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Abstract

Episodic memory is thought to involve functional interactions of large-scale brain networks

that dynamically reconfigure depending on task demands. Although the hippocampus and

closely related structures have been implicated, little is known regarding how large-scale

and distributed networks support different memory formation demands. We investigated

patterns of interactions among distributed networks while human individuals formed item-

context memories for two stimulus categories. Subjects studied object-scene and object-

location associations in different fMRI sessions. Stimulus-responsive brain regions were

organized based on their fMRI interconnectivity into networks and modules using probabilis-

tic module-detection algorithms to maximize measurement of individual differences in mod-

ular structure. Although there was a great deal of consistency in the modular structure

between object-scene and object-location memory formation, there were also significant dif-

ferences. Interactions among functional modules predicted later memory accuracy, explain-

ing substantial portions of variability in memory formation success. Increased interactivity of

modules associated with internal thought and anti-correlation of these modules with those

related to stimulus-evoked processing robustly predicted object-scene memory, whereas

decreased interactivity of stimulus-evoked processing modules predicted object-location

memory. Assessment of individual differences in network organization therefore allowed

identification of distinct patterns of functional interactions that robustly predicted memory

formation. This highlights large-scale brain network interactions for memory formation and

indicates that although networks are largely robust to task demands, reconfiguration none-

theless occurs to support distinct memory formation demands.

Introduction

Cognition is supported by large-scale brain networks [1] that can be studied using connectivity

analyses of MRI and fMRI data [2]. The critical role of hippocampus in episodic memory has

been established, and fMRI connectivity analyses have implicated a broader network of regions

that are thought to interact closely with the hippocampus [3–5]. Consistent with this fMRI
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evidence for a broader episodic memory network, lesions of regions such as prefrontal and

parietal cortex disrupt some measures of episodic memory [6, 7]. Many experiments have

focused on broad networks of the hippocampus supporting associative memory for stimulus

pairings, such as the relationship between an item and the context in which it was presented

(item-context memory) [3]. Item-context memory has been associated with interactivity of the

hippocampus with a variety of cortical regions forming anterior-temporal and posterior-

medial networks [3–5].

However, fMRI studies of the network-basis of memory have mainly used targeted analyses

that focus either exclusively on the hippocampal formation and its connectivity [8–10] or only

consider connectivity in relation to specific components of task-related signal [6, 11, 12]. In

other domains, such as language, broader interactions have been explored, thus providing

information on how the structure of large-scale brain networks vary with different cognitive

task demands [13–15]. Although some studies have focused on network interactions support-

ing episodic memory retrieval [16–18], such interactions during memory formation have

rarely been explored.

Here, we sought to evaluate the potential for fMRI analyses of large-scale networks during

memory formation by identifying relevant interactions that support distinct types of item-con-

text memory formation. Item-context memory is a broad category that includes a variety of

different stimulus and task formats [3, 5, 19]. Little is known regarding variation in brain net-

works that support different types of item-context memory. Although evidence taken from

many rodent and human studies suggests specialization along the hippocampal long axis and

its associated networks based on the nature of stimuli comprising item-context associations

[19], we are unaware of within-experiment comparisons to identify distinct networks for item-

context associations of different formats. We developed tasks involving episodic memory for

two types of item-context associations: object-scene associations and object-location associa-

tions. In the analysis of networks associated with the two memory tasks, we used a relatively

novel application of probabilistic connectivity considering inter-subject variability in func-

tional networks [13, 20]. This method provides estimates of inter-subject variability in network

structure, thus yielding greater potential for identification of connectivity patterns accounting

for inter-subject variability in memory performance. This allowed us to identify functional

network interactions associated with memory formation in different ways for two standard

item-context memory formats.

Materials and methods

Participants

Data were collected from 30 subjects (21 females and 9 males; mean age, 25.6 years; age

range = 18–34 years). All participants had normal or corrected-to-normal vision and did not

report any neurological disorder or current drug use. They were eligible based on standard

MRI safety screening. Data from 17 of the subjects were collected as part of the baseline assess-

ment for a two-week noninvasive brain stimulation experiment, and effects of brain stimula-

tion were reported elsewhere [21]. All participants provided written informed consent and

were compensated for their participation. The experiments were conducted according to the

Declaration of Helsinki and approved by Northwestern University Institutional Review Board.

Task procedures and experiment design

fMRI scanning occurred during two item-context associative memory tasks of different for-

mats: object-scene and object-location (Fig 1). These tasks differed in the type of contextual

information for which memory was tested, but were matched in many other parameters,
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including the same number of contexts paired with each item, similar potential for contextual

interference across trials, and difficulty. In the object-scene task, 36 trial-unique objects were

arbitrarily paired with one of six scene images, whereas in the object-location task, 36 trial-

unique objects were arbitrarily paired with one of six screen locations. Each context (scene or

location) was paired with exactly six objects. The images for trial-unique objects and scene

objects were respectively taken from stimulus sets developed for research purposes, described

in Brady et al.[22] (Computational Visual Cognition Lab, http://cvcl.mit.edu/MM, Cambridge,

MA) and Hannula et al.[23]. There were five different sets of object images each with six corre-

sponding scene images that were generated via random selection from the overall set, and

these five sets were counterbalanced across subjects. Within each set, images of objects were

randomly assigned to condition (old versus new), as described below.

For the object-scene task, subjects were familiarized with the six scenes prior to the study

phase (scenes were viewed freely and subjects provided verbal labels aloud for each). During

Fig 1. Object-scene and object-location memory tasks. In the object-scene task, subjects were first pre-familiarized with six scenes. During the study phase, subjects

studied 36 trial-unique objects, each paired with one scene (six objects were paired with each scene) in randomized order. Three additional non-tested items were used

as primacy and recency buffers. During the corresponding test, old objects were presented intermixed with an equal number of new objects. Subjects made old/new

recognition judgments mixed with a confidence judgment. For all old items, subjects then selected the scene that was paired with the object. The object-location task

followed a similar format, except that there were six possible screen locations instead of six possible scene associates. Object and scene images were respectively taken

from publically available sources, which were described in Brady et al.[22] and Hannula et al.[23], with no copyright protection via the internet for display purposes.

https://doi.org/10.1371/journal.pone.0210167.g001
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the object-scene study session, each object was presented next to its corresponding scene for

1.5 seconds, followed by random inter-stimulus interval ranging 2 to 6 seconds (mean = 4 s).

An additional six object-scene pairs were presented, three at the beginning of the study session

and three at the end, but these were not later tested, to reduce primacy and recency effects

[24]. The corresponding object-scene memory test followed the study session by a delay of

approximately 2 minutes during which subjects were reminded of instructions. Seventy-two

objects were presented, half of which were old (presented during the study session) and the

other half new, in randomized order. On each trial, the object appeared first for 2 s, followed

by a random delay of 2–6 seconds (mean = 4 s) with a white fixation cross at the center of the

screen. Then a prompt appeared asking subjects to categorize the object as old or new, each

with two levels of confidence (“certain” or “uncertain”). Subjects had three seconds to make

the response and trials without any response were considered “missed” and excluded in further

analysis, with fewer than one missed trial on average for both tasks (object-scene: 0.77 ± 0.35

trials, object-location: 0.40 ± 0.16 trials, mean ± SE). For old objects only, subjects then were

asked to respond to indicate the corresponding studied scene context. This occurred for all old

objects, irrespective of whether the old/new response was correct. Immediately after subjects’

old/new response or three seconds after the prompt appeared without subjects’ response, the

six possible scene context images were shown, and the subject had to select the scene context

paired with the object. This response portion lasted five seconds and the trials without

responses were counted as incorrect. An inter-trial interval of 2–6 seconds (mean = 4 s) sepa-

rated the response period from the next trial.

The object-location memory task was identical to the object-scene memory task, except for

the nature of the context. Instead of being presented paired with one of six scenes, trial-unique

objects during study were presented at one of six possible screen locations, and memory for

these locations was probed in the corresponding test session using the same format as in the

object-scene task (Fig 1).

The study and test portions of the object-scene and object-location memory tasks were pre-

sented consecutively, with the order of tasks counterbalanced across subjects. Subjects were

familiarized with the overall procedure before the experimental session and therefore were

aware of the upcoming memory tests during the study phases of the tasks. The tasks were per-

formed while subjects laid supine in the scanner, viewing an MRI-compatible LCD monitor

via a mirror attached to the head coil. Objects and scene images subtended approximately 3×3

degrees of visual angle. The 2×3 grid used for the object-location task subtended approxi-

mately 6x9 degrees of visual angle. Responses during the memory tests were registered using

an MRI-compatible mouse, which rested on a rigid plastic surface and was controlled with the

right hand.

MRI data collection and preprocessing

MRI data were collected during the study and test sessions of each task, but only study sessions

are analyzed here as our focus is on memory formation rather than retrieval. MRI data were

collected using two Siemens 3T TIM Prisma whole-body scanners with 64-channel head/neck

coils. A structural image was acquired before the task to provide anatomical location

(MP-RAGE T1-weighted scans; voxel size: 1mm3; field of view: 256 mm, 151 sagittal slices).

Whole-brain functional images were acquired during the tasks, with a 2000-ms repetition

time, 20-ms echo time, 210 mm field of view, 80˚ flip angle, 1.7×1.7×1.7 mm isotropic voxels,

and multi band factor of 2. Preprocessing of fMRI data used AFNI software version 4.56 [25].

The procedure includes motion correction with estimating six rigid body motions (3dvolreg),

correcting multi-band slice-timing (3dTshift), coregistration of skull stripped structural image
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(3dSkullStrip) and functional images with using a local Pearson correlation as a cost function

(align_epi_anat.py), normalization to stereotactic space using a standard template (@auto_tlrc),

which is manually Talairched version of the Colin_N27 dataset (TT_N27 in AFNI), and spatial

smoothing with a 3-mm FWHM Gaussian kernel (3dmerge). The smoothed fMRI time course

data were band-pass filtered with 0.01–0.1 Hz and de-spiked (3dBandpass). The duration of

each scan varied slightly based on ISI randomization, varying from 115 to 132 volumes for the

scene task and from 117 to 133 volumes for the object-location task. There was no significant

difference in duration between tasks (t(29) = 0.57, P = 0.57).

Region of interest selection

We defined functional-anatomical ROIs via a two-step procedure. First, we identified regions

that were task-responsive, as defined by univariate analysis of stimulus-evoked activity pooled

for both object-scene and object-location tasks. For each subject, the estimated BOLD

response to all stimuli was obtained via a general linear model incorporating hemodynamic

response deconvolution (3dDeconvolve). Regressors of interest included all stimulus onsets

for the object-scene and object-location tasks and six parameters for rigid-body estimates were

entered as regressors of no interest. The hemodynamic response was modeled as six tent func-

tions from 0 sec to 10 sec after stimulus onsets with peaks every 2 seconds (aligned to the TR).

Group-level one-sample t-test (3dttest++) was used to identify all task-responsive voxels,

whose sum of 12 beta coefficients of tent functions (six from each of object-scene and object-

location regressors) were significantly different from zero with a lenient threshold, P< 0.05

uncorrected, 2-tailed. We used this lenient threshold for network construction and thus make

no claims about statistical significance of the activation map. Also, note that univariate model-

ing was used for ROI definition, but was not otherwise part of the connectivity analysis (see

below). Voxels, whose evoked activities by stimuli were significantly different from zero, were

labeled according to whether they showed positive evoked responses (task-positive) versus

negative evoked responses (task-negative)[14, 26–28] (see S1 Fig). We then partitioned these

functional activation maps according to structural atlases. We considered 85 anatomical

regions of interest (ROIs), with 70 cortical ROIs taken from the Desikan-Killiany atlas and 15

subcortical ROIs taken from the FreeSurfer atlas provided in AFNI [29, 30]. These 85 ROIs are

listed in S1 Table. The task-positive and task-negative voxels defined via the univariate fMRI

analysis were inclusively masked by these anatomical ROIs and each surviving voxel was

labeled for membership to one of each of the 85 anatomical ROIs. For each of the anatomical

ROIs having greater than 10 surviving task-positive or task-negative voxels, we formed a func-

tional-anatomical ROI out of all the task-negative or task-positive voxels. No functional-ana-

tomical ROIs resulted for 7 of the 85 anatomical ROIs. Both task-positive and task-negative

functional-anatomical ROIs resulted for 40 of the 85 anatomical ROIs. Either task-positive or

task-negative functional-anatomical ROIs resulted for the remaining 38 anatomical ROIs.

Overall, this resulted in 118 functional-anatomical ROIs, with 53 task-positive ROIs and 65

task-negative ROIs (Tables 1 and 2 and S2 Table).

Probabilistic fMRI connectivity analysis

For each of the memory tasks, we averaged the preprocessed fMRI time series spatially within

each of 118 functional-anatomical ROIs and cross-correlated between all the pairs of the averaged

signals, separately for each subject. The resulting constructed connectivity matrix was severely

biased positively for about half of the subjects potentially due to global BOLD fluctuation [31] (S1

Fig). To address this, we controlled the effect of the mean signal of the constituent network signals

for each subject by computing partial correlation [32–34] (S2 Fig). The distribution of the
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correlation between ROIs became more symmetric with the mean of zero (S3 Fig) and the

expected anti-correlation between ROIs in the task-positive and the task-negative networks

became more apparent than without controlling for mean signal (S1 and S2 Figs).

We first identified modular structures of connectivity for the two memory tasks. For this,

we employed a module-detection algorithm to maximize modularity, which is a metric of

functional segregation into distinct modules [35–37]. To consider variability of modular struc-

tures across subjects, we developed used a two-step probabilistic approach to the identification

of modules. We first calculated “module-allegiance” which computes how frequently two ROIs

are assigned to the same module. For each subject, task, and task-positive and task-negative

network (i.e., the collection of all task-positive and task-negative ROIs), we ran Louvain mod-

ule detection algorithm implemented in MATLAB (Mathworks Inc., MA, USA) [36] on the

Table 1. Labels of ROIs in the task-positive network.

Object-Scene task Object-Location task

Dorsal/Ventral visual module (POS1) R-lateral orbitofrontal Dorsal/Ventral visual module (POS1)

L-cuneus L-cuneus

R:L-cerebellar cortex R:L-cerebellar cortex

R:L-fusiform R:L-fusiform

R:L-inferior parietal R:L-inferior parietal

R:L-inferior temporal R:L-inferior temporal

R:L-lateral occipital R:L-lateral occipital

R:L-lingual R:L-lingual

R:L-precuneus R:L-precuneus

R:L-superior parietal R:L-superior parietal

Fronto-parietal-limbic module (POS2) L-middle temporal Fronto-parietal module (POS2) L-middle temporal

L-pars orbitalis L-pars opercularis

L-postcentral L-postcentral

L-superior temporal sulcus L-superior temporal sulcus

L-supramarginal L-supramarginal

R:L-caudal middle frontal R:L-caudal middle frontal

R:L-pars triangularis R:L-pars triangularis

R:L-precentral R:L-precentral

R:L-rostral middle frontal R:L-rostral middle frontal

R:L-superior frontal R:L-superior frontal

R-caudal anterior cingulate Fronto-limbic (POS3) R-caudal anterior cingulate

R-entorhinal R-entorhinal

L-amygdala L-amygdala

L-pallidum L-pallidum

L-pars opercularis L-pars orbitalis

R:L-caudate R:L-caudate

R:L-dosal thalamus R:L-dorsal thalamus

R:L-hippocampus R:L-hippocampus

R:L-insula R:L-insula

L-lateral orbitofrontal R:L-lateral orbitofrontal

R:L-parahippocampal R:L-parahippocampal

R:L-putamen R:L-putamen

R:L-ventral diencephalon R:L-ventral diencephalon

Note: Bold indicates ROIs of which modules are assigned differently between object-scene and object-location tasks. L–Left hemisphere, R–Right hemisphere

https://doi.org/10.1371/journal.pone.0210167.t001
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initially computed correlation matrix 1000 times with initial random assignment of 53 ROIs

(task-positive) or 65 ROIs (task-negative) to 10 modules. This number of “starting” modules

was arbitrarily selected to provide a sufficiently high number to potentially capture all relevant

Table 2. Labels of ROIs in the task-negative network.

Object-Scene task Object-Location task

Default-extended-limbic module (NEG1) R-frontal pole Default-extended module (NEG1) R-frontal pole

R-inferior temporal R-inferior temporal

R-pars orbitalis R-pars orbitalis

R-superior temporal sulcus R-superior temporal sulcus

R:L-caudal anterior cingulate R:L-caudal anterior cingulate

R:L-caudal middle frontal R:L-caudal middle frontal

R:L-inferior parietal R:L-inferior parietal

R:L-isthmus cingulate R:L-isthmus cingulate

R:L-lateral orbitofrontal R:L-lateral orbitofrontal

R:L-medial orbitofrontal R:L-medial orbitofrontal

R:L-middle temporal R:L-middle temporal

R:L-posterior cingulate R:L-posterior cingulate

R:L-precuneus R:L-precuneus

R:L-rostral anterior cingulate R:L-rostral anterior cingulate

R:L-rostral middle frontal R:L-rostral middle frontal

R:L-superior frontal R:L-superior frontal

L-hippocampus

R-hippocampus Default-limbic module (NEG3) R-hippocampus

R-temporal pole R-temporal pole

R-dorsal thalamus R-dorsal thalamus

R-putamen R:L-putamen

R:L-accumbens R:L-accumbens

R:L-caudate R:L-caudate

R:L-ventral diencephalon

Transitional module (NEG2) R:L-ventral diencephalon Transitional module (NEG2) 　
R-pars triangularis R-pars triangularis

L-dorsal thalamus L-dorsal thalamus

L-hippocampus

L-transverse temporal L-transverse temporal

R:L-cuneus R:L-cuneus

R:L-lingual R:L-lingual

R:L-paracentral R:L-paracentral

R:L-pars opercularis R:L-pars opercularis

R:L-postcentral R:L-postcentral

R:L-precentral R:L-precentral

R:L-superior parietal R:L-superior parietal

R:L-superior temporal R:L-superior temporal

R:L-supramarginal R:L-supramarginal

R:L-insula R:L-insula

R:L-cerebellar cortex R:L-cerebellar cortex

L-putamen 　

Note: Bold indicates ROIs of which modules are assigned differently between object-scene and object-location tasks. L–Left hemisphere, R–Right hemisphere

https://doi.org/10.1371/journal.pone.0210167.t002
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modules for the entire brain [38, 39], and the algorithm identified the actual number of detected

modules in the given data. Then, we computed module allegiance between each pair of ROIs as

the probability that two ROIs were assigned to the same module across the group of subjects, i.e.,

the fraction out of the overall 30,000 runs of the algorithm (1,000 per each of 30 subjects). This

definition of module allegiance allows detection of maximum modularity, given that the modules

identified by each run of the algorithm are not always identical. By definition of modularity, the

assignment of modules tends to be more random for a network lower modularity (i.e., the detec-

tion algorithm is less reliable). Next, we re-ran the module detection algorithm on the module-

allegiance matrix to identify the final modular structure of connectivity for the group of subjects.

Once we identified modular structures of connectivity, we calculated interactions among

network components and correlated them with subsequent memory performance. Interaction

was computed as mean correlation of all pairs of ROIs within and between networks and mod-

ules of the networks. We computed memory performance as the mean proportion of test trials

with correct source memory responses and high-confidence correct recognition responses.

We focused on this category because it is the most likely to reflect recollective memory without

substantial contamination by guessing (see Results) and is specific to the source-memory

information that differentiated the object-scene and object-location memory tasks. We first

tested network-level interactions and then module-level interactions, using the modules that

were detected as described above. P-values were Bonferroni corrected for multiple compari-

sons with the corrected significance level set to Pcorr < 0.05. In the network-level analysis,

there were three tests (POS-POS, NEG-NEG, POS-NEG) and in the module-level analysis,

there were 10 tests for the scene-object task (4 modules: 6 between-module tests and 4 within-

module tests) and 21 tests for the location-scene task (6 modules: 15 between-module tests and

6 within-module tests). These numbers of tests were used to determine the Bonferroni correc-

tion factors. Multiple linear regression was used to estimate the total variability in memory

performance that could be accounted for by all network and module interactions that were

individually significant predictors of memory accuracy. Brain images with activation maps

were generated using MRIcroGL (http://www.mccauslandcenter.sc.edu).

We also compared the probabilistic connectivity method that we implemented to the more

conventional averaging method [38] in terms of the ability for the detected networks and mod-

ules to significantly predict memory performance. That is, we investigated what extent was

probabilistic connectivity analysis necessary for identifying connectivity patterns that robustly

correlated with memory performance. In the average connectivity method, the constructed

connectivity matrices (see above) were averaged across subjects and then modules were identi-

fied from the averaged connectivity matrix using the module detection algorithm.

Results

Memory performance

Subjects studied item-context associations using two formats of to-be-remembered stimuli

(Fig 1). In the object-scene memory task, subjects studied arbitrary pairings of objects and

scenes and memory was later tested for individual objects (recognition memory) as well as for

the object-scene pairings (source memory). The object-location memory task was similar, but

using objects arbitrarily paired with specific screen locations instead of with specific scenes.

The tasks were matched in many characteristics in order to equate performance levels as

closely as possible despite the differences in stimuli (see Materials and Methods).

Recognition memory performance was highly accurate in the object-scene and object-loca-

tion tests, as indicated by subjects’ ability to discriminate old from new objects at test. As indi-

cated in Fig 2A, high-confidence “old” responses were primarily made to old items whereas
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Fig 2. Memory performance. (A) Response rates for the recognition memory judgment are shown for the object-scene and object-location tasks, averaged separately

for old versus new objects and for each confidence level (HC: high confidence; LC: low confidence) and each category of response accuracy (hit, miss, FA: false alarm,

and CR: correct rejection). (B) Response rates for source memory judgments are shown averaged based on accuracy/confidence of the corresponding recognition

response (SRC: source recollection correct, SRIC: source recollection incorrect). Trials with correct source recollection tended to include objects that were recognized

with high confidence. Error bars indicate the standard error mean.

https://doi.org/10.1371/journal.pone.0210167.g002
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high-confidence “new” responses were primarily made to new items, with intermediate levels

of discrimination for lower confidence levels. Memory performance was defined as a rate of

later-remembered trials after excluding the very few trials with missed responses (<1 on aver-

age, see Methods).

In an analysis of response rates during memory testing, the statistical interaction of mem-

ory status (old versus new stimuli) and response type (old versus new, each with four levels of

confidence) was significant for both the object-scene and object-location tasks (F(3,87) = 5.76,

P = 0.0012 and F(3,87) = 14.6, P< 0.001, respectively; two-way repeated-measures ANOVA),

thereby suggesting successful memory performance in both tasks (Fig 2A). Source memory

performance was also highly accurate in both tasks (Fig 2B). When considering trials with

high-confidence recognition responses in order to reduce the possibility of correct recognition

guessing, source memory responses were highly accurate (object-scene: 0.43 ± 0.044, object-

location: 0.48 ± 0.047, mean ± SE), which were both significantly greater than the chance per-

formance level of 1/6 (t(29) = 9.59, P< 0.0001 and t(29) = 11.39, P< 0.0001, respectively).

Memory performance in the object-scene and object-location tasks did not vary substan-

tially. The statistical interaction of task type and response type was not significant (F(7,203) =

2.03, P = 0.053). Targeted analysis of pairwise differences in accuracy for each confidence level

did not find any differences that survived correction for multiple comparisons. There were

slightly higher rates of correctly endorsing new items as new with high-confidence (CR-HC)

in the object-scene compared to object-location task (t(29) = 2.15, P = 0.040), but this did not

survive correction for multiple comparisons. All other pairwise P values were> 0.081. Like-

wise, accuracy of source memory judgments did not differ significantly for the object-scene

and object-location tasks regardless of recognition type (t(29) = 1.34, P = 0.19 for the trials

with high-confidence recognition responses, t(29) = 1.47, P = 0.15 for all trials). Thus, compar-

isons of fMRI connectivity for the object-scene and object-location tasks were not confounded

by overall differences in memory performance.

Modular connectivity structure during study

fMRI data acquired during the study phases of the memory tasks were analyzed in order to

identify the modular structure of interregional fMRI connectivity patterns related to memory

formation (see Materials and Methods). We defined regions of interest for fMRI connectivity

analyses via group-level univariate analysis of stimulus-evoked activity with a liberal statistical

threshold, which was divided and anatomically labeled by a structural atlas. This yielded a

task-positive set of ROIs (53 ROIs, those that showed positive-going evoked activity deflections

in response to all stimuli during study) as well as a task-negative set of ROIs (65 ROIs, regions

with negative-going evoked activity deflections), as listed in Tables 1 and 2. As indicated in Fig

3A (see also S4 and S5 Figs), task-positive ROIs included visually sensitive dorsal and ventral

areas including bilateral inferior temporal cortex, ventral occipito-temporal cortex, fusiform

and lateral occipital cortex [40], parahippocampal cortex, and parietal cortex. In contrast, task-

negative ROIs included orbitofrontal and medial prefrontal cortex, retrosplenial cortex, supe-

rior temporal cortex, anterior and posterior cingulate cortex, and parietal cortex, which largely

overlapped with regions considered as part of the default mode network [41]. The spatial dis-

tribution of the task-positive and the task-negative ROIs is comparable to that reported in

related studies [27, 31].

For each of ROIs, the spatially averaged fMRI time series was calculated in each subject for

the study phase of each task and used for connectivity analysis. Comparison of module struc-

ture of the full ROI-to-ROI connectivity matrices using probabilistic module allegiance analy-

sis (see Materials and Methods) indicated small yet significant differences between the two
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memory tasks (Fig 3B; Tables 1 and 2). For both tasks, the primary task-positive module corre-

sponded to the dorsal/ventral visually responsive network (POS1 in Fig 3B and 3C). For the

object-scene task, the second module mostly included fronto-parietal regions and fronto-lim-

bic regions (fronto-parietal-limbic, POS2 in Fig 3B). For the object-location task, this module

was fractionated into two modules, consisting of the separate fronto-parietal and fronto-limbic

components (Fig 3C).

For both tasks, the primary task-negative module included orbital and medial prefrontal

cortex, and anterior and posterior cingulate cortex areas of the default-mode network [41], as

well as “extended” default-mode thalamic, striatal, and temporal-parietal cortical regions

(default-extended-limbic, NEG1 in Fig 3B and 3C). For both tasks, the secondary task-negative

module included inferior frontal regions, cuneus, subcortical areas including dorsal thalamus

Fig 3. Task-related networks and modular structure. (A) Locations identified as task-positive (red) and task-negative (blue) (see Tables 1 and 2). These regions were

identified via lenient univariate analysis coupled with anatomical demarcation for use as ROIs in subsequent connectivity analyses (see text). (B) Connectivity matrix for

the object-scene task, sorted by identified modules, (Left) and the identified modules (Right) (C) Connectivity matrix for the object-location task, sorted according to the

identified modules for the object-scene task (Left) and the identified modules (Right).

https://doi.org/10.1371/journal.pone.0210167.g003
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and cerebellum, and superior temporal and parietal cortex, which has been described as a

“transitional” module, connecting cognition with emotion/interoception [42](NEG2 in Fig 3B

and 3C). For the object-location task, this module was fractionated such that several subcorti-

cal regions formed a third module, including the limbic/paralimbic portions of the default-

mode network (default-limbic, NEG3 in Fig 3C).

Network interaction associated with memory formation

To investigate how the network-level (task-positive and task-negative networks: POS and

NEG) and module-level interaction (4 modules for the object-scene task and 6 modules for the

object-location task; see Tables 1 and 2) shown in Fig 3 correlated with memory performance,

we first focused on source memory, as this type of memory varied in terms of demands

between the two memory task formats (i.e., object-to-scene binding versus object-to-location

binding). As indicated above, source memory performance was quantified as the proportion

of trials with correct source-memory responses that also had high-confidence correct recogni-

tion memory responses (Fig 2B). Trials with low-confidence recognition responses were

excluded because these were more likely to include recognition responses that were correct by

guessing. Indeed, source memory accuracy was higher for high-confidence than low-confi-

dence recognition responses (Fig 2B; object-scene: 0.43 ± 0.044 vs. 0.040 ± 0.0078, mean ± SE,

t(29) = 8.59, P< 10−8, object-location: 0.48 ± 0.047 vs. 0.040 ± 0.0082, mean ± SE, t(29) = 8.95,

P< 10−9). Additionally, source memory accuracy for trials with low-confidence recognition

responses was significantly lower than the chance level of 1/6 (P< 10−15 for the two tasks), con-

firming that low-confidence recognition responses did not occur with reliable source memory.

Finally, source memory accuracy with high-confidence recognition is highly correlated across

subjects with recognition accuracy with high-confidence regardless of source-memory (corre-

lation coefficient between object-scene: r = 0.81, object-location: r = 0.82. Therefore, we

ignored confidence for recognition accuracy in the network interaction analysis, otherwise the

results for recognition accuracy will be highly redundant with those for source memory

accuracy.

Network-level interactions during memory formation predicting later source memory

accuracy were evident within the task-positive network (R2 = 0.22, Pcorr = 0.028), within the

task-negative network (R2 = 0.34, Pcorr = 0.0023), and between the task-positive and task-nega-

tive networks (R2 = 0.22, Pcorr = 0.026), only for the object-scene task. All significant predictive

relationships are summarized in Table 3. Network-level interactions did not significantly pre-

dict source memory performance for the object-location task. Thus, for the object-scene task,

within-network interactions were positively correlated with memory scores whereas between-

network interactions were negatively correlated with memory scores, suggesting that height-

ened interaction within task-positive and task-negative networks as well as anti-correlation of

task-positive and task-negative networks were markers of successful memory formation.

Module-level interactions predictive of subsequent source memory were assessed next. For

the object-scene task the interaction of two modules of the task-negative network (NEG1--

NEG2) was positively correlated with the memory scores, R2 = 0.50, Pcorr < 0.001 (upper panel

in Fig 4A). Additionally, interaction of the dorsal/ventral visual module of the task-positive

network and the secondary module of the task-negative network (POS1-NEG2) was negatively

correlated with the memory scores, R2 = 0.46, Pcorr < 0.001 (lower panel in Fig 4A). Thus, for

the object-scene task, increased interaction among task-negative modules and decreased inter-

action of task-negative and task-positive modules predicted successful memory formation. For

the object-location task, interaction within the fronto-parietal module of the task-positive net-

work (POS2-POS2) was negatively correlated with the memory scores, R2 = 0.34, Pcorr = 0.017
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Table 3. Summary of network interaction associated with memory formation.

Network-level Module-level

Object-Scene task Source Memory Source Memory

1. POS-POS

ρ = 0.47, R2 = 0.22, F(1,28) = 7.74, Pcorr =

0.028

1. NEG1-NEG2

ρ = 0.71, R2 = 0.50, F(1,28) = 27.88, Pcorr

<0.001

2. NEG-NEG

ρ = 0.58, R2 = 0.34, F(1,28) = 4.29, Pcorr =

0.0023

2. POS1-NEG2

ρ = -0.68, R2 = 0.46, F(1,28) = 23.96, Pcorr<

0.001

3. POS-NEG

ρ = -0.47, R2 = 0.22, F(1,28) = 7.96, Pcorr =

0.026

3. POS1-POS1

ρ = 0.47, R2 = 0.23, F(1,28) = 8.14, Puncorr =

0.0081

4. POS2-NEG2

ρ = -0.38, R2 = 0.15, F(1,28) = 4.82, Puncorr =

0.037

5. Full-model

ρ = 0.75, R2 = 0.57, F(4,25) = 8.28, P< 0.001

6. Model (1+2)

ρ = 0.74, R2 = 0.54, F(2,27) = 15.92, P< 10–4

Non-significant interactions: 0.05 < Puncorr <

0.80

Recognition Memory Recognition Memory

None 1. POS1-NEG2

ρ = -0.57, R2 = 0.32, F(1,28) = 13.27, Pcorr =

0.011

2. NEG1-NEG2

ρ = 0.42, R2 = 0.18, F(1,28) = 6.17, Puncorr =

0.019

3. Full-model

ρ = 0.57, R2 = 0.32, F(2,27) = 6.42, P = 0.0052

Non-significant interactions: 0.10 < Puncorr <

0.93

Source memory controlling recognition

memory

Source memory controlling recognition

memory

1. NEG-NEG

ρ = 0.51, R2 = 0.26, P = 0.0049

1. NEG1-NEG2

ρ = 0.65, R2 = 0.43, P <0.001

2. POS-NEG

ρ = -0.37, R2 = 0.14, P = 0.047

2. POS1-NEG2

ρ = -0.46, R2 = 0.21, P = 0.011

3. POS1-POS1

ρ = 0.40, R2 = 0.16, P = 0.033

4. POS2-NEG2

ρ = -0.52, R2 = 0.27, P = 0.0037

Source Memory Source Memory

None 1. POS2-POS2

ρ = -0.58, R2 = 0.34, F(1,28) = 14.11, Pcorr =

0.017

2. POS2-NEG3

ρ = -0.49, R2 = 0.24, F(1,28) = 8.63,Puncorr =

0.0065

3. Full-model

ρ = 0.63, R2 = 0.39, F(2,27) = 8.74, P = 0.0012

Non-significant interactions: 0.05 < Puncorr <

1.00

Object-Location

task

Recognition Memory Recognition Memory

(Continued)
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(Fig 4B). There were three other interactions, two for the object-scene task (POS1-POS1: R2 =

0.23, Puncorr = 0.0081; POS2-NEG2: R2 = 0.15, Puncorr = 0.037) and one for the object-location

task (POS2-NEG3: R2 = 0.24, Puncorr = 0.0065), which were significant uncorrected (Puncorr <

0.05) but did not survive Bonferroni correction (see Table 3 for details).

Table 3. (Continued)

Network-level Module-level

None 1. POS2-POS2

ρ = -0.63, R2 = 0.40, F(1,28) = 18.72, Pcorr =

0.0037

2. POS1-POS2

ρ = 0.41, R2 = 0.17, F(1,28) = 5.78, Puncorr =

0.023

3. Full-model

ρ = 0.66, R2 = 0.43, F(2,28) = 10.17, P< 0.001

Non-significant interactions: 0.06 < Puncorr <

0.93

Source memory controlling recognition

memory

Source memory controlling recognition

memory

None 1. POS2-NEG3

ρ = -0.37, R2 = 0.14, P = 0.050

https://doi.org/10.1371/journal.pone.0210167.t003

Fig 4. Correlation of source memory accuracy with module-level interaction. (A) For object-scene association task, interaction between two task-negative modules

shows positive correlation (R2 = 0.50, Pcorr < 0.001) and interaction between task-positive module and task-negative module shows negative correlation (R2 = 0.46,

Pcorr < 0.001). (B) For object-location association task, interaction within a task-positive module shows negative correlation (R2 = 0.34, Pcorr = 0.017).

https://doi.org/10.1371/journal.pone.0210167.g004
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To determine the overall variance in source memory that could be accounted for by con-

nectivity, we constructed a multiple linear regression model for each of the tasks including all

significant interactions as predictors. The object-scene task model included four significant

predictors and yielded R2 = 0.57, P< 0.001. The object-location task model included two sig-

nificant predictors and yielded R2 = 0.39, P = 0.0012. A reduced model of the object-scene task

including only the two most significant predictors (interactions, NEG1-NEG2 and POS1--

NEG2) accounted for almost as much variance as the full model including four predictors (R2

= 0.54, P< 10−4). A large portion of the across-subject variance in source memory perfor-

mance could thus be accounted for via network and module interconnectivity, with more vari-

ance in object-scene than object-location performance accounted for by interconnectivity.

The goal of this study was not to dissociate source memory from recognition memory, and

in fact these were highly correlated in the current data (source memory accuracy vs. recognition

memory accuracy: r = 0.74 averaged for both tasks). Nevertheless, we separately tested for rela-

tionships between connectivity and recognition. In general, connectivity was less predictive of

recognition memory than it was for source memory, as would be expected due to the fact that

the object memory demands were mostly similar between the two task formats. Recognition

memory was quantified as the proportion of later-correct trials during study irrespective of

response confidence. For both tasks, the network-level interactions were not significantly

related to recognition memory (Puncorr > 0.05). Some module-level interactions identified in

the source-memory analysis were significant in the recognition-memory analysis, but to a lesser

extent. The interaction of dorsal/ventral visual module with the secondary task-negative module

(POS1-NEG2) for the object-scene task was negatively correlated with recognition memory (R2

= 0.32, Pcorr = 0.011). The interaction of the two negative modules (NEG1-NEG2) was also posi-

tively correlated with recognition memory, but this relationship did not survive correction for

multiple comparisons (R2 = 0.18, Pcorr > 0.05, Puncorr = 0.019). For the object-location task, the

within-module interaction of the fronto-parietal module of the task-positive network (POS2--

POS2) was negatively correlated with recognition memory (R2 = 0.40, Pcorr = 0.0037), as was

the case for source memory. Interaction between the two task-positive modules, dorsal/ventral

visual module and fronto-parietal-limbic module (POS1-POS2) was also positively significant

but did not survive Bonferroni correction (R2 = 0.17, Pcorr > 0.05, Puncorr = 0.023).

To test for the variance in recognition memory that could be accounted for by connectivity

during study, we constructed a multiple linear regression model combining the two significant

interactions for each of tasks. In contrast to the result for source memory, the performance of

the model was lower for the object-scene (R2 = 0.32, P = 0.0052) task than for the object-loca-

tion task (R2 = 0.43, P< 0.001). Thus, the network-level and module-level interactions predic-

tive of source recollection memory also accounted for recognition memory although the

interactions accounted for less variance in recognition memory than in source memory, espe-

cially for the object-scene task.

We also tested whether connectivity was still predictive of source memory accuracy when

controlling for recognition memory. This post-hoc analysis indicated that network-level inter-

actions survived within the task-negative network (R2 = 0.26, P = 0.0049) and between the

task-positive and task-negative network (R2 = 0.14, P = 0.047) only for the object-scene task.

Module-level interactions were likewise still predictive of source memory scores in two mod-

ules of the task-negative network (NEG1-NEG2, R2 = 0.43, P< 0.001) and in the dorsal/ven-

tral visual module of the task-positive network and the secondary module of the task-negative

network (POS1-NEG2, R2 = 0.21, P = 0.011). All other interactions are summarized in Table 3.

For the object-location task, network-level and module-level interactions were non-significant

when controlling for recognition memory scores except for the module-level interaction,

POS2-NEG3, that was of borderline significance in the main analysis (Table 3).
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To summarize, there were no relationships between connectivity and recognition that were

not also identified for source recollection, relationships were more robust for source recollec-

tion, and controlling for recognition generally weakened correlations related to source recol-

lection. Collectively, this indicates that memory-related connectivity was not qualitatively

distinct for recollection versus recognition, but was quantitatively greater for recollection.

Comparison with the averaged-connectivity method

To evaluate whether probabilistic connectivity analysis aided identification of modules related

to memory formation relative to the standard, averaged-connectivity method, we performed

the same analyses described above but using averaged-connectivity (see Materials and Meth-

ods). Connectivity structure assessed with the averaged connectivity was similar to that identi-

fied using the probabilistic method but with less clear distinction of modules (S6 Fig). For the

object-scene task, a limbic module was identified that was distinct from the fronto-parietal-

limbic module (POS2) and the default-extended-limbic module (NEG1), which were treated

as one large module using the probabilistic method. Thus, as was the case for the object-loca-

tion task, there were three modules for each of the task-positive and negative networks when

identified using the averaged-connectivity method. For the location task, the number of identi-

fied modules was same as identified using the probabilistic method. However, some ROIs were

assigned to different modules across the two methods (10 of 53 ROIs and 3 of 65 ROIs for the

task-positive and task-negative networks were assigned to different modules based on the two

methods).

More importantly, similar interactions were predictive of source memory and recognition

memory in the object-scene but not in the object-location task. For the object-scene task, two

similar module-level interactions were significantly predictive of source memory, but with

slightly reduced correlation values (R2 = 0.48, R2 = 0.42) relative to the values obtained using

the probabilistic-connectivity method (R2 = 0.50, 0.46, see Fig 4A). The interaction between

the dorsal/ventral visual module of task-positive network (POS1) and the secondary task-nega-

tive module (NEG2) was negatively predictive of recognition memory accuracy (R2 = 0.34),

similar to results from the probabilistic method (see Table 3). For the object-location task,

however, no modular interactions significantly correlated with source memory accuracy or

recognition memory accuracy using the averaged-connectivity method. The within-module

fronto-parietal (POS2) interaction predicting source memory (Fig 4B), was not significant

using averaged connectivity, likely because ROIs driving this relationship were assigned to dif-

ferent modules relative to the probabilistic-connectivity method (S6 Fig).

Discussion

We investigated functional brain networks during two different item-context memory tasks

and their interactions associated with successful memory formation. We used a relatively

novel method of probabilistically defining connectivity between regions such that interindivid-

ual variability can be conserved in a network structure for a group of subjects. This probabilis-

tic method of detecting modules using “module-allegiance” is potentially superior to the

conventional method using averaged connectivity for group analysis because it conserves indi-

vidual differences in network topology, whereas the averaging method could eliminate individ-

ual variability [20]. Here, the probabilistic method was more successful at discriminating

differences in network structure between the memory tasks compared to the conventional

averaging method. Furthermore, the modules detected by the probabilistic method were more

informative than those detected by the averaging method in terms of identifying modules with

interactions that significantly accounted for variability of memory performance.
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Networks varied in functional modules for the object-scene and object-location tasks. How-

ever, the overall network structures were quite similar. This is not surprising as previous find-

ings suggest high similarities of network architecture across highly distinct tasks and resting-

state fMRI [43, 44]. Such previous findings have led to the suggestion that task-related func-

tional networks are primarily shaped by intrinsic/structural connectivity with only a limited

set of connectivity patterns changing due to cognitive demands. Nonetheless, the small yet sig-

nificant differences in network structure between tasks were important for understanding

brain-behavior relationships. That is, network and module-level interactions differentially pre-

dicted performance in the two tasks, and therefore accurate quantification of the specific con-

nectivity patterns unique to each task was essential for identifying the relationship between

these interactions and memory formation. This was true despite the fact that both were epi-

sodic memory tasks sharing a large degree of demand characteristics.

Despite relatively high overall similarity in network structure, the interaction of functional

networks and modules differently predicted memory accuracy in the object-scene versus

object-location tasks. Our results show that memory performance could be mediated by cooper-

ative interaction (i.e., functional coupling) within or between modules in the same network,

either task-positive (Fig 4B) or task-negative (upper in Fig 4A), and competitive interaction

(i.e., functional de-coupling) between modules in the different networks (lower in Fig 4A).

These results are consistent with previous findings reporting connectivity-behavior relation-

ships in cognitive tasks such as working memory [28, 45–47], visual discrimination [48], read-

ing competence [49], variability of reaction time [26], and task automatization [50]. Specifically,

in one study by Hampson et al [45], task demands and individual working memory perfor-

mance were significantly positively correlated with the connectivity among posterior cingulate

cortex, medial frontal cortex, and ventral anterior cingulate cortex—all regions of the task-nega-

tive default-mode network [45]. Other findings suggest that interaction of the task-positive

working-memory network and task-negative default-mode network is negatively correlated

with working memory performance [28, 46]. Resting-state connectivity is similarly related to

visual discrimination performance [48] and reading competence [49]. In those studies, positive

connectivity among task-positive regions associated with visual perception and reading and

negative connectivity of these regions with task-negative default-mode regions predicted visual

discrimination and reading performance, respectively. Likewise, stronger negative correlation

between task-positive and task-negative regions has been associated with greater stability of cog-

nitive function [26]. Recently, similar interactions within and between task-positive and task-

negative networks have been related to short-term task automatization and proposed as a gen-

eral property by which large-scale networks reconfigure to meet task demands [50]. These prop-

erties were especially important for object-scene memory formation relative to object-location

memory formation, again suggesting that these different memory tasks require substantially dif-

ferent cognitive and neural resources despite their superficial similarities.

In the current data, relationships between network interactions and memory formation

were generally less robust for the object-location task than they were for the object-scene task.

For example, in contrast to the object-scene findings, there was no network-level interaction

accounting for memory accuracy in the object-location task. At the module level, only one

within-module interaction of the task-positive network was associated with memory perfor-

mance for the object-location task, which was less significant compared to relationship identi-

fied for the object-scene task (Fig 4B). Moreover, the overall ability for a model with multiple

regressors to account for total variation in memory performance across subjects was much

lower in the object-location task than in the object-scene task. Thus, even though these tasks

shared much in common, including overall similar functional network architectures, our find-

ings suggest that they are nonetheless mediated by different types of network interactions.
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It is highly likely that the cognitive operations required for object-location and object-scene

memory formation are fundamentally different, and we speculate that the nature of these dif-

ferences might have been related to the observed distinctions in network interactions. For the

object-location memory task, only a single object was presented on the screen and perfor-

mance may have been supported by detailed attention to each visual stimulus with respect to

the perceptual details of its specific screen location (see [51] for relevant discussion). This

account is consistent with our finding that performance was predicted by increased coupling

of task-positive regions, which may have reflected heightened focus on visual information. In

contrast, the object-scene task required arbitrary relational binding of two simultaneously pre-

sented stimuli. Subjects might therefore have internally generated meaningful links between

the stimuli (i.e., semantic associations) to a greater extent than in the object-location task. This

distinction could be considered to reflect relatively more associative versus “unitized” repre-

sentations[52] in the object-scene versus object-location tasks, respectively. This is consistent

with our finding that object-scene performance was predicted by relative decoupling of task-

positive and task-negative regions, which could reflect engagement of cognitive strategies that

occur with relative disengagement from the visual stimulus processing. Of course, it is also

possible that nonspecific factors (i.e., arousal, vigilance, and attention) are responsible for rela-

tionships between fMRI connectivity and specific behavioral measures such as those used to

measure memory. However, it is highly unlikely that such nonspecific factors could have pro-

duced differences in connectivity-performance relationships between the object-scene and

object-location tasks, as similar levels of performance and task demands guard against such

possibility. Thus, we consider it more likely that differences in connectivity patterns related to

memory performance between tasks were due to specific cognitive demands that varied

between tasks.

Different types of network interactions could also be relevant for memory formation versus

memory retrieval. For instance, a recent study found that accurate memory retrieval was asso-

ciated with higher interaction between a task-positive frontoparietal control network and a

task-negative default mode network [53]. The two networks do not strongly interact in most

cognitive tasks, and they are typically anti-correlated (as was the case in our data). Indeed, we

found that, in general, greater anti-correlation of task-positive and task-negative network com-

ponents correlated with better memory formation, at least for the object-scene task. Clearly,

cognitive demands differ for memory formation and memory retrieval, with retrieval perhaps

requiring greater recruitment of task-positive networks for strategic processing of the contents

of task-negative core memory networks. In contrast, memory formation might be benefitted

by heightened internally focused processing, as could support episodic and semantic elabora-

tion and other cognitive operations that could increase the richness of memory formation.

This distinction between demands of memory formation versus memory retrieval could thus

relate to the different patterns of network segregation as related to memory success that were

identified in our study of memory formation versus other findings of memory retrieval [40].

Future research could directly compare network interactions between encoding and retrieval

within the same task to substantiate encoding/retrieval similarities or differences in network

interactions suggested by the current findings [54]

Although the current findings highlight large-scale brain network interactions for memory

formation and indicate that networks reconfigure to support different memory-formation

demands, it remains to be seen whether there are any general operating principles of such

functional reorganization for memory. By using methods such as those reported here to better

capture individual differences in functional brain networks, general principles of network re-

organization for episodic memory could be best identified and compared to principles opera-

tive for other cognitive domains.
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Supporting information

S1 Fig. Connectivity matrix of 30 subjects using simple correlation without mean signal

correction. For some subjects, task-positive and task-negative networks were observed, as

apparent by their anti-correlation (i.e., upper-left and lower-right of each graph). However,

global BOLD signal fluctuation potentially positively biased correlation between ROIs for

other subjects such that task-positive and task-negative networks could not be discerned. We

addressed this issue by controlling the mean signals over the entire brain (S2 Fig).

(TIFF)

S2 Fig. Connectivity matrix of 30 subjects using partial correlation controlling the mean

signal. The positively biased correlation was reduced by controlling the mean signal. The task-

positive and the task-negative networks were more apparent in every subject when partial cor-

relation controlling mean signal was used versus simple correlation (S1 Fig).

(TIFF)

S3 Fig. Distribution of connectivity across all the nodes, conditions (object-scene and

object-location tasks), and subjects. (A) Distribution of simple correlation values. (B) Distri-

bution of the same values but with partial correlation used to control the mean network com-

ponent signal.

(TIFF)

S4 Fig. Activation map of task-positive and task-negative responses. Supplementary

activation map to Fig 3 showing the spatial distribution of the task-positive and the task-

negative networks. We used a lenient voxel-wise P< 0.05 for network construction and

thus make no statistical significance of this activation map. Brain images with activation

maps were generated by publicly available software, MRIcroGL (http://www.mccausland

center.sc.edu).

(TIFF)

S5 Fig. An example showing how anatomical ROIs were separated into two functional

ROIs. This example frontal region defined by anatomical atlas included both of task-positive

(red) and task-negative (blue) voxels. The region in green was discarded because the voxels are

neither of task-positive or task-negative i.e., t(29) > 0.05, with the regions that were signifi-

cantly task-responsive segregated into two ROIs based on whether their responses were task-

positive or task-negative. Brain images with activation maps were generated by publicly avail-

able software, MRIcroGL (http://www.mccauslandcenter.sc.edu).

(TIFF)

S6 Fig. Comparison of two methods for identifying modular structure. The probabilistic

method was superior to the conventional averaging method in terms of its ability to identify

modules with interactions that were significantly correlated with memory task performance.

Modules were also more visually apparent when identified with the probabilistic method com-

pared to the averaged method (for comparison, all the connectivity matrices were ordered

according to the identified modules using the probabilistic method).

(TIFF)

S1 Table. Labels of original 85 ROIs.

(DOCX)

S2 Table. Description of final 118 ROIs.

(DOCX)
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