IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 9, 2020, accepted November 23, 2020, date of publication November 30, 2020,

date of current version December 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3041308

Practical Verifiable Computation by Using a
Hardware-Based Correct Execution Environment

JUNGHEE LEE™1, (Member, IEEE), CHRYSOSTOMOS NICOPOULOS 2, (Member, IEEE),
GWEONHO JEONG?, JIHYE KIM#, (Member, IEEE), AND HYUNOK OH "3, (Member, IEEE)

!School of Cybersecurity, Korea University, Seoul 02841, South Korea

2Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus

3Department of Information System, Hanyang University, Seoul 04763, South Korea

“#Electronics and Information System Engineering Major, Kookmin University, Seoul 02707, South Korea

Corresponding authors: Jihye Kim (jihyek@kookmin.ac.kr) and Hyunok Oh (hoh@hanyang.ac.kr)

This work was supported by a Korea University Grant and Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Ministry of Science and ICT Korea (2017-0-00661).

ABSTRACT The verifiable computation paradigm has been studied extensively as a means to verifying
the result of outsourced computation. In said scheme, the verifier requests computation from the prover
and verifies the result by checking the output and proof received from the prover. Although they have
great potential for various critical applications, verifiable computations have not been widely used in
practice, because of their significant performance overhead. Existing cryptography-based approaches incur
significant overhead, because a cryptography-based mathematical frame needs to be constructed, which
prevents deviation from the correct computation. The proposed approach is to reduce the overhead by trusting
the computing hardware platform where the computation is outsourced. If one trusts the hardware to do the
computation, the hardware can take the place of the cryptographic computing frame, thereby guaranteeing
correct computation. The key challenge of this approach is to define what exactly the hardware should
guarantee for verifiable computation. For this, we introduce the concept of Correct Execution Environment
(CEE), which guarantees instruction correctness and state preservation. We prove that these two requirements
are satisfactory conditions for a correct output. By employing a CEE, the verifiable computation scheme can
be simplified, and its overhead can be reduced drastically. The presented experimental results demonstrate
that the execution time is approximately 1.7 million times faster and the verification time over 50 times faster

than a state-of-the-art cryptographic approach.

INDEX TERMS Verifiable computation, cryptography, trusted hardware, computer architecture.

I. INTRODUCTION

Verifiable Computation (VC) allows a client (verifier) to dele-
gate the computation of some function F' with its outsourced
data x to an untrusted third party (prover), while the client
can verify the correctness of the result y, i.e., y := F(x). The
prover evaluates the functions and returns the result with a
proof showing the correctness of the result.

The VC scheme becomes more important as the outsourc-
ing of computations to systems ranging from light com-
putational devices to high-performance cloud-based servers
increases [1]. Under VC, it is required that the checking
of the correctness of an outsourced function result is much
faster than the execution of the function. In addition to
cloud services, verifiable computation becomes an essential

The associate editor coordinating the review of this manuscript and

approving it for publication was SK Hafizul Islam

tool for smart contracts in blockchain applications [2], [3].
In the latter, all transactions that include a smart contract and
input/output data become valid after performing the smart
contract with the I/O data. Every blockchain node should
perform the execution, in order to check the validity of the
transaction, which typically incurs high computation over-
head. With a plug-in of verifiable computation, the validity
check by all blockchain nodes can be accelerated without
re-execution of the smart contract. Therefore, the use of a
VC scheme improves the efficiency of the blockchain by
replacing the execution of the same smart contract on every
node with light-weight verification of the execution [2], [3].

To construct VC, cryptographic approaches have been
actively researched in the context of zero-knowledge proof
systems [4]-[14]. Recently, zk-SNARK (zero-knowledge
succinct non-interactive arguments of knowledge) [11]-[14]
have been improved significantly, both theoretically and

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 8, 2020

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

216689

https://orcid.org/0000-0003-0733-0136
https://orcid.org/0000-0001-6389-6068
https://orcid.org/0000-0002-9044-7441
https://orcid.org/0000-0002-2703-0213

IEEE Access

J. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

practically. They allow a prover to build a proof for any NP
statement, while the proof does not leak any information
about the witness (or internal values), and the proof size
and the verification time are succinct. In addition, it does
not require any interaction between the prover (server) and
the verifier (client). In practice, anonymous cryptocurrency
Zcash [15] adopts the zk-SNARKS to provide privacy by uti-
lizing the zero-knowledge property. Moreover, Zocrates [16]
in the Ethereum blockchain has been developed to provide
VC by utilizing zk-SNARKGS.

Nonetheless, the cryptographic VC approach has a sig-
nificant performance overhead in the prover (server), even
though the verification may be light. Generally, the per-
formance overhead to build a proof ranges from 10,000 to
100,000 times, as compared to a naive computation of the
function. Such excessive performance overhead limits its use
in practice. In addition, setup (key generation) is required to
provide fast verification in zk-SNARKSs. Note that the com-
mon reference string should be generated in pairing-based zk-
SNARKS, in which the proof verification time is constant.
Otherwise, the verification time is linear or log-linear to the
proof time.

The cryptographic VC approaches generate a cryptography-
based mathematical proof to guarantee the correctness of the
output from the given input and function and the authenticity
of the input, output, and function. Here, authenticity refers
to which input and function the output is generated from
and whether they are tampered with or not. If the computing
platform where the computation is outsourced guarantees the
correctness of the output, the VC scheme only needs to verify
the authenticity, which leads to drastic simplification of the
scheme. Trusted hardware is a prevalent technique to guar-
antee security properties by hardware [17]-[24]. However,
we will show in Section II that existing trusted hardware is
not enough to guarantee security properties required for VC.

In this paper, we introduce the notion of Correct Execution
Environment (CEE), which guarantees the correctness of the
output, and we construct a VC scheme to verify the authentic-
ity of the input, output, and function. A CEE guarantees two
requirements: instruction correctness and state preservation.
The former means that each and every instruction works
correctly, while the latter means that the architectural state
(memory and registers) is preserved in-between the execu-
tion of instructions. If the computing platform guarantees
these two requirements, we will prove that it guarantees
a correct output. The CEE can be implemented either in
software or hardware, in various ways, depending on the
threat model. We will discuss how to implement a CEE and
we will also present our prototypes. If a CEE is employed,
the VC scheme can be markedly simplified compared to cryp-
tographic approaches. Through experiments, we will demon-
strate that the proposed VC scheme is practical from the per-
spective of execution and verification times. The execution
time of an application with generation of the proof is reduced
by up to around 1.7 million times, compared to a state-of-
the-art cryptographic approach. In fact, the reduced execution

216690

time is only up to 1.1 times longer than the naive execution
(without the proof). The verification time is also reduced by
up over 50 times, and the reduced verification time is shorter
than the naive execution time. This means that the verification
is faster than the re-execution of the application. However,
for broad adoption of the proposed scheme, the latter needs
to overcome the limitation that all the code and data of
an application should be located in a designated memory
region.

We can summarize the technical contributions of this work,
as follows:

o We define primitive requirements to guarantee the cor-
rectness of the output for verifiable computation.

« We define and prove the verifiable computation scheme,
provided that a verifiable computing platform is used by
the prover.

o We propose how to design a verifiable computing plat-
form using hardware components satisfying the require-
ments.

« We implement verifiable computation both in an
AMBER processor (augmented with additional required
components), and within Intel’s SGX framework [25].

o Through experimental results, we validate that the
developed hardware-based verifiable computation is a
promising approach.

The rest of this paper is organized as follows: Section II
elaborates on the motivation of this paper. Section III defines
CEE and discusses how to implement it. Section IV describes
the high-level definition of the proposed hardware-based ver-
ifiable computation scheme. Section V gives an example of
implementation, which is used for the subsequent experi-
ments in Section VI. After discussing relevant related work
in Section VII, we conclude this paper in Section VIIIL.

Il. BACKGROUND AND MOTIVATION

The goal of VC is to securely outsource a computation. The
client (verifier) requests a computation function (F') with an
input (x) to an untrusted server (prover). The prover executes
F on x and sends the output (y) along with a proof (7). The
verifier should be able to verify y := F(x) by the proof
without computing y again.

The proof should be able to prove: (1) the correctness of
the output from the given input and function, and (2) the
authenticity of the input, output, and function. If the prover
is malicious, it may try to deceive the verifier by sending a
wrong output. It is also possible for the malicious prover to
use a different input or function, instead of the given x and
F. The verifier should be able to detect these issues without
computing y again.

There have been extensive studies on cryptographic
approaches to realize VC. Existing cryptographic approaches
prevent deviation from correct computation by forcing the
prover to perform the computation within a pre-constructed
mathematical frame. Computation in the mathematical frame
incurs significant performance overhead, because it requires

VOLUME 8, 2020

J. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

IEEE Access

cryptographic operations. Instead, if the computing platform
where the outsourced computation is performed guarantees
some security properties, we may not need the expensive
mathematical frame to prevent deviation from correct compu-
tation. The challenge of this approach, however, is to define
what exactly the computing platform should guarantee for
the VC.

Is it enough if the computing platform guarantees the
integrity of the input and function? The remote attestation
technique [19]-[21], [26] can be used to verify such integrity,
as well as the integrity of the control flow. When remote
attestation is used for embedded systems, the entire memory
space can be verified (even though it is still challenging,
because of dynamic memory regions), but, for servers, this is
not feasible. Typically, only application code and its control
flow can be verified; not all the programs running on the same
server. However, if not all programs are attested, there is a
possibility for a malicious program to distort the output of
the attested one. Especially if the malicious program does
not change the code or the control flow of the attested pro-
gram, but only distorts the computation result (also known as
data-only attack), it is very challenging to detect this problem
by attestation. This is a serious threat to VC, because VC’s
purpose is to guarantee the correctness of the outsourced
computation.

Data-only attacks can be mitigated by a data integrity
check [27], [28], or its combination with attestation [23].
However, integrity checks or attestation by themselves do not
prove the authenticity of the input, output, and function. The
malicious prover may compute y correctly using the correct
x and F', but he/she may send a different output, or the output
may be tampered with on the way to the verifier. To prevent
this, the triple of the input, output, and function should be
signed with a signing key to guarantee that the output comes
from the given input and function. However, it is not trivial to
securely distribute and maintain the key.

For VC, one may also employ Intel’s SGX [25], which
supports not only attestation, but also memory isolation
and hardware-based root-of-trust. SGX encrypts a memory
region, which is called Enclave, to prevent other programs
— including the privileged system software — from accessing
the memory region. When an interrupt occurs, SGX saves the
context of the protected function to State Save Area (SSA),
which prevents a malicious interrupt handler from distorting
the execution of the protected function. Intel employs eFUSE
technology to program a random number into each processor,
from which the processor derives keys. Therefore, the keys
can be securely derived and maintained in the protected mem-
ory region. In a prior work, called Sealed-Glass Proof, it is
demonstrated that SGX can be used for VC [29].

Nevertheless, we have identified that SGX by itself is still
not enough to ensure VC. SGX allows the program running
in the Enclave to call an outside function. This is known as
OCALL (Outside Call). Since the external function may not
be protected by SGX, if the output is dependent on the result
of the external function, correct output cannot be guaranteed.

VOLUME 8, 2020

Therefore, in order for SGX to be employed for verifiable
computation, OCALL should not be allowed.

This observation motivates us to develop a theoretical
foundation of trusted hardware for VC. We need a formal
definition of requirements that must be guaranteed by the
computing platform to guarantee the correctness of the out-
put. There is a prior attempt to formalize the attestation
technique [30], but attestation alone does not constitute VC,
as discussed above. A Trusted Execution Environment (TEE),
such as Intel’s SGX, is an isolated execution environment
that protects an application by preventing interference from
other applications. To develop a TEE, five essential building
blocks have been identified [31]. However, they were iden-
tified by surveying existing TEEs, not through theoretical,
formal deduction. For instance, the aforementioned issue of
an OCALL was not addressed in said prior work, because
existing TEEs are not specifically intended for VC.

In this paper, we identify two requirements (instruction
correctness and state preservation) and prove that they are
sufficient to guarantee the correctness of the output. We intro-
duce the concept of Correct Execution Environment (CEE),
which guarantees the two requirements. According to our def-
inition, Intel’s SGX without OCALL can, indeed, be qualified
as a CEE. However, since SGX incurs performance overhead
due to additional capabilities that are not essential for VC,
we present a new light-weight prototype that only supports
VC-essential capabilities.

In general, if the prover runs the outsourced function in a
CEE, the correctness of the output is guaranteed. To guarantee
the authenticity of the input, output, and function, a VC
scheme is constructed. Assuming that the outsourced compu-
tation is done within the CEE, the VC scheme is drastically
simplified, as compared to cryptographic approaches. The
resulting VC scheme is more practical than cryptographic
approaches, because it achieves execution times that are close
to those of naive execution.

lll. CORRECT EXECUTION ENVIRONMENT

In this section, we introduce the concept of a Correct Exe-
cution Environment (CEE). As previously mentioned, this
environment guarantees instruction correctness and state
preservation. We prove that these two requirements are satis-
factory conditions to generate correct output. We also discuss
how to implement a CEE in practice, since its implementation
depends on the threat model.

A. BASICS OF THE VON NEUMANN MODEL
The proposed verifiable computation scheme supports
any function implemented as a program that runs on a
general-purpose processor that follows the Von Neumann
execution model. Unlike previous work [10], [32], our
scheme does not dictate a specific type of processor. Instead,
the proposed scheme is applicable to any kind of processor,
as long as it is compatible with the following description.
The processor architecture supported by our scheme con-
sists of a processor core and a main memory. Instructions,

216691

IEEE Access

J. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

input, output, and temporary data are stored in the memory.
The processor core fetches instructions from the memory,
executes the instruction, and accesses the memory. The pro-
cessor core has registers to maintain its status.

Instructions are executed one by one serially. Execution of
an instruction is atomic. If an exception occurs, its handler
is called only after the current instruction completes its exe-
cution. The architectural state is maintained by the memory
and registers, which include general-purpose registers and
special registers, such as a program counter, stack pointer,
link register, and status register. The architectural state does
not change after the execution of one instruction, until the
next instruction starts.

The description above is the well-known Von Neumann
execution model expected by the programmer. However,
the hardware does not work in this way. Modern proces-
sors often employ pipelining and out-of-order execution. The
actual execution of an instruction may be interrupted in the
middle of its execution, and the execution order may be
different from the program order. Though the actual execution
is different, modern processors still follow the Von Neumann
execution model, by making the execution of instructions
appear to be atomic and in-order. This feat is achieved by
employing additional hardware modules, such as a reorder
buffer. In addition, exception handling, interrupt service
and context switching may result in changes of the state
in-between instructions. They are expected to be handled
properly so that the state should appear to be preserved.

B. REQUIREMENTS OF CEE

Under the Von Neumann execution model, we can regard
the execution of an instruction as a transformation function
to the architectural state, and the execution of a program
as a series of transformations. The sequence of architectural
states of the program execution is called execution trace [10].
If we denote the state after execution of the i-th instruction
as §;, the execution trace of a program can be denoted as
(So, S1, 82, - - -Sr), where Sy is the initial state and Sg is the
final state. We denote the execution of an instruction as a
transformation function S,,; = I(S;;), where S, is the result
of the transformation, / is the transformation function, and S;;,
is the input state. Note that the type of the instruction to be
executed (e.g., add, load, store, move, etc.) is also determined
by Sin, because S;, includes the program code stored in the
memory and the program counter register.

Let us suppose there is an ideal machine that always
produces the correct result, and denote its transformation
function (execution of an instruction) as I/, and its execution
trace of the given program as (Sé, S{, Sé, .- -S{;). Then, let
us suppose there is a real machine whose transformation
function as 7% and its execution trace of the same program
is (SX, SR, S, .. .SR). We will prove that, if the real machine
guarantees instruction correctness and state preservation, its
execution trace is always the same as that of the ideal
machine, thereby qualifying it as a CEE.

216692

Definition I (Instruction Correctness): The execution of
an instruction is correct if it always produces the same output
as the ideal machine for the given input, i.e. IR(in) = I' (in).

Definition 2 (State Preservation): The state of a real
machine is preserved if the input state of an instruction
is always the same as the output state of the previous
instruction, i.e., for every i-th instruction, if SiR = IR(S'lR),
SR=gR

i i—1

The definition of state preservation entails memory consis-
tency, because part of the architectural state is maintained by
the memory. It is expected that the data written to the memory
is always the same as the data fetched later on.

We regard the initial state, Sp, as the primary input of the
program to be executed, and the final state, Sr, as the primary
output of the program.

Theorem 1: Theorem If a real machine guarantees
instruction correctness and state preservation, it guarantees
correct output, i.e., the execution trace of the real machine is
always the same as that of the ideal machine.

Proof: Letus suppose the same initial architectural state,
So, which includes the program code, is given to both the ideal
machine and the real machine. By instruction correctness,
IR%(So) = I'(Sp). Since the type of the first instruction is
determined by the initial state, the same instruction is exe-
cuted both on the ideal machine and the real machine. Both
execute the same instruction type with the same input. There-
fore, the result is always the same by instruction correctness.
In other words, S¥ = S1.

By state preservation, Sf is provided as an input to the next
instruction on the real machine. Since Sf = Sf, IR(Sf) =
1S, which means S¥ = S1.

By mathematical induction, it is guaranteed that ¥ (SI-R) =
I (Sil_l), i.e., SlR = SiI . Therefore, the execution trace of
the real machine is always the same as that of the ideal
machine, if instruction correctness and state preservation are
guaranteed. O

It should be noted that this theorem does not prove the
correctness of a program if the program is developed in a
wrong way (e.g., it has a bug). The program’s output may
be different from what is expected by the programmer, but it
is still same as the output of the ideal machine. In general,
it is the programmer’s responsibility to write the program
correctly.

C. IMPLEMENTATION OF CEE

The implementation of a CEE varies with the threat model
and the processor implementation. Here, we clarify the threat
model first, and then discuss how to implement a CEE to
satisfy the two requirements.

1) THREAT MODEL
The baseline threat model is trusted hardware, i.e., one may

trust the hardware and its manufacturer. This threat model is
similar to that of Intel’s SGX [25].

VOLUME 8, 2020

J. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

IEEE Access

o Adversaries cannot make changes to the hardware plat-
form.

o Adversaries can access the memory only through the
software interface (not by physical or side-channel
attacks).

o Adversaries can access the hardware only through the
software interface (they cannot read secret information
in the hardware, which is kept only in the hardware).

o The manufacturer of the hardware platform is trusted.

Here, the hardware platform includes both the proces-
sor core and the memory. We do not assume physical and
side-channel attacks to them. In other words, what is not
assumed by the threat model above needs to be handled by
existing techniques. For example, adversaries may change
the content of the memory by a row hammer attack, but
it is assumed that such an attack is prevented by existing
mechanisms [33]. Embedded processors are often equipped
with a JTAG (Joint Test Action Group) interface, which
facilitates debugging, but it should be disabled or protected
for verifiable computation [34].

This assumption may not be acceptable for every situa-
tion, especially if highly capable adversaries are assumed.
However, we believe that this assumption would be good
enough for most real-world occasions, because hardware
attacks demand more resources and capabilities (and some-
times expensive equipment), as compared to software attacks.
In fact, existing Trusted Execution Environments (TEE), such
as Intel’s SGX [25] and ARM’s TrustZone [24], are built
based on similar assumptions. Since TEE is a widely accepted
concept, we believe the trusted hardware threat model is
acceptable in most situations.

In addition to the trusted hardware, we may assume that
the system software can also be trusted. Table 1 summarizes
how to implement a CEE under these two threat models.
In the case of instruction correctness, we assume that the
trusted manufacturer tries its best to verify the correctness
of instructions. State preservation can be realized by trusted
hardware or system software. The rest of this subsection
discusses how to preserve the architectural state.

TABLE 1. Implementation of correct execution environment.

\ Property \ Trusted H/'W | Trusted System S/'W |
Instruction Validated by the trusted manufacturer
Correctness

State Preserva-
tion (Register)

By hardware backup By software backup

State Preserva- | By a hardware module | By a memory
tion (Memory) | that checks the target | management unit or
address of instructions | memory protection

unit

2) STATE PRESERVATION (REGISTERS)

If there is only one program running on a computing platform
(dedicated platform), there is no possibility of the registers
being modified by untrusted software, because none such
software runs on the system. However, if an interrupt occurs,

VOLUME 8, 2020

the interrupt service routine can modify the registers. Many
modern processors employ a separate set of registers for
the interrupt mode, but modification of the normal-mode
registers is usually allowed to enable exception handling.
Thus, even if there is only one program on the platform, any
exception handling should not be allowed while the protected
program is running.

This constraint, however, may not be acceptable for
real-time applications that need to process events in real time.
Alternatively, we may backup all registers of the protected
program before the interrupt service routine is called, when
an interrupt occurs. Register backup can be implemented by
hardware or software, depending on the threat model.

This approach can also be applied to multi-process plat-
forms, where multiple programs are running on the same
platform. To manage multiple processes, an operating system
is also needed. In such a platform, other untrusted programs
may modify the registers being used by the protected pro-
gram. Hence, whenever the protected program is scheduled
out in the middle of its execution, all registers should be
saved.

Since registers cannot be modified, however, there may be
an exception occurring inside the protected program, which
cannot be handled by an external exception handler. Recall
that it is the programmer’s responsibility to develop the pro-
gram in a correct way. If an exception occurs, the program
cannot be recovered and should be terminated.

3) STATE PRESERVATION (MEMORY)

Prevention of illegal modification to the memory is also
required. If the processor is equipped with a Memory Man-
agement Unit (MMU) or a Memory Protection Unit (MPU),
we can use these to control the access to memory regions
being used by the protected program. The MMU and MPU are
hardware units that grant, or deny, memory access, according
to the configuration. Since such units are configured by the
system software, if the system software is untrusted we need
an additional mechanism to prove the correctness of the con-
figuration. An example of proving correctness is to include
the hash of the configuration to the proof that is used to verify
the result.

If the processor does not have an MPU, we may add a
hardware module that monitors the target address of the load
and store instructions and prevents memory access if the
target address is in the range of regions used by the protected
program and the instruction does not belong to the protected
program.

4) EMPLOYING EXISTING TEEs FOR VERIFIABLE
COMPUTATION

As discussed in Section I, Intel’s SGX can be used to imple-
ment a CEE, as long as OCALL is excluded. If OCALL
is allowed, and the return value of the external function is
used in Enclave, the register that stores the return value is
updated by an external function. Since the register is updated
outside Enclave, the register appears not to be preserved from

216693

IEEE Access

J. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

the perspective of Enclave. If OCALL is not allowed, our
definition of CEE confirms that the output generated by SGX
is correct, because the architectural state is preserved by the
hardware-based memory isolation and the State Save Area
(SSA).

Even though it is possible to implement a CEE by using
SGX, it incurs significant performance overhead, because
the focus of SGX is not solely on VC. Whereas SGX’s
focus is more on integrity and confidentiality, the focus of
a CEE is on correctness. Therefore, SGX incurs significant
performance overhead if it is used for verifiable computation,
due to the inclusion of capabilities that are not essential for
VC. In contrast, the proposed CEE can be implemented in a
very light-weight manner. We will demonstrate this through
various experiments in Section VI.

D. THE LIMITATION OF A CEE

A CEE does not permit the call of an external function
residing outside the program. Thus, the program is required
to have all necessary functions inside. Although Intel’s SGX
allows the call of external functions, calling an external
function incurs significant performance overhead, because of
expensive context switching [35]. For this reason, Graphene-
SGX [35] has been proposed, which makes it easier to
develop statically-linked SGX applications. We expect that
the same approach can be employed for CEEs.

IV. A VERIFIABLE COMPUTATION SCHEME

By employing a CEE, the correctness of the output does not
need to be verified. However, the authenticity of the input,
output, and program must still be verified. In this section,
we present a VC scheme for this purpose. Our VC scheme is
markedly simpler than cryptographic approaches by assum-
ing that the computation is performed in a CEE.

The proposed VC scheme enables verification of the
authenticity of the input, output, and program by a proof.
The proof, which is generated by a CEE, is a signature of
the concatenation of the input, output, and program. Since
only a CEE can generate a valid proof, the proof verifies that:
(1) the triple of the input, output, and program is processed
together in the CEE, (2) the computation is done by a certified
CEE, and (3) the integrity of the triple is preserved on the way
from/to the verifier.

As atoy example, let us suppose that a verifier wants to out-
source the calculation of 1+ 1. The proof is a signature on the
concatenation of the input, output, and program, i.e., ((1,1),
2, 4). The proof verifies that the output (2) is the result of the
given particular input and program ((1,1) and +). If the output
were produced with a different input or program, the proof
would not match. Note that the proof does not verify that the
output is the “correct” result. This is guaranteed by the CEE
where the computation is outsourced. Since the proof is some
kind of digital signature, it proves that the output is generated
by a CEE, and, also, that the input, output and program are
not tampered with on the way.

216694

@»

EK,VK « KeyGen(14)

o O
® ®

D —x—23

Prover Verifier

y, & +compute(EK, F, x) verify(VK, F, x, y, 7)==1

FIGURE 1. Verifiable computation including KeyGen, Compute, and Verify.

A. VERIFIABLE COMPUTATION

In VC, aclient delegates the computation of some functions to
a server with any input, and the server performs the function
on the input and outputs the result and a proof with which
the client can verify if the result is correctly computed from
the given function and the input. To generate and verify a
proof, it is required to generate a key set of evaluation key and
verification key, as shown in Figure 1. The server computes
the function with an input and generates a proof with the
evaluation key. The client finally checks the proof with the
verification key.

Cryptographic approaches generate and verify the proof
by cryptographic operations, which include multiplication,
addition, exponentiation, and modular operations. They also
require the verification of the states at every step of com-
putation by calculating the hash values of the states. The
execution time of cryptographic approaches is usually very
long, because the computation of one arithmetic operation is
translated into a large number of cryptographic operations.

Formally, a VC scheme is defined by three algorithms P =
(KeyGen, Compute, Verify), as follows:

o (EK,VK) < KeyGen(1"): The key generation algo-
rithm takes the security parameter A and generates an
evaluation key EK to be used to evaluate the function,
and a verification key VK to be used to verify the result.

e (y,m) < Compute(EK, F,x): The prover takes the
evaluation key EK, the function F to be outsourced, and
input x; it performs computation of F on x, and generates
the result y and its proof .

o {0,1} < Verify(VK, F,x,y, m): The verifier takes the
verification key VK, the outsourced function F, input x,
output y, and the proof , and verifies that the output is
the result of the function on the input, i.e., y := F(x).

The verifier is a client that wishes to learn y := F(x) from
the prover, where F is a program that takes an input x and
generates an output. F' and x can be given by the verifier,
or they are publicly available.

The verifiable computation should satisfy the following
four properties [36], [37]:

VOLUME 8, 2020

J. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

IEEE Access

1) COMPLETENESS

It is required that Verify (VK,F,x,y,m) = 1, if
(EK, VK) < KeyGen(1*) and (y,) < Compute(EK, F , x)
for any function F and any input x.

2) SOUNDNESS

For any function F and any probabilistic polynomial-time
adversary A, Pr[F(x) # yand 1 < Verify(VK,F,x,y, m):
(EK,VK) <« KeyGen(lk); (x,y,m) <« A(EK,VK)] =
negl(}).

Efficiency. It is required that the time to execute the Verify
algorithm is asymptotically smaller than the time to evaluate
the function F. The proof size needs to be succinct as well;
in particular, we require that it is constant, regardless of the
function.

3) ZERO-KNOWLEDGE

We also consider a developed setting where the outsourced
computation, F'(x, w), operates on two inputs: the client’s
input x and an auxiliary server’s input w, which is confi-
dential. A verifiable computation scheme is zero-knowledge
if the client cannot learn anything about the server’s input
w beyond the computation result F(x,w) from a proof.
This feature is also useful when a randomized algorithm is
outsourced. The random number, or seed, is provided by the
server as a confidential input. The proposed VC scheme can
be used to prove the correctness of the random algorithm
without exposing the random number.

B. DIGITAL SIGNATURE SCHEME

A digital signature scheme is a cryptographic scheme that
demonstrates the authenticity of a digital message, or doc-
ument. The digital signature scheme consists of three algo-
rithms S = (Gen, Sig, Ver), such that:

o Gen: On a security parameter input, it outputs a pair of
public/secret keys (PK, SK).

o Sig: On inputs of a secret key SK and a message m,
it outputs a signature o.

e Ver: On inputs of a public key PK, a message m, and a
signature o, it outputs 1 if the signature o on the mes-
sage m is verified with the public key PK; otherwise it
outputs 0.

A digital signature scheme is required to satisfy the following
two security properties:

1) COMPLETENESS

It is required that for all (PK, SK) output by Gen, for all
messages M, and for all o output by Sigex (M), we have
Verpg(M,o) = 1.

2) UNFORGEABILITY

A signature scheme is existentially unforgeable under an
adaptive chosen message attack if, for all probabilistic
polynomial time attackers F with access to the signa-
ture oracle, the following is negligible in the security

VOLUME 8, 2020

parameter: Pr[Verpg(M',0) = 1 A M ¢ M
(PK,SK) <« Gen;(M',0) < F5i8sk0)(PK)], where M
is the set of messages queried by F to the Sig oracle.

C. CONSTRUCTION

The proposed scheme follows the same framework described
in the previous subsection. In particular, the scheme is con-
structed by applying a digital signature scheme to CEE.
Given an unforgeable signature scheme S = (Gen, Sig, Ver),
we construct the proposed verifiable computation scheme P,
as follows:

o KeyGen: On input 1%, the algorithm executes (PK, SK)
< S.Gen(1*) and sets EK := SK and VK := PK. The
evaluation key EK is given to the CEE of the prover. The
public key VK is given to the verifier.

o Compute: On inputs of the evaluation key EK and the
initial architectural state So = (F, x), which includes
the program F to be executed and the input data x,
the prover’s CEE computes the final state Sp = F(x)
and generates a proof using EK. The proof is the signa-
ture on the initial state Sp and the final state Sg,i.e., 7 =
o where o0 < S.SIGgk(So||SF). The prover sends the
output Sr, and the proof 7.

o Verify: On inputs (VK, So, Sf,), the verifier verifies
the proof by validating the signature with the veri-
fication key VK. Only if the signature is validated,
i.e.,S.VERyk (So||SF,) outputs 1, the verifier proceeds
to verify the result.

Theorem 2: Theorem The above verifiable computation
scheme ‘P is correct, secure, efficient, and zero-knowledge
under unforgeability of signatures, instruction correctness,
and state preservation of the CEE.

Proof: Completeness holds as follows:

Verify(VK, So, Sp, 1)
= S.Veryg (SollSF, S.Siggx (SollSF))
= S§.Verpg (Sol|SF, S.Sigsx (SollSF)) =1

Efficiency holds, since the size of a proof consists of only
a single signature element, and the time to verify the proof
corresponds to the time to verify one signature, regardless of
the function.

The scheme supports the zero-knowledge property. The
proof is a signature on the input/output, and it only reveals
the validity of the input/output.

Finally, the soundness can be broken either by attacking
the inside of the CEE, or by attacking the outside of the
CEE. Since the CEE provides instruction correctness and
state preservation, signatures by the CEE are generated only
on correct execution results. Thus, the former attack is not
allowed in the CEE. Said attack may occur on the commu-
nication channel between the verifier and the prover (the
outside of the CEE). We show that, if there exists an attack to
break the soundness of the scheme, then the signature is exis-
tentially forgeable. Using the attacker algorithm .4 against
security, we construct a signature forger algorithm F. Given

216695

IEEE Access

J. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

the public key PK of the signature scheme, F sets VK = PK
and provides VK to A. For the query to the prover on input Sy,
F computes S, receives the signature 7 on So||Sr by query-
ing the signature oracle, and responds with S, along with 7.
The query is allowed polynomial number of times. We denote
all queries to the prover as {(Si, S;, ni)}lf i< n for n number
of queries. Finally, if 4 outputs (S§, S5, 7*) s.t. the Verify
function outputs 1 and (S5, Sp, %) ¢ {(Sé, SI’,;-, T < i< ns
then F outputs (S5 ||SF, 7*), where * is a new signature on
(S5 11S)- By showing the contradiction, the soundness holds.
J
Completeness means that the proof must be valid if the
computation is performed in an expected way, whereas
soundness means that the proof must be invalid if the com-
putation is not performed in an expected way. The two
requirements of the CEE (instruction correctness and state
preservation) guarantee that the prover does not deviate from
the expected computation. Thus, the requirements are related
to both completeness and soundness. The proof of the pro-
posed VC scheme validates the authenticity, only assuming
that the two requirements guarantee that the output is com-
puted in an expected way. The completeness and soundness
of the proof hold only if the two requirements are met.

V. PROTOTYPE

As a proof of concept, we present our implementation of the
proposed verifiable computation scheme, including imple-
mentations of the CEE. The trusted hardware threat model is
assumed, and any software — including system software and
other programs — is not trusted. Thus, the property of state
preservation is supported by hardware mechanisms.

A. OPTIMIZATIONS

To generate the proof, our proposed scheme is required
to generate the signature of the architectural state twice,
before and after executing the program. The architectural
state includes all registers and the entire memory space.
Practically, it is not efficient to include all of these.

We can develop the program such that all inputs are given
to the memory, and registers are initialized by reading the
memory. Thus, the initial state Sp can be determined only
by the initial state of the memory. In this case, we consider
the initial state of the memory as an input. In a similar
vein, the final output can always be written to the memory
when the program finishes. Thus, the final state of the mem-
ory is considered as an output. By doing this, we do not have
to include registers to generate the proof.

Furthermore, we do not have to include the entire memory
space, because not all of it is used by the program. We divide
the memory into four regions and require the verifier to pro-
vide the memory layout of the program. The memory regions
are for inputs (R), outputs (W), temporary data (7), and
program code (X). It is required that the input data should be
written to R, the program code to X, and the final outputto W.
The verifier needs to obtain the layout information while the
program is being developed. The region for temporary data

216696

(T) is used for global variables and dynamic data structures,
such as the stack and heap. The program should be developed
in such a way that the program code and the input should not
be modified, and the final output is written to the designated
region (W). The CEE generates the hash on R and X at the
beginning of the program, and on W at the end of the program,
but not on T, because T is only used for temporary data.

Our prototype supports separate verification. The verifier
can verify all of the program code, input, and output, but
it may want to verify only a part of them. For example,
the verifier may only verify the hash of the program code
(excluding the input and output). What it guarantees is that
the original program (without any alteration) ran on a known
trusted hardware platform. It still gives us useful information
if we want to verify the integrity of the program running
on a remote device. It is the same principle as the one used
in attestation techniques [38]. As another example, we may
verify the program code along with the output (excluding
the input). It informs us that the output is what the original
program has generated on a trusted platform. It can be used
to verify the command or data received from a remote device.
Thus, the verifier is required to send B, which indicates
whether it wants to verify the program code, input and output,
or not, individually. If any of hashes are not included in B, it is
replaced with all zeros.

In summary, Sp in our prototype consists of the following
fields:

o X: Program code.

o R: Input data.

o L: Memory layout.

« B: Flags that indicate inclusion of X, R, and W.

For efficient computation of hashes, we compute the hashes
of the four fields individually, and concatenate them when
they are signed. In the case of the output, Sg is the
same as W.

B. PROTOCOL
The protocol is defined as follows (also illustrated
in Figure 2):

¢ (S1) The manufacturer programs a random number into
the CEE when the CEE is manufactured.

o (S2) The CEE derives a pair of public and private keys
and publishes the public key.

e (S3) The verifier sends the initial state to the prover,
which includes program code, input data, memory lay-
out, and flags.

o (S4) The prover writes the program code and the input
data to the designated memory regions.

 (S5) The prover initializes the CEE by setting the mem-
ory layout information.

¢ (S6) When the program starts, the CEE generates the
hashes on R and X. It also generates the hash on the
memory layout information.

VOLUME 8, 2020

—

. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

IEEE Access

Verifier Prover Program CEE Manufacturer

(»51) Random numbe‘r

I (S2) Public key I

(S4) Write input and code to the ! i
memory regions

(S3) Initial state

|
|
I
|
|
|
(S5) Initialize hardware }

(S6) Start I (s6) Start

(S7) Finish (S7) Finish

(S8) Read signature

(S9) Send i 1
signature } }
I I

FIGURE 2. The protocol of the proposed verifiable computation scheme
when a CEE is employed.

e (S7) When the program finishes, the CEE generates the
hash on W and a signature on the concatenation of all
the hashes.

o (S8) The prover reads the signature and sends it to the
verifier, along with the output and the public key of the
CEE.

o (S9) The verifier verifies the signature by the public key
and the output.

In our prototype, the CEE is implemented in hardware and
it generates the signature. As Intel does for SGX, we also
assume that the manufacturer programs a random seed so that
the CEE can derive a pair of public and private keys. It is
assumed that the trusted manufacturer honestly publishes the
public key received from the CEE. Unless physical attacks
are committed, the private key is securely kept only in the
hardware of the CEE. The private key cannot be read through
the software interface.

Our threat model assumes the prover is not trusted. The
prover may try to deceive the verifier by modifying the pro-
gram or input data, writing them to a wrong memory region,
giving a wrong memory layout to the hardware, or forge the
output. However, it cannot forge the proof, which is signed
by the hardware, because the private key is not accessible.
Therefore, all of these trials result in a discrepancy in the
proof, which can be detected by the Verify function.

C. CEE PROTOTYPE
We prototype the CEE under the assumption of the
trusted hardware (but not system software), as described in
Section III-C. We implement it on an open-source AMBER
processor which is written in Verilog [39]. The instruction
correctness property is validated by extensive simulations.
The state preservation property is realized by the techniques
presented in the second column of Table 1, which refer to the
trusted hardware threat model. The register file is modified to
preserve registers. The execution stage is modified to prevent
illegal modification to memory regions.

For verifiable computation, we add a hardware accelerator
to generate the signature. The cache controller is modified

VOLUME 8, 2020

to compute the hashes of X, R, and W, and a dedicated
encryption module is added to generate the signature.

Finally, we add a memory-mapped peripheral connected
to the system bus, which interacts with the software and
provides necessary information to the hardware logic, which
is added to implement the proposed scheme.

1) STATE PRESERVATION

If the program counter exits from region X while the pro-
tection mode is active, all registers should be saved. In our
implementation, we employ extra hardware registers. If the
registers are saved by software, they may be saved in the
memory. However, since this process should be performed
by the hardware, the latter cannot handle the situation if there
is not enough space in the memory. If this situation occurs,
the hardware platform may not be able to guarantee correct
output.

We employ a backup register for every register in the pro-
cessor. When the program counter exits from X, all registers
are saved to their corresponding backup registers, and they are
restored from the backup registers when the program counter
comes back. Even though this approach incurs hardware cost,
it does not incur any performance overhead, because the
registers are saved and restored in one clock cycle.

While the protection mode is active, the target address of
load and store instructions, and their program counter should
be checked. Depending on the addressing mode, the target
address may become available at the decode stage, or the
execution stage. Since the execution stage is after the decode
stage, the target address is certainly available in the execution
stage. Thus, we implement the address checking logic in the
execution stage.

The logic checks the conditions of the memory target
address and the program counter. The logic prevents the
memory from being modified by other programs. This can be
achieved by monitoring the store instructions. Here, a ‘‘store”’
instruction refers to all instructions that write data to the
memory. If the target address of the store instruction is in W
or T, the location (program counter) of that instruction must
be in X.

Note that R and X cannot be written by any program. The
protected program itself is required not to modify its program
code and the input. This is required for efficient generation of
hashes. This requirement is also checked by monitoring the
store instructions. If the location of the store instruction is
in X, its target address must be in W or T. However, it is still
the responsibility of the program developer to ensure the final
output is written to W. If the final output is written only to 7',
but not to W, its hash cannot be generated.

2) SIGNATURE GENERATION

While the hash of region W needs to be computed after the
program completes, the hashes of R and X can be computed
anytime, because we do not allow modifications to R and X.
If self-modifying code is allowed, the hash of X needs to be
computed before the program starts. In this case, we cannot

216697

IEEE Access

J. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

exploit the cache. If the hash is computed during the execution
of the program, the data in the cache can be used for hash
computation, which reduces the performance overhead. Thus,
we implement hash computation by modifying the cache
controller.

If the processor needs to access the memory while the hash
computation logic is accessing the memory, the processor
should wait, which causes performance degradation. Conse-
quently, the hash computation logic needs to be designed so
as to minimize interference with the processor.

In the case of AMBER’s cache controller, it does not
support the handling of multiple outstanding cache misses.
When a cache miss occurs, the processor is stalled and does
not access the cache. When a cache hit occurs, the cache
controller does not access the memory. We exploit this to
minimize the interference.

The hash computation logic searches for data in the cache
only while a cache miss occurs. It reads data from the memory
only while a cache hit occurs. Since memory access cannot
be preempted, this implementation still incurs overhead if a
cache miss occurs before the hash computation logic finishes
its memory access. However, this approach minimizes the
interference by exploiting the idle time of the cache con-
troller.

The computed hashes are sent to another hardware logic
module that generates the signature after the program
finishes.

3) MEMORY-MAPPED PERIPHERAL

The memory-mapped peripheral is an interface with the
prover software. It provides a set of registers that act as the
desired interface. Table 2 summarizes these registers.

TABLE 2. Registers of the memory-mapped peripheral.

[Name [Read/Write | Description]

R_START | Read/Write | The start address of region R
R_END Read/Write | The end address of region R
X_START | Read/Write | The start address of region X
X_END Read/Write | The end address of region X
W_START | Read/Write | The start address of region W
W_END Read/Write | The end address of region W
T_START | Read/Write | The start address of region I’
T_END Read/Write | The end address of region I’
START Write Only | The prover writes 1 when it is
ready to start computation
DONE Write Only | The program writes 1 when it fin-
ishes computation
READY Read Only | The hardware writes 1 when it
finishes signature generation
SIG Read Only | The generated signature
KEY_P Read Only | The public key of the platform

The first eight registers are for setting the memory regions.
The prover sets them up after receiving the pertinent infor-
mation from the verifier. The prover also needs to store the
program code and input to the designated memory regions.
After it finishes storing, it writes 1 to START and then jumps

216698

to the entry point of the program in region X. The hardware
activates the protection mode when the program counter
enters region X, while START is 1. While the program is
running, the hardware computes the hashes of X and R. The
hardware platform guarantees that the contents in X and R
will not change until the program completes, by checking the
memory target address and program counter, as previously
discussed. When the program is done, it writes 1 to DONE,
which informs the hardware that the output is available. The
hardware computes the hash of W and generates the signa-
ture. After generating the signature, the hardware platform
writes the signature to SIG and 1 to READY to inform the
prover that the signature is ready to read. The prover reads
the signature and sends it to the verifier along with the
output. When the prover reads SIG, the hardware platform
terminates the protection mode and resets its state to get ready
for the next computation. When the verifiable computation is
terminated, the memory regions (R, X, W, and T') are freed.

4) EXTENSION

Our CEE prototype employs dedicated hardware accelerators
for crytographic primitives (hash and digital signature). If the
VC scheme is extended to support other cryptographic algo-
rithms, we may employ flexible hardware accelerators [40],
[41]. In addition, the CEE can protect multiple applica-
tions simultaneously, if the CEE is equipped with multiple
instances of the memory-mapped peripheral.

D. CEE PROTOTYPE WITH INTEL's SGX

We also prototype the VC scheme using Intel’s SGX under
the same trusted hardware assumption. Even though SGX
encrypts the memory, which may appear to be stronger than
the CEE requirements, it does not affect the threat model.
If adversaries can make changes to the hardware, SGX cannot
be trusted. If they access the memory by other means than the
software interface, the adversaries cannot read the contents,
but they can still tamper with the contents, which could result
in incorrect outputs. If the adversaries can access the secret
information in the hardware through physical attacks, SGX
cannot be trusted. If the manufacturer is not trusted, we cannot
authenticate SGX-enabled processors.

Under this threat model, as long as OCALL is not allowed,
SGX is qualified as a CEE and guarantees the correctness
of the output, but it does not guarantee the authenticity of
the input, output, and program. Thus, we implement our
VC protocol in Enclave. The hash computation and signature
generation are implemented as software running in Enclave.

The SGX-based prototype is intended to demonstrate that
our definition of CEE is general enough to be implemented
in various ways, and to compare the performance overhead
against our light-weight prototype.

VI. EXPERIMENTAL EVALUATION
Through various experiments, we demonstrate that the
performance overhead of the proposed scheme is an

VOLUME 8, 2020

J. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

IEEE Access

order-of-magnitude lower than prior work. We also analyze
the hardware cost to implement the hardware-based CEE.

The performance is measured by running benchmarks on
the AMBER processor. The number of clock cycles is mea-
sured by simulating the processor. Since the processor is
written in Verilog, we use the Xilinx ISE Verilog simulator.

We use 7 benchmarks from the MiBench suite [42]. The
MiBench suite is mainly targeted at the evaluation of embed-
ded systems, and it consists of various algorithms, including
cryptography (BlowFish, SHA), media (ADPCM), encod-
ing (CRC32), sort (QuickSort), bit counting (BitCount),
and string matching (StringSearch). The benchmarks are
compiled using the GCC ARM cross compiler, because
the AMBER processor is compatible with the ARM ISA.
The MiBench benchmark characteristics are summarized
in Table 3. Even though the proposed scheme does not impose
any limitations on the program size and input size (other than
the physical memory size of the platform), we limit the size of
the benchmarks, in order to compare the results with previous
works (to be presented later on). Said previous works impose
limitations on the program and input sizes.

TABLE 3. Characteristics of MiBench [42] benchmarks. ‘Executed’ refers
to the number of executed instructions.

[Benchmark [Executed | Programsize | Input size |

ADPCM 121,672 5,116 B 3,072 B
BitCount 115,895 4,828 B 292 B
BlowFish 372,860 4,820 B 4,258 B
CRC32 137,460 4,576 B 1,136 B
QuickSort 126,712 4,320 B 528 B
SHA 239,833 5,968 B 672 B
StringSearch 167,549 4,444 B 2,852 B

To analyze the hardware cost, we measure the hardware
area by using the Synopsys Design Compiler. We compare
the area of the modified processor against the original one.

The proposed scheme is orthogonal to the hashing and
signing algorithms. Thus, we estimate their impact on per-
formance and hardware cost from the latest literature [43].
SHA-2 (Secure Hash Algorithm) [44] and ECDSA (Elliptic
Curve Digital Signature Algorithm) [45] are used as hashing
and signing algorithms, respectively, in our experiments.

A. PROVER OVERHEAD

The prover needs to generate the proof while running the
program. In this subsection, the overhead of proof genera-
tion is analyzed. The overhead is measured by comparing
the execution time of a benchmark with and without proof
generation.

In the proposed scheme, the proof is generated by the
hardware platform. The overhead occurs if the hash compu-
tation logic interferes with the processor when it accesses the
memory. Thus, the overhead is positively correlated with the
memory access time. In other words, if the memory access
time increases, the overhead is also likely to increase. From
the perspective of the processor, if the cache size is smaller,

VOLUME 8, 2020

= o —— ADPCM
g —w— BitCount
g 70 BlowFish
g 604 CRC32
5 %0 L QuickSort
s 40 —e— SHA
2 30 ’\e\, —e— StringSearch
E;; 20
6 10

0

20 15 10 5

Memory access time (cycle)

FIGURE 3. The overhead of proof generation when varying the memory
access time. The access time is measured in processor clock cycles. The
cache size is 16 KB.

70

= ADPCM
s 60 —— E:tCoFu_nL
o owFis
I S— ‘ CRC32
> 40 QuickSort
o 309 SHA
2 —se— StringSearch
c 20
g 10

0

4K 8K 16K 32K

Cache size (byte)

FIGURE 4. The overhead of proof generation when varying the cache size.
The memory access time is 10 cycles.

the perceived memory access time increases. Thus, we mea-
sure the performance overhead by varying (a) the memory
access time, and (b) the cache size.

The main memory is typically implemented as Dynamic
Random Access Memory (DRAM). The access time of
DRAM heavily depends on the access patterns. Since the
access patterns are not the focus of this work, we assume the
use of Static Random Access Memory (SRAM) as the main
memory in this experiment to eliminate unexpected artifacts
on the performance. It always takes the same number of clock
cycles to access the memory.

The hash algorithm does not have a direct impact on the
performance overhead. The overhead is incurred because of
the memory accesses. Once the data is fetched, the hash
computation is done by dedicated computation logic, which
does not interfere with the execution of the program. In other
words, the computation time of the hash is not visible,
because it is performed in parallel with the program exe-
cution. In contrast, the overhead of signature generation is
visible, because it can only be performed after the program
completes.

Figures 3 and 4 show the results. As expected, the longer
the memory access time is, the more overhead is incurred.
Similarly, the smallest cache size incurs the most overhead.

The overhead is at most 86.12% in the case of a 20-cycle
memory access time and a 16 KB cache size. Figure 5 shows
the breakdown of the computation time for these particular
parameters. On average, 13.74% of the overhead is attributed
to the interference with memory accesses, and 21.43% to the
signature generation.

216699

IEEE Access

J. Lee et al.: Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment

)

g
o
o

= Original
g Interference
5 80 7 Signature
2

[0

£ 60

S 40

IS

3 20

€

[e]

o

40/08/,0 8, Con Q. Sty St
0, W 1o A,
Chy %, N % 4—80,7 G G’ef%

FIGURE 5. Breakdown of the computation time. ‘Original’ refers to the
original computation time, i.e., the time taken to execute the program
without computing the hash and signature. ‘Interference’ refers to the
increased time due to the interference with memory accesses. ‘Signature’
refers to the time taken to generate the signature.

TABLE 4. Comparison of the execution time with previous work.
‘Original’ is included as a reference, which is the execution time of the
benchmark without computing the hash and signature. Note that the time
unit of previous work is hours, whereas the time unit of the proposed
scheme is milliseconds.

Benchmar] rigina Propose No-limit [32] | Limit [10]
hmark | Original d limit [32 imit [10

ADPCM 1.82 ms 2.01 ms 885.50 h 3.00 h
BitCount 1.99 ms 2.06 ms 843.45h 2.86 h
BlowFish 5.41 ms 5.68 ms 2,713.59 h N/A
CRC32 2.55 ms 2.67 ms 1,000.40 h 3.39h
QuickSort 1.91 ms 1.98 ms 922.18 h 3.13h
SHA 3.62 ms 3.75 ms 1,745.45h 6.58 h
StringSearch | 2.45 ms 2.60 ms 1,219.38 h 4.60 h

To compare the prover overhead with prior techniques,
we translate the numbers of cycles to actual times by assum-
ing the processor runs at 100 MHz (10 ns/cycle). We assume
this clock speed, because the maximum clock speed of the
ECDSA logic is 107.4 MHz [43]. Since we assume a low
clock frequency, a 5-cycle memory access time is used for
the comparison. Table 4 shows a comparison of the execution
time of the benchmarks — when verifiable computation is
enabled — between the proposed scheme and two state-of-
the-art software-based related works [10], [32].

The references report the execution time of one instruction.
The overall execution time depends on the program size and
the input size. We pick the execution time from the table in
each reference (according to the program size and the input
size of each application), and multiply it by the number of
executed instructions. Specifically, Table 5 shows precisely
how the execution time is calculated. The execution time
per instruction (““Per inst. (8)” in the table) is taken from
reference [32] according to the program size and the input
size. In the same way, y is taken from reference [10]. The
number of executed instructions (‘‘No. of executed inst. («)”’
in the table) is obtained from our simulation framework. The
total execution time (“Exe. time” in the table) is calculated
by multiplying the execution time per instruction with the
number of executed instructions.

The two previous works [10], [32] support programs run-
ning on general-purpose Von Neumann processors. While
the work in [32] has no limitation on the number of

216700

executed instructions, the other work [10] imposes a limit.
The overhead of [10] depends on the limit set on the num-
ber of executed instructions. Even if the technique in [10]
imposes a limit on the number of instructions, it is signifi-
cantly faster than the work without limitation [32]. In the case
of the BlowFish benchmark, the execution time is not avail-
able for [10], because it exceeds the aforementioned limit.

As clearly shown in the table, both previous works incur
significantly higher performance overhead, because they ver-
ify every instruction fetch, instruction execution, and memory
access. Furthermore, the overhead of the key generation in the
previous works is not even included in the table. On the other
hand, the proposed scheme drastically reduces the overhead
by introducing a CEE, which allows for the omission of the
verification of program execution.

B. VERIFIER OVERHEAD

When the verifier receives the output and the proof, it verifies
them by itself computing the proof. The hashes of S(¥ can
be computed before the verifier receives the output, or they
may be publicly available. However, in this experiment,
we include the hash computation to the verification time. The
verification time is measured on the same AMBER proces-
sor with a 5-cycle memory access time and 16 KB cache.
A hardware accelerator for the hash and signature verification
is assumed [43].

The verification time results are shown in Table 6. As a ref-
erence, we compare the verification time of the benchmarks
against their original execution time. If verifiable computa-
tion is used to outsource the computation, the verification
time should be shorter than the original execution time.
Indeed, as shown in Table 6, the verification time for the pro-
posed approach is always shorter than the original execution
time. The verification time is at most 78.69% of the original
execution time (in the case of the ADPCM benchmark).
On average, the verification time is 58.50% of the original
execution time. The verification time of the previous works
is linearly related to the program size (No-limit) and the input
size (Limit). The relation between the program size and the
verification time is given in reference [32]: ver