the degradation curves in Li-ion batteries and
suggested to use it as a degradation metric. However, they did
not perform any prognostic study. Similarly, Cong et al. [30]
proposed an improved unscented particle filter method to
deduce the inflection point and Wang et al. [31] proposed a
new piecewise degradation model for Li-ion batteries incor-
porating the battery regeneration phenomena to eventually
predict the remaining useful life.

In this work, we chose to work on nickel manganese
cobalt oxide Li(NiMnCo)O2 batteries (NMC) [32], which are
known to exhibit a two-phase degradation trend, for prognos-
tic study. The main contribution of this work may be sum-
marized as follows. First, we propose a particle filter based
online prognostic framework wherein a two-phase sequential
degradationmodel is incorporated. Secondly, we use the error
in battery capacity prediction as the criteria to identify the
transition (inflection) point from one degradation mechanism
to the other. Lastly, we compare the RUL predictions of
the proposed framework with other commonly used capacity
degradation models to validate the effectiveness of our piece-
wise prognosis framework.

The remainder of the paper is organized as follows:
Section II describes the experimental data used in this work
followed by formulation of a piecewise capacity degrada-
tion model. Section III introduces the standard particle filter
algorithm and Section IV provides a detailed explanation

of the proposed framework and also compares the predic-
tion results between a piecewise model and other empirical
models available in literature. The results indicate that the
use of a piecewise model with inflection point does provide
better results in terms of RUL prediction accuracy for the
same computational load. Finally, Section V provides some
concluding remarks and recommendations for further work.

II. CAPACITY DEGRADATION MODEL
A. CAPACITY MEASUREMENT
The aging behavior of the battery is heavily dependent on the
battery material make-up. One of the commonly used bat-
teries is the nickel manganese cobalt oxide Li(NiMnCo)O2
one, in short, referred to as NMC. The NMC cells exhibit
a concave degradation trend in comparison to other conven-
tionally used batteries such as lithium iron phosphate (LFP)
batteries which are convex. The capacity of the NMC
cells steadily decreases in the initial cycles until it sharply
falls beyond a certain inflection point as shown in Fig. 1.
Yang et al. [33] performed accelerated aging experiments on
NMC cells and in turn proposed a two-term capacity degra-
dation model for the purpose of RUL estimation. The authors
used four cylindrical NMC B18650CD cells composed of
Li(NiMnCo)O2 cathode and carbon anode with a rated
capacity of 1.35 Ah.

FIGURE 1. The degradation curves of Li(NiMnCo)O2 cells extracted from
Ref [30], subject to accelerated aging experiments under ambient
temperature conditions showing a two-phase degradation trend with the
dotted lines representing the possible region where the degradation
transition happens.

These four cells were repeatedly charged and discharged
till failure using the constant current/constant voltage proto-
col at a constant current rate of 1.35 A. The cut-off voltages
were 4V and 2.5V for each charge/discharge cycle, respec-
tively. The cells were placed in a thermal chamber to sustain
the ambient temperature at 25◦C. The capacity degradation
curves are shown in Fig. 1 above. We tested our algorithm
using these capacity degradation data sets.
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B. CAPACITY DEGRADATION MODEL FORMULATION
From Fig. 1, it is evident that the capacity degrades slowly
in the initial few cycles, until the degradation rate becomes
exponential beyond a time instant. The transition point from
a slow linear degradation phase to an exponential degrada-
tion phase is termed as the inflection point. A piecewise
degradation model is proposed here to analytically model the
two-phase degradation trend with respect to the inflection
point.

Ck =
{
(−ak )xk + bk , k ≤ τ
ck exp(−dk )xk , k > τ

(1)

where Ck represents the estimated capacity of the battery,
xk is the current state and k is the cycle index. Parameters
ak and bk represent the linear model parameters and ck
and dk are the exponential model parameters. The battery is
expected to follow a linear model till the inflection point, τ ,
after which it enters the exponential degradation phase.

III. PARTICLE FILTER FRAMEWORK
A. PARTICLE FILTER BASED PROGNOSIS
Particle filters are sequential Monte Carlo (SMC) meth-
ods predominantly used for solving state estimation prob-
lems. The particle filter algorithm is implemented based on
Bayesian inference and the key idea is to represent the poste-
rior probability density function (pdf) by a set of weighted
samples called particles. These particle weights basically
denote the discrete probability masses.

Particle filters works as a recursive Bayesian filter. The
posterior distribution is approximated by a set of weighted
particles which represent the state of the system. The poste-
rior distribution at the current time instant is assumed to be
the prior for the next time instant. When a new measurement
data is available for prediction, the weights of the particles
are updated according to a likelihood function to account for
the new data point. These weights are resampled to improve
the diversity among the particles and in turn the posterior
distribution for the current time instant is deduced as shown in
the schematic in Fig. 2. In a standard particle filter algorithm,
the system state dynamics can be represented by a state-space
model with the help of the following state equations.

xk = f (xk−1)+ υk (2)

zk = h(xk )+ ωk (3)

where xk denotes the state of the system and zk denotes
the output measurement data. f(.) denotes the state tran-
sition function which incorporates the incremental capac-
ity degradation model (physics embedded) and h(.) denotes
the measurement function. υk and ωk represent the process
and measurement noise, respectively. The particle filtering
approach can be summarized in the following steps.

1) INITIALIZATION
At the k = 1 step, n samples of the state space model
parameter values are drawn from the initial/prior distribution

FIGURE 2. Schematic diagram of the standard particle filter framework
showing the resampling of particles and the real-time update of state
values with new data based on Bayesian inference.

where n represents the number of particles. In this work, n is
assumed to be 1000.

2) STATE PREDICTION
Assume that the state xk needs to be estimated based on the
observations, z0:k = {zj, j = 0, . . . , k}, and the variables
of the states follow a first order Markov process such that
p(xk |x0:k−1) = p(xk |xk−1). Given the posterior distribution
at the (k-1)th time instant, the prior distribution for the cur-
rent time instant can be determined using the Chapman-
Kolmogorov equation:

p(xk |z0:k−1) =
∫
p(xk |xk−1)p(xk−1|z0:k−1)dxk−1 (4)

3) UPDATING
When a new measurement data, zk , at time k is available for
prediction, the prior distribution in Eqn. (4) is modified to
obtain the posterior distribution of xk through the following
equations:

p(xk |z0:k ) =
p(zk |xk )p(xk |z0:k )
p(zk |z0:k−1)

(5)

p(zk |z0:k−1) =
∫
p(zk |xk )p(xk |z0:k−1)dxk (6)

In practical applications, solving multidimensional integrals
required in Eqns. (4) and (6) are difficult. Therefore, particle
filter algorithm uses a set of weighted particles to represent
the posterior distribution. The particles and their associated
weights are represented as {wik}

Ns
i=1 where Ns is the total

number of random particles and the posterior distribution can
thus be approximated as

p(xk |z1:k ) ≈
∑Ns

i=1
w̃ikδ(xk − x

i
k ) (7)

where δ is the Dirac delta function and w̃ik is the normalized
weight of the particles, i.e.,

w̃ik =
wik∑Ns
i=1 w

i
k

(8)
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The weights of the particles are recursively updated to esti-
mate the variables of the state.

B. RUL PREDICTION BASED ON THE PROPOSED MODEL
The incremental capacity degradation according to the pro-
posed piecewise model (Eqn. (1)) can now be rewritten as:

xk =
{
(−ak1t)xk−1 + bk , k ≤ τ
ck exp(−dk1t)xk−1, k > τ

(9)

where xk and xk−1 are the estimated battery capacity at the
current and previous time instants, respectively. The remain-
ing useful life of the battery at the current cycle k can be
estimated by:

RULk = EOL − k (10)

where EOL refers to the predicted end of life of the battery.

IV. RESULTS AND DISCUSSION
A. RUL ESTIMATION WITH ONE EXPONENTIAL TERM
MODEL
The most commonly used lithium-ion battery degrada-
tion models are the polynomial model and the single-term
exponential model. In this section, a single-term expo-
nential model is first used to predict the RUL of the
NMC cells. An online prognostic investigation is performed
wherein 400 cycles of data are assumed to be available for
prediction. The curve fitting tool is used to estimate the
model parameters from the available measurement data. The
incremental degradation model based on an exponential trend
can be represented as follows:

xk = ck exp(−dk1t)xk−1 (11)

For every new data point available for prediction, the particle
filter algorithm is used to estimate the model parameters.
Number of particles is chosen to be 1000 and the mean value
of the predictions at each time instant is considered as the
estimated battery capacity. The degradation prediction traces
for the NMC battery labeled ‘‘Cell-2’’ are shown in Fig. 3.
The model can capture the initial linear phase of degradation
with good accuracy whereas during the later exponential
degradation phase, the predictions are completely diverging
away from the true value. It is evident that the prediction
traces for the single-term exponential model are almost linear
throughout and it is unable to capture the two-phase concave
degradation trend. Also, the model fails to capture the inflec-
tion point and hence is unable to represent the non-linearity
introduced by the change in battery material physics.

B. PROPOSED ONLINE PROGNOSIS FRAMEWORK
Based on the prediction results of the single-term exponential
model, it is clear that a new prognostic framework is certainly
needed to capture the inflection point and in turn switch the
degradation model as per Eqn. (9). In our proposed frame-
work, the percentage prediction error between the estimated
battery capacity and true value is considered as the deciding
factor for determining the inflection point.

FIGURE 3. The prediction curves for a single term exponential model with
prediction starting point at 400 Cycles. The grey, orange and cyan traces
represent the particle trajectories at 600, 900 and 1100 cycles
respectively for 1000 particles.

The proposed framework is illustrated in detail through a
flowchart in Fig. 4. The prognostic framework consists of
two stages: parameter initialization and prognosis. We have
assumed that the battery’s aging follows a linear trend initially
in the slow degradation phase followed by an exponential
trend. In the initial stage, available measurement data is fitted
into a linear model and the fitting parameters are fed into the
particle filter algorithm as initial parameters.

Battery capacity for the (k+1)th cycle is estimated based
on Eqn. (9). The percentage error between true value and
estimated battery capacity at the (k+1)th time instant (equiv-
alent to cycles) is evaluated. The time instant at which the
estimated capacity starts to diverge away from the true value
i.e. the time instant at which error value increases by more
than 3% is defined to be the inflection point. The capacity
degradation model switches based on the inflection point and
a step function is used to represent it as shown in Fig. 5. The
error threshold is set to be 3% based on prediction results
of the single-term exponential model. At this stage, it can
be inferred that the battery has started to deteriorate rapidly.
Hence, predictions beyond the inflection point are done based
on the exponential model. In order to capture the non-linearity
in the concave degradation pattern, the initial parameter guess
values for the model parameters ck and dk are obtained by
fitting the measurement data till the current time instant into
an exponential model. The curve fitting values are in turn used
in the particle filter algorithm. However, it is necessary to
choose optimum parameter limits so that range of parameters
is not too narrow or too wide as this would cause a failure
to converge to true value. Thus, a scalar multiplier ‘m’ is
introduced for this purpose such that:

Upperbound = m ∗ Lowerbound (12)

The optimum value for the scalar multiplier ‘m’ is set as 10 in
this work based on trial and error. The values much lower or
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FIGURE 4. The proposed prognostic framework to determine the inflection point.

FIGURE 5. The step function describing the point of inflection (abrupt
change of degradation mechanism in our state space model) based on
the error threshold value.

higher than 10 fail to capture the degradation pattern and as
a result, the prediction results are either much lower than the
true value or highly noisy, respectively. It is logical to expect
an optimum value of m to exist, as very narrow or very wide
range of parameter values can compromise the prediction
accuracy in any Bayesian analysis.

C. RUL ESTIMATION WITH THE PROPOSED PIECEWISE
MODEL
Prognosis based on the proposed framework is carried out
on the NMC battery data shown in Fig. 1 and the prediction
results are reported in this section. Initial distribution of the
model parameters was obtained from the curve fitting results

of the first 400 cycles of measurement data available for
prediction, as already mentioned earlier. The black datapoints
in Fig. 6a depict the actual battery data and the blue data-
points denote the mean values of the estimated capacity at
every (k+1)th time instant. Here, the number of particles was
arbitrarily chosen to be 1000.

The prediction results till 870 cycles (considering the linear
degradationmodel) are in good agreement with the true value.
Moreover, the width of the predicted confidence interval is
small denoting good prediction accuracy. The confidence
interval and particle trajectories for the prediction results at
600 cycles is depicted by the white and gray lines in Fig. 6a
respectively. The prediction error reaches 4.2 % at the 880th

cycle and hence the inflection point is estimated to occur
at the 870th cycle. Now, the step function in the proposed
framework switches the capacity degradation model to an
exponential function. Even though prediction error is slightly
higher in the exponential region compared to the linear
region, the model manages to capture the degradation trend.
The wider confidence intervals at 900 and 1100 cycles shown
by the orange and cyan lines in Fig. 6amay be attributed to the
uncertainty introduced by the scalar multiplier for estimating
the model parameters.

To validate the robustness of the proposed framework,
a 50dB additiveGaussianwhite noise is added to themeasure-
ment data and also to every new measurement data as well.
The error threshold and the scalar multiplier are retained to be
3% and m = 10, respectively. The prediction results for the
noisy signal are shown in Fig. 6b. The inflection point was
estimated to be at 860 cycles which is in good agreement to
that of the clean signal. It is evident from the prediction results
that the impact of noise in measurement data is minimal in
the proposed prognostic framework and prediction accuracy
continues to be good.
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FIGURE 6. The prediction curves for the proposed piecewise model with prediction starting point at 400 Cycles for (a) clean data, (b) 50dB noisy
data. The grey, orange and cyan traces represent the particle trajectories at 600, 900 and 1100 cycles respectively for 1000 particles.

D. PERFORMANCE METRICES
The computational load is a critical factor for online prog-
nosis applications. Since particle filter algorithms are com-
putationally intensive, it is vital to take the computational
time as an important prognostic metric. The computation time
depends on the number of particles chosen for achieving good
prediction accuracy. Thus, the choice of number of particles
is largely a comprise between accuracy and time.

The computational time for all three models while using
1000 and 5000 particles are listed in Table 1. The prediction
error is yet another prognostic metric used in this study.
It is evident from the error evolution plot in Fig. 7 that the
prediction error (computed using the absolute error (AE)met-
ric) for the single term exponential model starts to increase
drastically beyond the inflection point. Also, the prediction
error for the piecewise model is within 10% barring a few
outliers. As always, the desired accuracy of RUL prediction
involves a compromise with the computational load and this
compromise can vary depending on the context and time
scale of usage of the framework in a real-time prognostic
application.

TABLE 1. Variation of computation time with number of particles.

Additionally, we have compared the performance of our
proposed framework to that of the results published by

FIGURE 7. Comparison of single-term exponential model with the
proposed piecewise model for a clean and noisy signal using prediction
error (based on the AE values) as performance metric.

Yang et al. in Ref. [33], below in Table 2. The authors in
Ref. [33] had used a two-term logarithmic model to cap-
ture the two-phase degradation of the NMC batteries and
compared the results with one-term exponential model (OE),
quadratic polynomial model (QP) and two-term exponential
model (TE). The results for the RMSE values for different
degradation models along with our proposed methodology
for all the three cells are listed in Table 2. The results clearly
indicate that our proposed method outperforms the OE and
QPmodels. However, the RMSE values obtained from the TE
model are very close to that of our proposed method. How-
ever, it is worth noting that the TE model could not capture
the inflection point position precisely despite the fact that the
degradation model parameters were deduced specifically for
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TABLE 2. Comparison of RMSE values for selected battery degradation
models.

each cell under consideration. Hence, the proposed method
outperforms other mainstream models in literature for RUL
prediction of batteries with two-phase degradation trends and
also successfully estimates the inflection point even for grad-
ual transitions between different degradation mechanisms.

V. CONCLUSION
NMC batteries exhibit a two-phase concave degradation
pattern due to complexity in the battery material physics
compared to conventional lithium-ion batteries. We have pro-
posed a piecewise model to capture the two-phase degrada-
tion trend incorporating a linear and an exponential model,
thereby enabling improved battery capacity degradation
tracing and remaining useful life prediction. The proposed
framework may be suitable for online prognosis of slowly
degrading systems and has the ability to explicitly and auto-
matically estimate the time instant at which the inflection
from one mechanism to the other occurs.

The prediction results are compared with a single-term
exponential model extensively used in literature for battery
prognosis. The results clearly indicate that the proposed
model outperforms the single-term model. The robustness
of the proposed framework was validated by adding 50dB
additive Gaussian white noise to the measurement data. Also,
the impact of the number of particles on the computational
load of the algorithm was also explored. Higher number of
particles largely increases the computational load without any
decrease in the prediction error. Hence, selection of 1000 par-
ticles were found to be ideal for the proposed framework. The
percentage prediction error (using the AE values) was another
performance metric used in this work. The error value rapidly
increases after the inflection point when the battery starts to
degrade exponentially for the single-term model. However,
the proposed piecewise model considerably reduces the error
in the second phase of degradation. We intend to extend our
proposed model in future to improve the prediction accuracy
wherein we estimate the region of inflection by replacing the
step function with a sigmoid function as the transition region
in general is not digital; it should be a fuzzy region rather
than a single point in time and that the change in degradation
physics happens gradually in reality. Also, we intend to test
the applicability of our proposed method for case studies

relating to crack propagation in composite materials as well
where such two-phase mechanisms are prevalent.
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