
Received July 15, 2020, accepted August 25, 2020, date of publication August 28, 2020, date of current version September 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019980

Simulation-Extractable zk-SNARK
With a Single Verification
JIHYE KIM1, (Member, IEEE), JIWON LEE 2, (Member, IEEE),
AND HYUNOK OH 2, (Member, IEEE)
1Department of Electrical Engineering, Kookmin University, Seoul 02707, South Korea
2Department of Information Systems, Hanyang University, Seoul 04763, South Korea

Corresponding author: Hyunok Oh (hoh@hanyang.ac.kr)

This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant funded by
the Ministry of Science and ICT Korea under Grant 2017-0-00661 and Grant 2016-6-00599.

ABSTRACT Among the zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK),
the simulation-extractable zk-SNARK (SE-SNARK) introduces a security notion of non-malleability. The
existing pairing-based zk-SNARKs designed from linear encoding are known to be vulnerable to algebraic
manipulation of the proof. The latest SE-SNARKs check the proof consistency by increasing the proof
size and the verification cost. In particular, the number of pairings increases almost doubles due to further
verification. In this article, we propose two novel SE-SNARK constructions with a single verification. The
consistency check is subsumed in a single verification through employing a hash function. The proof size
and verification time of the proposed SE-SNARK schemes are minimal in that it is the same as the state-
of-the-art zk-SNARK without non-malleability. The proof in our SE-SNARK constructions comprises only
three group elements (type III) in the QAP-based scheme and two group elements (type I) in the SAP-based
scheme. The verification time in both requires only 3 pairings. The soundness of the proposed schemes
is proven under the hash-algebraic knowledge (HAK) assumption and the (linear) collision-resistant hash
assumption.

INDEX TERMS Pairing-based zk-SNARK, simulation-extractability, quadratic arithmetic program, square
arithmetic program.

I. INTRODUCTION
The zero-knowledge succinct non-interactive argument of
knowledge (zk-SNARK) is an effective zero-knowledge
proof system to prove a statement without revealing the wit-
ness, where the proof size and the verification cost are suc-
cinct. In particular, the pairing-based zk-SNARKs [1], [2] are
well-known for their constant-sized proof and constant-time
verification, which make them a suitable choice for vari-
ous applications including blockchain [3], [4]. Especially,
the Groth’s protocol [1] is accepted as a current standard for
pairing-based SNARKs, which has a minimal proof size of
3 group elements and requires 3 pairings in verification.

One main concern in the pairing-based zk-SNARKs is that
the proofs are vulnerable to the algebraic manipulation; since
the proof elements possess an algebraic structure of linear
encoding, it is possible to create a new proof from arbitrary

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

proofs without knowing the witness. For instance, in Groth’s
protocol [1] where the simplified version of the proof con-
sists of three elements (Ga,Hb,Gc) satisfying a · b = c,
an adversary can forge a new proof by using a random r
while preserving the algebraic relation as (Gar ,Hbr−1 ,Gc) or
(Ga,Hb+r ,Gc+ar).

In order to prevent the malleability, Groth and Maller [5]
introduced a simulation-extractability, a security notion
for non-malleability of proofs. They defined a simulation-
extractable zk-SNARK (SE-SNARK), and proposed a con-
struction based on the Groth’s zk-SNARK [1] to maintain the
proof size as 3 group elements. However, their construction
relies on the representation of square arithmetic program
(SAP), instead of quadratic arithmetic program (QAP) as
in common zk-SNARKs; compared to the QAP, the SAP
roughly doubles the circuit size which leads to doubling
the common reference string (CRS) size and proving time.
In short, Groth andMaller construction [5] sacrifices the CRS
size and proving time to gain simulation-extractability.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 156569

https://orcid.org/0000-0002-3387-3372
https://orcid.org/0000-0002-9044-7441
https://orcid.org/0000-0003-0586-090X

J. Kim et al.: SE-SNARK With a Single Verification

To avoid this inefficiency, Bowe and Gabizon [6] restored
the QAP representation in the SE-SNARK by applying
an elliptic curve hashing [7] to the Groth’s protocol [1].
However, they had to pay the price of proof size as 5 elements;
2 additional elements are required to check the consistency
of hashed elements. The proof size can be a crucial cost
for size-sensitive blockchains such as Zcash [3] where each
transaction requires a proof.

Most recently, Lipmaa [8] improved the result further,
by proposing an SE-SNARK for QAP which has a proof
size of 4 elements. His construction adds a special tag and
a trapdoor for the simulation-extractability, and compresses
them into a single additional argument which cannot be alge-
braically manipulated without the knowledge of witnesses.
The result of 4 elements is close enough to the 3 elements
in Groth’s protocol [1], but it is still paying the price of one
additional proof element.

Another crucial price is that all the SE-SNARKs, including
the schemes above [5], [6], [8], require an additional check
in the verification. In the linear nature of pairing-based
zk-SNARKs, the original check for the relation (i.e. a · b = c
in QAP or a2 = c in SAP) is unable to detect algebraic
modifications. It is formally proved in [5] that SNARKs
from linear encoding require at least 2 verifications
to be simulation-extractable, which is reduced to the
hard-decisional NP problem. Hence, the SE-SNARK veri-
fications suffer from additional pairings; [5], [6], and [8] all
require 2 additional pairings along with the original relation
check which consists of 3 pairings. It almost doubles the cost
of the verification, which is not desirable for applications
where verification occurs frequently in the resource-limited
clients.

In this article, we propose SE-SNARKs with a single
verification, by applying the hash function to overcome the
boundaries of existing SE-SNARKs. The idea is from the fact
that blending the hash function into the encodings can provide
a unique connection between proof elements; it eliminates the
requirement for additional check for algebraic modifications.
In [6] which also applies a hash function, an additional verifi-
cation is still required since the hash output is an independent
element which should be checked afterwards. On the other
hand, if we combine the hash output into the encoding itself
(i.e. secret exponents), the additional check is unnecessary
since proof elements are already determined as a unique
tuple. Specifically, in the simplified proof (Ga,Hb,Gc) of
Groth’s protocol [1], let c include the hash values of each
input Ga and Hb; then Gc is determined as a unique element
tightly connected to Ga and Hb. In this case, when Ga or
Hb is (algebraically) modified, c should be also modified
accordingly to satisfy the original relation.1,2

1Since the hash is applied before the encoding, we can adopt any standard
hash (e.g. SHA-3) unlike [6] which requires a hash function to map an input
into an elliptic curve.

2Notice that the boundary of 2 verifications from [5] is not applicable to
our construction; the hash output in c prevents the construction from being
included in SNARKs from linear encodings.

We construct two versions of SE-SNARK: a QAP-based
construction and an SAP-based construction, both with a
single verification which reduces the verification time from
5 pairings to 3 pairings compared to the existing SE-
SNARKs [5], [6], [8]. Our QAP-based construction achieves
a proof size of 3 elements, which does not require any
additional element as in [6], [8] or sacrifice CRS size
as in [5]. Our SAP-based construction achieves a proof
size of 2 elements, which surpasses the proof boundary
of 3 elements in [5]. Both of our constructions accomplish
simulation-extractability with aminimal proof size and verifi-
cation time among the existing SE-SNARKs [5], [6], [8]. The
security of our SE-SNARKs is based on the hash-algebraic
knowledge (HAK) assumption from [8] and the existence of
the (linear) collision-resistant hash function; the SAP-based
scheme requires a collision-resistant function (CR), while
the QAP-based scheme requires a linear collision-resistant
hash function (LCR), a variant of the collision-resistant hash
function. Both CR and LCR can be implemented from the
standard hash function such as SHA2. In the security view-
point, the existence of LCR is at least weaker than the discrete
log assumption in the random oracle model. The complete
version of the constructions is more complicated than the
intuition and described in section V.

Table 1 compares the size and computation performance
of SNARKs, including Groth’s zk-SNARK [1] (without
simulation-extractability) and various SE-SNARKs. Our
QAP-based SE-SNARK achieves 3 proof elements (type III);
it does not sacrifice any price for simulation-extractability
from Groth’s protocol [1]. Also, our SAP-based SE-SNARK
achieves 2 proof elements (type I), which is more efficient
(one less proof element and two less pairings in verification)
than Groth and Maller’s SAP-based SE-SNARK [5].

The rest of this article proceeds as follows. Section II
organizes related works on zk-SNARKs. Section III intro-
duces some preliminary backgrounds, and section IV intro-
duces security assumptions. In section V, we propose a
QAP-based SE-SNARK construction. In section VI, we pro-
pose an SAP-based SE-SNARK construction. In section VII,
we conclude.

II. RELATED WORK
In the history of proof systems and verifiable computa-
tions, there are various NIZK arguments with different
types which do not leverage QSP (Quadratic Span Program)
or QAP (Quadratic Arithmetic Program) circuits [9]–[15].
A well-known branch comes from the sum-check
protocol [9], which gains a sublinear proof from the
Fiat-Shamir transformation [16]. Nonetheless, they do not
support the constant time verification; the verification time
is sublinear to the size of the circuits.

Since Gennaro et al. [17] introduced the Quadratic Span
Program(QSP) and Quadratic Arithmetic Program(QAP),
zk-SNARK gained a constant proof size and verification.
In 2013, Parno et al. [2] proposed a zk-SNARK scheme called
Pinocchio and provided a first practical implementation of

156570 VOLUME 8, 2020

J. Kim et al.: SE-SNARK With a Single Verification

TABLE 1. The comparison of SE-SNARKs, based on arithmetic circuit satisfiability with l element instances, m wires, and n multiplication gates. Since SAP
uses squaring gates, 2n squaring gates and 2m wires are considered instead of n multiplication gates and m wires; Units: G stands for group elements, E
stands for exponentiations and P stands for pairings.

zk-SNARK. After Pinocchio, many works added and
enhanced some functionalities, such as multiple-function
control, additional anonymity for the I/O, or proof scalabil-
ity [18]–[23].

Later, Groth [1] proposed a more efficient zk-SNARK
scheme. Compared with Pinocchio [2], the proof size was
reduced from 8 group elements to 3 group elements. Also
the number of pairing operations required to verify the proof
was reduced from 11 to 3. Recently these SNARK protocols
are implemented as an open source [24], [25] to be used
in real applications. By exploiting the short proof sizes and
the short verification times, zk-SNARK can be used as a
key component in various cryptographic applications such as
anonymous cryptocurrencies [3], [26], [27].

Zerocash [3], one of the anonymous cryptocurrencies
based on blockchain technology, utilized a zk-SNARK to
hide transaction information and to provide an efficient veri-
fication process. However, since zk-SNARKs [1], [2] do not
provide simulation-extractability, zerocash has to add extra
cryptographic primitives such as one-time signatures to avoid
malleability attacks.

The SE-SNARK scheme [5] defines and provides the
simulation-extractable SNARK (SE-SNARK), with a similar
notion to the Signatures of knowledge [28]. While maintain-
ing an efficient proof size of [1], it can prevent the malleabil-
ity attacks due to the simulation-extractability.

Recently, Bowe and Gabizon [6] put an effort to
make Groth’s scheme [1] simulation-extractable by utilizing
random oracle model, with additional hash in proofs
and verification. However, the proof size and verification
equations in their scheme is 5 group elements and 2 equa-
tions which is inefficient compared to [5]. And the secu-
rity is proven in random oracle model. Lipmaa proposes a
simulation-extractable SNARK scheme without using ran-
dom oracle model [8]. The security of the proposed scheme
is proven under a new security assumption called subver-
sion algebraic knowledge (SAK) assumption in which if an
adversary A outputs a group element then A should know
each exponent of known group elements or randomly gen-
erated group elements to build the group element. In the
proposed scheme, the proof size is reduced to 4 group ele-
ments and 2 verification equations are required while QAP is
supported.

III. PRELIMINARIES
A. NOTATION
We denote the security parameter with λ ∈ N. For functions
f , g : N → [0; 1] we write f (λ) ≈ g(λ) if |f (λ) − g(λ)| =
λ−ω(1). A function f is negligible if f (λ) ≈ 0. We implicitly
assume that the security parameter is available to all partic-

ipants and the adversary. If S is a set, x
$
← S denotes the

process of selecting x uniformly at random in S. If A is a
probabilistic algorithm, x ← A(·) denotes the process of
running A on some proper input and returning output x.

We define that transA includes all of A’s inputs and
outputs, including random coins for an algorithm A. We use
games in security definitions and proofs. A game G has a
main procedure whose output is the output of the game. The
notation Pr[G] denotes the probability that the output is 1.

B. RELATIONS
Given a security parameter 1λ, a relation generatorR returns
a polynomial time decidable relation R ← R(1λ). For
(φ,w) ∈ R we say that w is a witness to the instance φ being
in the relation.We denote withRλ the set of possible relations
that R(1λ) might output.

C. ZERO-KNOWLEDGE SUCCINCT NON-INTERACTIVE
ARGUMENTS OF KNOWLEDGE
Definition 1: A zero-knowledge succinct non-interactive

arguments of knowledge (zk-SNARK) for R is a set of four
algorithms Arg = (Setup,Prove,Vfy,SimProve) working
as follows:

• (crs, τ) ← Setup(R): the setup algorithm is a PPT
algorithm which receives a relation R ∈ Rλ as input and
outputs a common reference string crs and a simulation
trapdoor τ .

• π ← Prove(crs,φ,w): the prover algorithm is a PPT
algorithm which receives a common reference string crs
as input for a relation R and (φ,w) ∈ R and outputs a
proof π .

• 0/1← Vfy(crs,φ,π): the verifier algorithm is a deter-
ministic polynomial time algorithm which receives a
common reference string crs, an instance φ and a proof
π as input and outputs 0 (reject) or 1 (accept).

VOLUME 8, 2020 156571

J. Kim et al.: SE-SNARK With a Single Verification

• π ← SimProve(crs, τ ,φ): the simulator is a PPT
algorithmwhich receives a common reference string crs,
a simulation trapdoor τ and an instance φ as input and
outputs a proof π .

It satisfies completeness, knowledge soundness, zero-
knowledge, and succinctness as following:
Perfect Completeness: Perfect completeness states that a

prover with a witness can convince the verifier for a given true
instance. For all λ ∈ N, for all R ∈ Rλ and for all (φ,w) ∈
R: Pr[(crs, τ) ← Setup(R);π ← Prove(crs,φ,w) :
Vfy(crs,φ,π) = 1] = 1.
Computational Knowledge Soundness: Computational

knowledge soundness says that the prover must know a
witness and the witness can be efficiently extracted from
the prover by a knowledge extractor. Proof of knowledge
requires that there must exist an extract χA given the
same input of A outputs a valid witness for every adver-
sarial prover A generating an accepting proof. Formally,
we define AdvsoundArg,A,χA (λ) = Pr[GsoundArg,A,χA (λ)] where the
game GsoundArg,A,χA is defined as follows.

MAIN GsoundArg,A,χA (λ)

R← R(1λ)

(crs, τ)← Setup(R)
(φ, π)← A(crs)

ω← χA(transA)

assert (φ, ω) /∈ R

return Vfy(crs, φ, π)

An argument system Arg is computationally considered as
knowledge sound if there exists a PPT extractor χA for any
PPT adversary A, such that AdvsoundArg,A,χA (λ) ≈ 0.
Perfect Zero-Knowledge: Perfect zero-knowledge states

that the system does not reveal any information except the
truth of the instance. This is modelled by a simulator which
can generate simulated proofs using some trapdoor infor-
mation without knowing the witness. Formally, we define
AdvzkArg,A(λ) = 2 Pr[GzkArg,A(λ)] − 1 where the game GzkArg,A
is defined as follows:

MAIN GzkArg,A(λ)

R← R(1λ) Pbcrs,τ (φi,wi)

(crs, τ)← Setup(R) assert(φi,wi) ∈ R
b← {0, 1} πi← Prove(crs, φ,w) if b = 0
b′← APbcrs,τ (crs) πi← SimProve(crs, τ, φ) if b=1
return 1 if b = b′ return πi
return 0 otherwise

The argument system is perfectly zero-knowledge if for all
PPT adversaries A, AdvzkArg,A(λ) = 0.
Succinctness: Succinctness states that the argument gen-

erates the proof of which size is polynomial in the security
parameter, and of which the verifier’s computation time is
polynomial in the security parameter and in the instance size.

Definition 2: A simulation-extractable SNARK system
(SE-SNARK) for R is a zk-SNARK system (Setup, Prove,
Vfy, SimProve) with simulation-extractability as following:
Simulation-Extractability [5]: Simulation-extractability

states that for any adversary A that sees a simulated proof
for a false instance cannot modify the proof into another
proof for a false instance. Non-malleability of proofs pre-
vents cheating in the presence of simulated proofs. Formally,
we define Advproof−extArg,A,χA (λ) = Pr[Gproof−extArg,A,χA (λ)] where the

game Gproof−extArg,A,χA is defined as follows:

MAIN Gproof−extArg,A,χA (λ)

R← R(1λ);Q = ∅
(crs, τ)← Setup(R) SimProvecrs,τ (φi)
(φ, π)← ASimProvecrs,τ (crs) πi← SimProve(crs, τ, φi)
ω← χA(transA) Q = Q ∪ {(φi, πi)}
assert (φ, π) /∈ Q return πi
assert (φ, ω) /∈ R
return Vfy(crs, φ, π)

An argument is simulation-extractable if for any PPT
adversary A, there exists a PPT extractor χA such that
Advproof−extArg,A,χA (λ) ≈ 0.
We note that simulation-extractability implies knowledge

soundness, since simulation-extractability corresponds to
knowledge soundness where the adversary is allowed to use
the simulation oracle SimProve.
When knowledge soundness and simulation-extractability

are applied for a succinct argument, extractors are inherently
non-black-box. As in [5] we assume the relationship genera-
tor is benign,3 such that the relation (including the potential
auxiliary inputs) is distributed in such a way that the SNARK
can be simulation-extractable.

IV. BILINEAR GROUPS AND ASSUMPTIONS
A bilinear group generator BG receives a security parameter
as input and outputs a bilinear group (p,G1,G2,GT , e,G,H).
G1, G2, GT are groups of prime order p with generator
G ∈ G1, H ∈ G2, and a bilinear map e : G1 × G2 → GT is
a non-degenerative bilinear map (i.e. e(Ga,Hb) = e(G,H)ab

and e(G,H) generates GT).

A. POWER KNOWLEDGE OF EXPONENT ASSUMPTION
We define q-power knowledge of exponent assumption.

3The non-falsifiable knowledge of exponent assumption is a necessary
ingredient in building a SNARK with witness extraction. In Bitansky’s
analysis [29], [30], there are some counter examples and observations; aux-
iliary inputs may affect the extraction of the witness in extractable one-way
functions. However they also observe that the extractability still holds with
respect to common auxiliary input that is taken from specific distributions
that may be conjectured to be ‘‘benign’’, e.g. the uniform distribution.

156572 VOLUME 8, 2020

J. Kim et al.: SE-SNARK With a Single Verification

Definition 3 (q-PKE Assumption [31]): The q-power
knowledge of exponent assumption holds for G1, G2 if for
all A there exists a non-uniform PPT extractor χA such that

Pr

(p,G1,G2,GT , e,G,H)← BG(1λ); x $

← Zp;
σ ← (p,G1,G2,GT , e,G, {Gx

i
}
q
i=1,H , {H

xi
}
q
i=1);

(Ga,Hb)← A(σ); (a0, . . . , aq)← χA(transA) :

a = b ∧ b 6=
∑q

i=0
aix i

is negl(λ).

B. HASH-ALGEBRAIC KNOWLEDGE ASSUMPTION
Lipmaa proposes a new knowledge assumption called
hash-algebraic knowledge (HAK) assumption [8], which
simply gives an adversary an additional ability to hash
any element from the algebraic group model. In algebraic
knowledge assumption, one assumes that each PPT algo-
rithm is algebraic in the following sense. Assume that there
are unknown exponents. Let xi be a polynomial using the
unknown exponents. Let Gx be a vector of Gxi . Similarly,
let Gy be a vector of Gyi where yi is a polynomial using
the unknown exponents. If the adversary A’s input includes
Gx and no other elements from the group G1 and A outputs
group elements Gy, then A knows matrices N, such that
Gy
= GNx. Formally, a PPT algorithm A is algebraic (in

G1) if there exists an efficient extractor χA, such that for
any PPT sampleable distribution D, AdvakG1,D,A(λ) ≈ 0,

where AdvakG1,D,A(λ) := Pr[Gx $
← D;Gy

← A(Gx);
N ← χA(transA) : y 6= Nx]. A group G1 is algebraic
if every PPT algorithm A that obtains inputs from G1 and
outputs elements in G1 is algebraic.
Furthermore, Lipmaa pointed out that the restriction that

adversaries are algebraic is not valid in situations where the
adversary can create new random group elements by say
using elliptic curve hashing [7]. So he models this capa-
bility by allowing the adversary to create additional group
elementsGq for which she does not know discrete logarithms
of exponent qi or vector q. It is required that Gq (but not
necessarily q) can be extracted from the adversary, such that

y = N ·
(
x
q

)
. In addition, Gq must be sampled from a public

distribution D′.
A PPT algorithm A is called as hash-algebraic (in G1) if

there exists a PPT extractor χA, s.t. for any PPT sampleable
distribution D and any distribution D′ with min-entropy
ω(log λ), AdvhakG1,D,D′,A(λ) :=

Pr

 Gx $
← D;Gy

← A(Gx);

(N,Gq)← χA(transA) : y 6= N
(
x
q

)
∧ (Gq

∼ D′)

is negl(λ).
Finally, we define the following D − HAK assumption

in G1:
Definition 4 (D − HAK Assumption in G1 [8]): For each

PPT A that obtains inputs, distributed according to the

distribution D, there exists an extractor that outputs Gq and
N such that Gq

∼ D′ for some distribution D′ of high
min-entropy. More precisely, AdvhakGι,D,D′,A(λ) ≈ 0 for each
PPT adversary A and each distribution D′ of min-entropy
ω(log λ).

C. LINEAR COLLISION-RESISTANT HASH FUNCTION
We define collision-resistance and linear collision-resistance
of a hash function.
Definition 5 (Collision-Resistance): H : X → Y is a

collision-resistant hash function if for all PPT adversary A,

AdvCRH (A)

:= Pr[(x, x ′)← A(X ,H) : (x 6= x ′) ∧ (H(x) = H(x ′))]

is negl(λ).
Furthermore, it is difficult to find any collision for vari-

ous equations in many collision-resistant hash functions like
SHA2. Specifically for our purpose, we define a variant of
a collision-resistant hash function called a linear collision-
resistant hash function where it is hard to find non-trivial
x, x ′ ∈ Zp for given G1,G2 ∈ G where G is a cyclic group
of prime order p such that H(Gx1G

x ′
2) = x + x ′H(G2) for

H : G→ Zp. Formally, it is defined as follows:
Definition 6 (Linear Collision-Resistance): H : G → Zp

is a linear collision-resistant hash function if for all PPT
adversary A,

AdvLCRH (A)

:= Pr

[
(G1,G2)

$
← G, (x, x ′)← A(G,H,G1,G2) :

(x 6= 0) ∧ (x ′ 6= 1)) ∧ (H(Gx1G
x ′
2)=x+x

′H(G2))

]
is negl(λ).
Any cryptographical hash functions such as SHA2, and

Ajtai hash [32] which are used as a collision-resistant hash
function can be also adopted as a linear collision-resistant
hash function by treating input and output elements as strings
if the output string is remapped in Zp.
It is difficult to analyze the exact security level of the

linear collision-resistance. At least, we prove that the linear
collision-resistance is as hard as the discrete log problem in
the idealized hash function. In other words, given a random
oracle H, if we can find linear collision then we can break a
discrete log problem.
Lemma 1: For given (H,G1,G2) where H is a ran-

dom oracle, if there is a PPT A such that AdvLCRH (A) is
non-negligible then there is a PPT algorithm B to compute
DlogG1 (G2) with non-negligible probability.

Proof: Assume that A finds (x, x ′) such that
H(Gx1G

x ′
2) = x + x ′H(G2). Let v = Gx1G

x ′
2 and w = H(v).

By rewinding the hash query for v, we provide a different
hash value of w′ for v to A. Then A outputs a valid (y, y′)
where w′ = H′(v) = H′(Gy1G

y′

2) = y + y′H(G2) and

v = Gx1G
x ′
2 = Gy1G

y′

2 . Since
Gx1
Gy1
=

Gy
′

2

Gx
′

2
, G

x−y
y′−x′

1 = G2. Since

we know x, x ′, y, y′, we can compute DlogG1 (G2) which
is x−y

y′−x ′ .

VOLUME 8, 2020 156573

J. Kim et al.: SE-SNARK With a Single Verification

V. QAP-BASED SE-SNARK SCHEME
In this section, we propose our first SE-SNARK construction
based on the quadratic arithmetic program (QAP) represen-
tation, which achieves a proof size of 3 elements and a
single verification. Before presenting the formal construc-
tion, we briefly explain the main idea behind the scheme to
achieve simulation-extractability without an additional check
in section V-A. Then we introduce the formal definition of
QAP in section V-B, and present the formal construction in
section V-C.

A. MAIN IDEA
As an example of how standard zk-SNARK can be modified,
suppose for an instance φ that (A,B,C) (= (Ga,Hb,Gc)) are
three group elements in a proof that satisfies the verification
equations of Groth’s zk-SNARK [1]. Then

e(A,B) = e(Gα,Hβ)e(G
f (φ)
γ ,Hγ)e(C,H δ) (1)

for a known polynomial f in φ and some secret α, β, γ, δ.
There are two methods to generically randomize a proof

A,B,C that satisfies (1). An adversary can set either

A′ = Ar ; B′ = B
1
r ; C ′ = C (2)

or

A′ = A; B′ = BH rδ
; C ′ = ArC . (3)

In the proposed approach, we devise a new way to neu-
tralize the two attacks using the hash of A and B in C .
The verification equation is required to detect the changes of
A and B. We insert multiplications of a and hash of A, and b
and hash of B in c. Hence, an adversary should know a and b
to change A and B in the revised proof.

The left pairing in (1) changes to e(AGδH(A),BHH(B)),
and C is revised to satisfy (1) as following:

C ′ = C · G
aH(B)
δ
+bH(A)+H(A)H(B)

where A = Ga, B = Hb, and H is a linear collision-resistant
hash function like SHA.

According to the revised C ′, the verification is revised by
adding proper additional terms to A and B as follows:

e(A · GδH(A),B · HH(B)) = e(Gα,Hβ)e(G
f (φ)
γ ,Hγ)e(C ′,H δ)

If A,B change to A′,B′ then C ′ should be revised to C ′ ·

G
a(H(B′)−H(B))

δ
+b(H(A′)−H(A))+H(A′)H(B′)−H(A)H(B). However,

since only Ga and Hb are available in the original proof,
and G

a
δ and Gb are only computable if a witness is known,

an adversary cannot forge the proof.

B. QUADRATIC ARITHMETIC PROGRAMS
In our SE-SNARK, we will formally adopt the quadratic
arithmetic programs (QAP) [1], [17] in a relation R, which
is as follows:

R = (p,G1,G2,GT , e, l, {ui(X), vi(X),wi(X)}mi=0, t(X))

The bilinear group (p,G1,G2,GT , e) defines the finite
field Zp, 1 ≤ l ≤ m, and the polynomials ui(X), vi(X),wi(X)
represent each linearly independent polynomial set in the
QAP with the definition below:

m∑
i=0

siui(X) ·
m∑
i=0

sivi(X) ≡
m∑
i=0

siwi(X) + h(X)t(X)

where ui(X), vi(X),wi(X) have a strictly lower degree than n,
which is the degree of t(X). By defining s0 as 1, the following
definition describes the relation R.

R =

(φ,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ = (s1, · · · , sl) ∈ Zlp
w = (sl+1, · · · , sm) ∈ Zm−lp

∃h(X) ∈ Zp[X], deg(h) ≤ n− 2 :
m∑
i=0

siui(X) ·
m∑
i=0

sivi(X)

≡

m∑
i=0

siwi(X) + h(X)t(X)

We say R is a relation generator for the QAP, given the

relation R with field size larger than 2λ−1.

C. CONSTRUCTION
(crs, τ)← Setup(R): Select generators G $

← G1,H
$
← G2,

hash function H : {0, 1}∗ → Zp and parameters α, β, γ,

δ, x
$
← Zp, such that t(x) 6= 0, and set

τ = (G,H , α, β, γ, δ, x)

crs =

R,H,G,Gα,Gβ ,Gδ,Gαδ,H ,Hβ ,H δ

{Gγ x
i
,Hγ xi ,Gγ

2 t(x)xi ,Gγ δx
i
}
n−1
i=0 ,

{Gγwi(x)+βui(x)+αvi(x)}li=0,

{Gγ
2 wi(x)+βγ ui(x)+αγ vi(x)}mi=l+1

π ← Prove(crs, φ,w): Set s0 = 1 and parse φ as
(s1, . . . , sl) ∈ Zlp and w as (sl+1, . . . , sm) ∈ Zm−lp . Use the

witness to compute h(X) from the QAP, choose r, s
$
← Zp

and compute π = (A,B,C) = (Ga,Hb,Gc) such that

a = α + γ
m∑
i=0

siui(x)+ r

b = β + γ
m∑
i=0

sivi(x)+ s

c =
m∑

i=l+1

si(γ 2 wi(x)+ βγ ui(x)+ αγ vi(x))

+ γ 2 t(x)h(x)+ sa+ rb− rs

+ δaH(B)+ bH(A)+ δH(A)H(B)

0/1← Vfy(crs, φ, π): Parse φ as (s1, . . . , sl) ∈ Zlp and π as
(A,B,C) ∈ G1 × G2 × G1. Set s0 = 1 and accept the proof

156574 VOLUME 8, 2020

J. Kim et al.: SE-SNARK With a Single Verification

if and only if the following equation is satisfied:

e(AGH(A),BH δH(B))

= e(Gα,Hβ)e(G
∑l

i=0 si(γwi(x)+βui(x)+αvi(x)),Hγ)e(C,H)

π ← SimProve(crs, τ, φ) : Choose µ, ν $
← Zp and

compute π = (A,B,C) such that

A = Gµ,

B = Hν,

C = Gµν−αβ+h2δµ+h1ν+h1h2δ−γ
∑l

i=0 si(γwi(x)+βui(x)+αvi(x))

(4)

where h1 = H(A) and h2 = H(B).

D. SECURITY PROOF
The QAP-based SE-SNARK protocol is a non-interactive
zero-knowledge argument of knowledge with perfect com-
pleteness and perfect zero-knowledge. It is simulation-
extractable (implying it also has knowledge soundness)
provided that the HAK (hash-algebraic knowledge) assump-
tion holds, and a linear collision-resistant hash exists.

Proof (PERFECT COMPLETENESS): We demonstrate that
the prover can compute the proof (A,B,C) as described
from the common reference string. Let h1 = H(A) and
h2 = H(B). The prover can compute the coefficients of

h(X) =
(
∑m

i=0 siui(X))(
∑m

i=0 sivi(X))− (
∑m

i=0 siwi(X))
t(X)

=

n−2∑
j=0

h̃jX j

Now, the proof elements can be computed as follows:

A = Gα
n−1∏
j=0

(Gγ x
j
)uj · Gr

B = Hβ
n−1∏
j=0

(Hγ xj)vj · H s

C =
m∏

i=l+1

Gsi(γ
2 wi(x)+βγ ui(x)+αγ vi(x)) · AsA′h2B′(r+h1)

·G−rs · Gδh1 h2 ·
n−1∏
j=0

(Gγ
2 t(x)xj)h̃j

where A′ = Aδ = Gαδ
∏n−1

j=0 (G
δγ xj)uj · Gδr and B′ =

Gβ
∏n−1

j=0 (G
γ xj)vj · Gs.

This computation provides us the proof elements A = Ga,
B = Hb and C = Gc specified in the construction, where
a, b, c is

a = α + γ
m∑
i=0

siui(x)+ r

b = β + γ
m∑
i=0

sivi(x)+ s

c =
m∑

i=l+1

si(γ 2 wi(x)+ βγ ui(x)+ αγ vi(x))+ γ 2 t(x)h(x)

+ sa + rb−rs+ δah2 + bh1 + δh1 h2

Here we show that the verification equation holds.

e(AGh1 ,BH δh2)

= e(Gα,Hβ)e(G
∑l

i=0 si(γwi(x)+βui(x)+αvi(x)),Hγ)e(C,H)

Taking discrete logarithms, checking the verification
equation is equivalent to showing that

(a+ h1) · (b+ δh2)

= (α + γ
m∑
i=0

siui(x)+ r) · (β + γ
m∑
i=0

sivi(x)+ s)

+ δah2 + bh1 + δh1 h2

= αβ + γ 2(
m∑
i=0

siui(x))(
m∑
i=0

sivi(x))+
m∑
i=0

si(βγ ui(x)

+αγ vi(x))+ rb+ sa−rs+ δah2 + bh1 + δh1 h2

= αβ +

m∑
i=0

si(γ 2 wi(x)+ βγ ui(x)+ αγ vi(x))

+ γ 2 t(x)h(x)+ rb+ sa−rs+ δah2 + bh1 + δh1 h2

= αβ + γ

l∑
i=0

si(γwi(x)+ βui(x)+ αvi(x))

+

m∑
i=l+1

si(γ 2 wi(x)+ βγ ui(x)+ αγ vi(x))

+ γ 2 t(x)h(x)+ rb+ sa−rs+ δah2 + bh1 + δh1 h2

= αβ + γ

l∑
i=0

si(γwi(x)+ βui(x)+ αvi(x))+ c

where A = Ga, B = Hb and C = Gc.
Note that since the vector (sl+1, . . . , sm) is a valid witness

for the instance (s1, . . . , sl), (
∑m

i=0 siui(X))(
∑m

i=0 sivi(X)) =∑m
i=0 siwi(X)+ h(X)t(X) for all X ∈ Zp.
ZERO-KNOWLEDGE: For the zero-knowledge, notice that

the construction already provides the simulation SimProve
which always produces verifying proofs. It can be observed
that we obtain the same distribution over the real proof and
the simulated proof, with the choice of random r, s in real
proofs and the choice of random µ, ν in simulated proofs.

SIMULATION-EXTRACTABILITY: Assume that adversary A
succeeds to forge a proof (A,B,C).

Our common reference string consists of group generators
G, H raised to exponents that are polynomials in Xα , Xβ ,
Xγ , Xδ , Xx evaluated on secret values α, β, γ, δ, x. Moreover,
whenever A queries the simulation oracle, it gets back a
simulated proof of (Ai,Bi,Ci)

q
i=1, which is a set of three group

elements that can be computed by raisingG,H to polynomials
in indeterminates Xα , Xβ , Xγ , Xδ , Xx ,Xµ1 ,Xν1 , . . . ,Xµq ,Xνq
where we plug in randomly generated µ1, ν1, . . . , µq, νq for
the latter ones.

VOLUME 8, 2020 156575

J. Kim et al.: SE-SNARK With a Single Verification

By D − HAK , given a proof π = (Ga,Hb,Gc), we can
extract a(X), b(X), and c(X) where X is an indeterminates
vector. Note that Xλj (Xρj) denotes an indeterminate to obtain
Gλj (Hρj) which is a randomly created group element by an
adversary in G1 (G2) where λj (ρj) is unknown. Then the
possible a(X), b(X), and c(X) are as follows:

a(X)= a0 + aαXα + aβXβ + aδXδ + aαδXαXδ

+

∑n−1

i=0
aγ xiXγX

i
x

+

∑n−1

i=0
aγ 2txiX

2
γ t(Xx)X

i
x +

n−1∑
i=0

aγ δxiXγXδX
i
x

+

l∑
i=0

asi (Xγwi(Xx)+ Xβui(Xx)+ Xαvi(Xx))

+

m∑
i=l+1

asi (X
2
γwi(Xx)+ XβXγ ui(Xx)+ XαXγ vi(Xx))

+

q∑
j=1

aλjXλj +
q∑
j=1

aAjXµj +
q∑
j=1

aCj (XµjXνj − XαXβ

−Xγ
l∑
i=0

sj,i(Xγwi(Xx)+ Xβui(Xx)+ Xαvi(Xx))

+ h2 XδXµj + h1 Xν1 + h1 h2 Xδ)

b(X)= b0 + bβXβ + bδXδ +
∑n−1

i=0
bγ xiXγX

i
x

+

q∑
j=1

bρjXρj +
q∑
j=1

bBjXνj

c(X) = c0 + cαXα + cβXβ + cδXδ + cαδXαXδ

+

∑n−1

i=0
cγ xiXγX

i
x

+

∑n−1

i=0
cγ 2txiX

2
γ t(Xx)X

i
x +

n−1∑
i=0

cγ δxiXγXδX
i
x

+

l∑
i=0

csi (Xγwi(Xx)+ Xβui(Xx)+ Xαvi(Xx))

+

m∑
i=l+1

csi (X
2
γwi(Xx)+ XβXγ ui(Xx)+ XαXγ vi(Xx))

+

q∑
j=1

cλjXλj +
q∑
j=1

cAjXµj

+

q∑
j=1

cCj (XµjXνj − XαXβ − Xγ
l∑
i=0

sj,i(Xγwi(Xx)

+Xβui(Xx)+ Xαvi(Xx))+ h2 XδXµj
+ h1 Xνj + h1 h2 Xδ)

a(X), b(X), and c(X) should satisfy the following verifica-
tion equation.

(a(X)+ h1)(b(X)+ h2 Xδ)

= XαXβ + Xγ
l∑
i=0

asi (Xγwi(Xx)+ Xβui(Xx)

+Xαvi(Xx))+ c(X) (5)

We will now show that in order to satisfy the formal poly-
nomials equations above, either the adversary must recycle an
instance and a proof, or alternatively χA manages to extract
a witness.

First, suppose we have some aAk 6= 0. Since there is no
XβXµk in the right form, bβ = 0. Moreover, since there is no
XγXµk or XρjXµk in the right form, bγ xi = 0 and bρj = 0.
Consequently, b(X) = b0 + bδXδ + bBkXvk . If bBk = 0 then
cCk = 0 due to no XµkXν , and there is XαXβ in the right form.
However since there is no XαXβ in the left form, bBk 6= 0.

Since there is no XαXνk in the right form, aα = 0. Since
there are only XαXνk , Xνk , and XµkXνk related with Xνk in the
right form, a(X) = a0 + aAkXµk .
Plugging this into (5) gives us,

(a0 + aAkXµk + h
′

1)(b0 + bδXδ + bBkXvk + h
′

2 Xδ)

= XαXβ + Xγ
l∑
i=0

asi (Xγwi(Xx)+ Xβui(Xx)

+Xαvi(Xx))+ c(X)

where h′1 = H(Ga0+aAkµk) = H(Ga0A
aAk
k) and h′2 =

H(Hb0+bδδ+bBk νk) = H(Hb0H δbδB
bBk
k).

The only way this is possible is by setting

c(X) = c0 + cAkXµk + cCk (XµkXνk − XαXβ + h2 XδXµk
+ h1 Xνk + h1 h2 Xδ

−Xγ
l∑
i=0

sk,i(Xγwi(Xx)+ Xβui(Xx)+ Xαvi(Xx))

Since there is no XαXβ in the left form, cCk = 1.
Finally, we obtain the following equation.

(a0 + aAkXµk + h
′

1)(b0 + bδXδ + bBkXνk + h
′

2 Xδ)

= c0 + cAkXµk + XµkXνk + h2 XδXµk + h1 Xνk + h1 h2 Xδ

Since aAkbBk = 1, there is (a0+h′1)bBkXνk in the left form,
and there is h1 Xνk in the right form, (a0 + h′1)bBk = h1,
h′1 = −a0+aAkh1, andH(G−(−a0)A

aAk
k) = −a0+aAkH(Ak).

Since H is linear collision-resistant, it is hard to find non
trivial −a0 and aAk . Hence a0 = 0, and aAk = 1. Similarly,
Since there is (bδ + h′2)aAkXδXµk in the left form, and there
is h2 XδXµk in the right form, (bδ + h′2)aAk = h2, h′2 =

−bδ + bBkh2, and H(Hb0H−(−bδ)B
bBk
k) = −bδ + bBkH(Bk).

Since H is collision-resistant, it is hard to find non trivial b0
such that H(Hb0HbδB

bBk
k) = H(HbδB

bBk
k). Hence b0 = 0.

In addition, since H is linear collision-resistant, it is hard to

156576 VOLUME 8, 2020

J. Kim et al.: SE-SNARK With a Single Verification

find non trivial −bδ and bBk satisfying H(H−(−bδ)B
bBk
k) =

−bδ + bBkH(Bk). Hence bδ = 0, and bBk = 1.
Consequently, a(X) = Xµk and b(X) = Xνk . Since

ui(Xx)li=1 are linearly independent, we see for i = 1, . . . , l
that si = sk,i. In other words, the adversary has recycled the
k-th instance π = πk and the proof (A,B,C) = (Ak ,Bk ,Ck).
The same conclusion is obtained if bBk 6= 0.

Next, suppose for all j = 1, . . . , q that aAj = bBj = 0.
Then cCj = cAj = 0 since there is no Xµj in the left form.
Since there is XαXβ in the right form, aαbβ = 1.
In the right form of (5), there are only Xβ , XβXγ , XβXα ,

and Xβui(Xx) related with Xβ , a(X) = a0 + aαXα +∑n−1
i=0 aγ xiXγX

i
x . b(X) = b0+bβXβ+bδXδ+

∑n−1
i=0 bγ xiXγX

i
x

since there is no XαXρj in the right form. We are now left with

c(X) = c0 + cαXα + cβXβ + cδXδ + cαδXαXδ

+

n−1∑
i=0

cγ xiXγX
i
x

+

n−1∑
i=0

cγ 2txiX
2
γ t(Xx)X

i
x +

n−1∑
i=0

cγ δxiXγXδX
i
x

+

l∑
i=0

csi (Xγwi(Xx)+ Xβui(Xx)+ Xαvi(Xx))

+

m∑
i=l+1

csi (X
2
γwi(Xx)+ XβXγ ui(Xx)+ XαXγ vi(Xx))

In (5),

(aαXα + a0 +
n−1∑
i=0

aγ xiXγX
i
x + h

′

1)(bβXβ + b0

+

n−1∑
i=0

bγ xiXγX
i
x + (bδ + h′2)Xδ)

= XαXβ + Xγ
l∑
i=0

asi (Xγwi(Xx)+ Xβui(Xx)+ Xαvi(Xx))

+ c0 + cαXα + cβXβ + cδXδ + cαδXαXδ +
n−1∑
i=0

cγ xiXγX
i
x

+

n−1∑
i=0

cγ 2txiX
2
γ t(Xx)X

i
x +

n−1∑
i=0

cγ δxiXγXδX
i
x

+

l∑
i=0

csi (Xγwi(Xx)+ Xβui(Xx)+ Xαvi(Xx))

+

m∑
i=l+1

csi (X
2
γwi(Xx)+ XβXγ ui(Xx)+ XαXγ vi(Xx))

Define for i = l+1, . . . ,m that si = csi . The terms involv-
ing XβXγX ix now give us bβ

∑n−1
i=0 aγ xiX

i
x =

∑m
i=0 siui(Xx) in

the left form. In addition, the terms involvingXαXγX ix provide
aα
∑n−1

i=0 bγ xiX
i
x =

∑m
i=0 sivi(Xx) in the left form. The terms

involving X2
γ produce

Xγ
m∑
i=0

siui(Xx) · Xγ
m∑
i=0

sivi(Xx)

= X2
γ aαbβ (

n−1∑
i=0

aγ xiX
i
x)(

n−1∑
i=0

bγ xiX
i
x)

= X2
γ (

m∑
i=0

siwi(Xx)+ t(Xx)
n−1∑
i=0

cγ 2txiX
i
x)

Defining h(Xx) =
∑n−1

i=0 cγ 2tx iX
i
x we see that this means

(sl+1, . . . , sm) is a witness for the instance (s1, . . . , sl)
(the extracted witness may be one of many possible valid
witnesses).

VI. SAP-BASED SE-SNARK SCHEME
In the previous section, we propose an efficient SE-SNARK
scheme with three group elements as a proof. Now it is
interesting to observe whether it is possible to build a similar
SE-SNARK scheme with two group elements if adopting
Type I pairing instead of Type III pairing. Since eachmultipli-
cation gate a·b = c can be transformed to (a+b)2−(a−b)2 =
4c as a square arithmetic program (SAP), it is possible to get
a 2-element for boolean circuit satisfiability by changing a
multiplication gate to two squaring gates.

A. SQUARE ARITHMETIC PROGRAMS
In the SE-SNARK with two group elements, we will work
with square arithmetic programs (SAP)R, with the definitions
adopted from [5].

R = (p,G,GT , e, l, {ui(X),wi(X)}mi=0, t(X))

The bilinear group (p,G,GT , e) defines the finite field Zp,
1 ≤ l ≤ m, and the polynomials ui(X),wi(X) represent
each linearly independent polynomial set in the SAP with the
definition below:

(
m∑
i=0

siui(X))2 ≡
m∑
i=0

siwi(X) + h(X)t(X)

where ui(X),wi(X) have a strictly lower degree than n, which
is the degree of t(X). By defining s0 as 1, the following
definition describes the relation R.

R =

(φ,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ = (s1, · · · , sl) ∈ Zlp
w = (sl+1, · · · , sm) ∈ Zm−lp

∃h(X) ∈ Zp[X], deg(h) ≤ n− 2 :

(
m∑
i=0

siui(X))2 ≡
m∑
i=0

siwi(X) + h(X)t(X)

We say R is a relation generator for the SAP, given the

relation R with a field size larger than 2λ−1.

VOLUME 8, 2020 156577

J. Kim et al.: SE-SNARK With a Single Verification

B. CONSTRUCTION
In this section, we propose a scheme with two group elements
as a proof in a symmetric group using SAP.

• (crs, τ) ← Setup(R): Select a generator G
$
← G,

hash functions H : {0, 1}∗ → Zp, and parameters

α, γ, δ, x
$
← Zp, such that t(x) 6= 0, and set

τ = (G, α, γ, δ, x)

crs =

R,H ,G,Gα,Gδ,Gαδ,

{Gγ x
i
,Gγ

2 t(x)xi ,Gγ δx
i
}
n−1
i=0 ,

{Gγwi(x)+2αui(x)}li=0,

{Gγ
2 wi(x)+2αγ ui(x)}mi=l+1

• π ← Prove(crs, φ,w): Set s0 = 1 and parse φ as
(s1, . . . , sl) ∈ Zlp and w as (sl+1, . . . , sm) ∈ Zm−lp . Use

the witness to compute h(X) from the SAP, pick r
$
← Zp

and compute π = (A,C) = (Ga,Gc) such that

a = α + γ
m∑
i=0

siui(x)+ r

c =
m∑

i=l+1

si(γ 2 wi(x)+ 2αγ ui(x))+ γ 2 t(x)h(x)

+ 2ra− r2 + δaH(A)

• 0/1← Vfy(crs, φ, π): Parse φ as (s1, . . . , sl) ∈ Zlp and
π as (A,C) ∈ G×G. Set s0 = 1 and check that

e(AGδH(A),A)

= e(Gα,Gα)e(G
∑l

i=0 si(γwi(x)+2αui(x)),Gγ)e(C,G)

Accept the proof if and only if the test passes.
• π ← SimProve(crs, τ, φ) : Pick µ← Zp and compute
π = (A,C) such that

A = Gµ,C = Gµ
2
−α2+δµH(A)−γ

∑l
i=0 si(γwi(x)+2αui(x))

C. SECURITY PROOF
The SAP-based SE-SNARK protocol is a non-interactive
zero-knowledge argument of knowledge with perfect com-
pleteness and perfect zero-knowledge. It is simulation-
extractable (implying it also has knowledge soundness)
provided that the D − HAK assumption holds and a
collision-resistant hash function exists.

Proof (PERFECT COMPLETENESS): First, we state that
the prover can compute the proof (A,C) as described from
the common reference string. The prover can compute the
coefficients of

h(X) =
(
∑m

i=0 siui(X))
2
− (
∑m

i=0 siwi(X))
t(X)

=

n−2∑
j=0

hjX j.

It can now compute the proof elements as

A = Gα
n−1∏
j=0

(Gγ x
j
)uj · Gr

C =
m∏

i=l+1

Gsi(γ
2 wi(x)+2αγ ui(x)) · A′H(A)

· G−r
2

·

n−1∏
j=0

(Gγ
2 t(x)xj)hj

where let A′ = GαδAδ = Gαδ
∏n−1

j=0 (G
δγ xj)uj · Gδr .

This computation provides us the proof elements specified
in the construction

A = Gα+γ
∑m

i=0 siui(x)+r

C = G
∑m

i=l+1 si(γ
2 wi(x)+2αγ ui(x))+γ 2 t(x)h(x)+2 ra−r2+δaH(A)

Here we show that the verification equation holds.

e(AGδH(A),A)

= e(Gα,Gα)e(G
∑l

i=0 si(γwi(x)+2αui(x)),Gγ)e(C,G)

Taking discrete logarithms, this is equivalent to showing that

(a+ δH(A)) · a

= a2 + δaH(A)

= (α + γ
m∑
i=0

siui(x)+ r)2 + δaH(A)

= α2 + γ 2(
m∑
i=0

siui(x))2 + 2αγ
m∑
i=0

siui(x)

+ 2 ra− r2 + δaH(A)

= α2 +

m∑
i=0

si(γ 2 wi(x)+ 2αγ ui(x))+ γ 2 t(x)h(x)

+ 2 ra− r2 + δaH(A)

= α2 + γ

l∑
i=0

si(γwi(x)+ 2αui(x))

+

m∑
i=l+1

si(γ 2 wi(x)+ 2αγ ui(x))

+ γ 2 t(x)h(x)+ 2 ra− r2 + δaH(A)

= α2 + γ

l∑
i=0

si(γwi(x)+ 2αui(x))+ c

where A = Ga, and C = Gc.
Note that since the vector (sl+1, . . . , sm) is a valid

witness for the instance (s1, . . . , sl), (
∑m

i=0 siui(X))
2
=∑m

i=0 siwi(X)+ h(X)t(X) for all X ∈ Zp.
ZERO-KNOWLEDGE: The zero-knowledge is similar to the

proof in V-D; the SimProve in the algorithm provides the
proof simulation, which is sufficient for the zero-knowledge.

SIMULATION-EXTRACTABILITY: By D − HAK assumption,
there is an extractor and a(X), and c(X) are extracted

156578 VOLUME 8, 2020

J. Kim et al.: SE-SNARK With a Single Verification

as following:

a(X) = a0 + aαXα + aδXδ + aαδXαXδ +
n−1∑
i=0

aγ xiXγX
i
x

+

n−1∑
i=0

aγ 2txiX
2
γ t(Xx)X

i
x +

n−1∑
i=0

aγ δxiXγXδX
i
x

+

l∑
i=0

asi (Xγwi(Xx)+ 2Xαui(Xx))

+

m∑
i=l+1

asi (X
2
γwi(Xx)+ 2XαXγ ui(Xx))

+

qQ1∑
j=1

aλjXλj +
q∑
j=0

aAjXµj

+

q∑
j=0

aCj (X
2
µj
− X2

α + XδXµjH(Aj)

−Xγ
l∑
i=0

sj,i(Xγwi(Xx)+ 2 Xαui(Xx)))

c(X) = c0 + cαXα + cδXδ + cαδXαXδ +
n−1∑
i=0

cγ xiXγX
i
x

+

∑n−1

i=0
cγ 2txiX

2
γ t(Xx)X

i
x +

n−1∑
i=0

cγ δxiXγXδX
i
x

+

l∑
i=0

csi (Xγwi(Xx)+ 2Xαui(Xx))

+

m∑
i=l+1

csi (X
2
γwi(Xx)+ 2XαXγ ui(Xx))

+

qQ1∑
j=1

cλjXλj +
q∑
j=0

cAjXµj

+

q∑
j=0

cCj (X
2
µj
− X2

α + XδXµjH(Aj)

−Xγ
l∑
i=0

sj,i(Xγwi(Xx)+ 2 Xαui(Xx)))

Then by the verification equation, the following equation
should hold.

(a(X)+ δH(A)) · a(X)

= X2
α + Xγ

l∑
i=0

si(Xγwi(Xx)+ 2 Xαui(Xx))+ c(X) (6)

We will now show that in order to satisfy the formal poly-
nomials equations above, either the adversary must recycle an
instance and a proof, or alternatively a witness is extracted.
First, suppose we have some aAk 6= 0. Since there are only
Xµk , XµkXδ , and X

2
µk

related with Xµk and there is no X2
δ in

the right form, a(X) = a0 + aAkXµk . Plugging this into (6)

gives us,

(a0 + aAkXµk + XδH(A))(a0 + aAkXµk)

= X2
α + Xγ

l∑
i=0

asi (Xγwi(Xx)+ 2Xαui(Xx))+ c(X)

The only way this is possible is by setting

c(X) = c0 + cδXδ + cAkXµk + cCk (X
2
µk
− X2

α

+XδXµkH(Ak)−Xγ
l∑
i=0

sk,i(Xγwi(Xx)+ 2 Xαui(Xx)))

Since there is no X2
α in the left form, cCk = 1. In addition,

since there is a2Ak X
2
µk

in the left form, a2Ak = cCk = 1,
and aAk = 1 or −1. If we consider XδXµk then
aAkH(A)XδXµk = H(Ak)XδXµk . Hence aAkH(A) = H(Ak),
and aAkH(Ga0A

aAk
k) = H(Ak). Assume that aAk = −1. Let

c = −H(Ak) and z = Ga0A
aAk
k . Since Ak is given, c is a

given value. The problem is to find a preimage of c such that
H (z) = c, which is hard for collision resistant hash. Therefore
aAk = 1. The problem is to find a0 such that H(Ga0Ak) =
H(Ak). Since it is hard to find Ga0Ak 6= Ak , a0 = 0. Since
ui(Xx)li=1 are linearly independent, we see for i = 1, . . . , l
that si = sk,i. In other words, the adversary has recycled the
k-th instance π = πk and proof (A,C) = (Ak ,Ck).
Next, suppose for all j = 1, . . . , q that aAj = 0. Then

cCj = cAj = 0 since there is no Xµj in the left form. Since
there is X2

α in the right form, a2α = 1. In the right form, there
are only Xα , X2

α , XαXγ , XαXδ , and Xαui(Xx) related with Xα
and there is no X2

δ , a(X) = a0+ aαXα +
∑n−1

i=0 aγ xiXγX
i
x . We

are now left with

c(X) = c0 + cαXα + cδXδ + cαδXαXδ

+

n−1∑
i=0

cγ xiXγX
i
x

+

n−1∑
i=0

cγ 2tx iX
2
γ t(Xx)X

i
x +

n−1∑
i=0

cγ δxiXγXδX
i
x

+

l∑
i=0

csi (Xγwi(Xx)+ 2Xαui(Xx))

+

m∑
i=l+1

csi (X
2
γwi(Xx)+ 2XαXγ ui(Xx))

In (6),

(aαXα + a0 +
∑n−1

i=0
aγ xiXγX

i
x +H(A)Xδ)

× (aαXα + a0 +
∑n−1

i=0
aγ xiXγX

i
x)

= X2
α + Xγ

l∑
i=0

asi (Xγwi(Xx)+ 2Xαui(Xx))

+ c0 + cαXα + cδXδ + cαδXαXδ

VOLUME 8, 2020 156579

J. Kim et al.: SE-SNARK With a Single Verification

+

n−1∑
i=0

cγ xiXγX
i
x

+

n−1∑
i=0

cγ 2tx iX
2
γ t(Xx)X

i
x +

n−1∑
i=0

cγ δxiXγXδX
i
x

+

l∑
i=0

csi (Xγwi(Xx)+ 2Xαui(Xx))

+

m∑
i=l+1

csi (X
2
γwi(Xx)+ 2XαXγ ui(Xx))

Define for i = l+1, . . . ,m that si = csi . The terms involv-
ing XαXγX ix now give us aα

∑n−1
i=0 aγ xiX

i
x =

∑m
i=0 siui(Xx).

Finally, the terms involving X2
γ produce

(Xγ
m∑
i=0

siui(Xx))2 = X2
γ (
n−1∑
i=0

aγ xiX
i
x)

2

=X2
γ a

2
α(

m∑
i=0

siwi(Xx)+t(Xx)
n−1∑
i=0

cγ 2tx iX
i
x)

Defining h(Xx) =
∑n−1

i=0 cγ 2tx iX
i
x we see that this means

that (sl+1, . . . , sm) is a witness for the instance (s1, . . . , sl)
(the extracted witness may be one of many possible valid
witnesses).

VII. CONCLUSION
In this article, we propose two simulation-extractable suc-
cinct non-interactive arguments of knowledge (SE-SNARK)
constructions, which achieve minimal proof size and a single
verification. Our first construction is based on the quadratic
arithmetic program (QAP) representation, with a proof size
of 3 group elements (type III). The other construction is
based on the square arithmetic program (SAP) representation,
with a proof size of 2 group elements (type I). The security
of our schemes are proven under the hash-algebraic knowl-
edge (HAK) assumption and the (linear) collision-resistant
hash function.

REFERENCES
[1] J. Groth, ‘‘On the size of pairing-based non-interactive arguments,’’ in

Proc. 35th Annu. Int. Conf. Theory Appl. Cryptograph. Techn., Vienna,
Austria, May 2016, pp. 305–326, doi: 10.1007/978-3-662-49896-5_11.

[2] B. Parno, J. Howell, C. Gentry, and M. Raykova, ‘‘Pinocchio: Nearly
practical verifiable computation,’’ in Proc. Symp. Secur. Privacy, Berkeley,
CA, USA, May 2013, pp. 238–252, doi: 10.1109/SP.2013.47.

[3] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, ‘‘Zerocash: Decentralized anonymous payments from bitcoin,’’
in Proc. IEEE Symp. Secur. Privacy, Berkeley, CA, USA, May 2014,
pp. 459–474, doi: 10.1109/SP.2014.36.

[4] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, ‘‘Pinocchio coin:
Building Zerocoin from a succinct pairing-based proof system,’’ in Proc.
1st ACM Workshop Lang. Support Privacy-Enhancing Technol., 2013,
pp. 27–30.

[5] J. Groth and M. Maller, ‘‘Snarky signatures: Minimal signatures of
knowledge from Simulation-Extractable SNARKs,’’ in Proc. 37th Annu.
Int. Cryptol. Conf., Santa Barbara, CA, USA, Aug. 2017, pp. 581–612,
doi: 10.1007/978-3-319-63715-0_20.

[6] S. Bowe and A. Gabizon. (2018). Making Groth’s Zk-Snark Simula-
tion Extractable in the Random Oracle Model. [Online]. Available:
https://eprint.iacr.org/2018/187

[7] T. Icart, ‘‘How to hash into elliptic curves,’’ in Proc. 29th Annu. Int.
Cryptol. Conf., Santa Barbara, CA, USA, Aug. 2009, pp. 303–316,
doi: 10.1007/978-3-642-03356-8_18.

[8] H. Lipmaa, ‘‘Simulation-extractable snarks revisited,’’ in Proc. IACR,
2019, p. 612. [Online]. Available: https://eprint.iacr.org/2019/612

[9] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, ‘‘Delegating computa-
tion: Interactive proofs for muggles,’’ in Proc. Annu. ACM Symp. Theory
Comput., 2008, pp. 113–122.

[10] G. Cormode,M.Mitzenmacher, and J. Thaler, ‘‘Practical verified computa-
tion with streaming interactive proofs,’’ in Proc. 3rd Innov. Theor. Comput.
Sci. Conf., 2012, pp. 90–112.

[11] R. S. Wahby, Y. Ji, A. J. Blumberg, A. Shelat, J. Thaler, M. Walfish, and
T. Wies, ‘‘Full accounting for verifiable outsourcing,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 2071–2086.

[12] R. S. Wahby et al., ‘‘Doubly-efficient zkSNARKs without trusted
setup,’’ in Proc. IEEE Symp. Secur. Privacy (SP), 2018, doi:
10.1109/SP.2018.00060.

[13] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
‘‘Bulletproofs: Short proofs for confidential transactions and more,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 315–334.

[14] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,
‘‘VRAM: Faster verifiable RAM with program-independent prepro-
cessing,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 908–925.

[15] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, ‘‘Succinct non-
interactive zero knowledge for a von neumann architecture,’’ in Proc.
USENIX Secur. Symp., 2014, pp. 781–796.

[16] A. Fiat and A. Shamir, ‘‘How to prove yourself: Practical solutions to
identification and signature problems,’’ in Advces Cryptology (Lecture
Notes in Computer Science), vol. 263, A. M. Odlyzko, Ed. Santa Barbara,
CA, USA: Springer, 1986, pp. 186–194, doi: 10.1007/3-540-47721-7_12.

[17] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, ‘‘Quadratic span
programs and succinct nizks without pcps,’’ in Proc. 32nd Annu. Int.
Conf. Theory Appl. Cryptograph. Techn., Athens, Greece, May 2013,
pp. 626–645, doi: 10.1007/978-3-642-38348-9_37.

[18] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig,
B. Parno, and S. Zahur, ‘‘Geppetto: Versatile verifiable computation,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 253–270.

[19] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno, ‘‘Cinderella:
Turning shabby X.509 certificates into elegant anonymous credentials with
the magic of verifiable computation,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2016, pp. 235–254.

[20] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and
N. Triandopoulos, ‘‘Trueset: Faster verifiable set computations,’’ in Proc.
USENIX Secur. Symp., 2014, pp. 765–780.

[21] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and
B. Parno, ‘‘Hash first, argue later: Adaptive verifiable computations on
outsourced data,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 1304–1316.

[22] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk, ‘‘ADSNARK:
Nearly practical and privacy-preserving proofs on authenticated data,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 271–286.

[23] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, ‘‘Scalable zero
knowledge via cycles of elliptic curves,’’ Algorithmica, vol. 79, no. 4,
pp. 1102–1160, Dec. 2017.

[24] A. Kosba, C. Papamanthou, and E. Shi, ‘‘XJsnark: A framework for
efficient verifiable computation,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2018.

[25] E. Ben-Sasson et al., ‘‘SNARKs for C: Verifying program executions
succinctly and in zero knowledge,’’ in Proc. Annu. Cryptol. Conf. Berlin,
Germany: Springer, 2013, doi: 10.1007/978-3-642-40084-1_6.

[26] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, ‘‘Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016,
pp. 839–858.

[27] C. Garman, M. Green, and I. Miers, ‘‘Accountable privacy for decen-
tralized anonymous payments,’’ in Proc. Int. Conf. Financial Cryptogr.
Data Secur. Berlin, Germany: Springer, 2016, doi: 10.1007/978-3-642-
32946-3_29.

156580 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-662-49896-5_11
http://dx.doi.org/10.1109/SP.2013.47
http://dx.doi.org/10.1109/SP.2014.36
http://dx.doi.org/10.1007/978-3-319-63715-0_20
http://dx.doi.org/10.1007/978-3-642-03356-8_18
http://dx.doi.org/10.1109/SP.2018.00060
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://dx.doi.org/10.1007/978-3-642-32946-3_29
http://dx.doi.org/10.1007/978-3-642-32946-3_29

J. Kim et al.: SE-SNARK With a Single Verification

[28] M. Chase and A. Lysyanskaya, ‘‘On signatures of knowledge,’’ in Proc.
26th Annu. Int. Cryptol. Conf., Santa Barbara, CA, USA, Aug. 2006,
pp. 78–96, doi: 10.1007/11818175_5.

[29] N. Bitansky et al., ‘‘Succinct non-interactive arguments via linear interac-
tive proofs,’’ in Proc. Theory Cryptogr. Conf. Berlin, Germany: Springer,
2013, doi: 10.1007/978-3-642-36594-2_18.

[30] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen, ‘‘On the existence
of extractable one-way functions,’’ SIAM J. Comput., vol. 45, no. 5,
pp. 1910–1952, Jan. 2016.

[31] J. Groth, ‘‘Short pairing-based non-interactive zero-knowledge argu-
ments,’’ in Proc. 16th Int. Conf. Theory Appl. Cryptol. Inf. Secur.,
Singapore, Dec. 2010, pp. 321–340, doi: 10.1007/978-3-642-17373-8_19.

[32] M. Ajtai, ‘‘Generating hard instances of lattice problems,’’ in Proc.
28th Annu. ACM Symp. Theory Comput., Jul. 1996, pp. 99–108, doi:
10.1145/237814.237838.

JIHYE KIM (Member, IEEE) received the B.S.
and M.S. degrees from the School of Computer
Science and Engineering, Seoul National Univer-
sity, South Korea, in 1999 and 2003, respectively,
and the Ph.D. degree in computer science from the
University of California at Irvine, Irvine, in 2008.
She is currently an Associate Professor with the
Department of Electrical Engineering, Kookmin
University. Her research interests include network
security, applied cryptography and fault-tolerant,
and distributed computing.

JIWON LEE (Member, IEEE) received the B.S.
degree in information systems engineering from
Hanyang University, Seoul, South Korea, where
he is currently pursuing the Ph.D. degree in
information systems engineering. His current
research interests include applied cryptogra-
phy, in particular on provable security for
cryptographic schemes, including protocols for
public-key encryption, broadcast encryption, and
zero-knowledge proof systems.

HYUNOK OH (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in computer engineer-
ing from Seoul National University, Seoul, South
Korea, in 1996, 1998, and 2003, respectively.
He is currently an Associate Professor with the
Department of Information Systems, Hanyang
University, Seoul. His research interests include
applied cryptography, dataflow model, automatic
code synthesis, mapping/scheduling, non-volatile
memory, parallel processing, multimedia, and
embedded systems.

VOLUME 8, 2020 156581

http://dx.doi.org/10.1007/11818175_5
http://dx.doi.org/10.1007/978-3-642-36594-2_18
http://dx.doi.org/10.1007/978-3-642-17373-8_19
http://dx.doi.org/10.1145/237814.237838

