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ABSTRACT This study employs a dual deep neural network (D-DNN) to accurately estimate the abso-
lute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because
longitudinal speed is a common parameter employed as a state variable in active safety systems such as
anti-lock braking system and traction control system. In this study, DNNs are applied to determine the
gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration,
wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are
collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns,
various acceleration and deceleration conditions are applied to four different road conditions. Though, it is
challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus,
we adopt two DNN models that were individually trained in low and high acceleration regions. The dual
DNNmodel results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive
Kalman filter approaches, respectively.

INDEX TERMS Adaptive filter, deep neural network, slip ratio, vehicle speed estimation.

I. INTRODUCTION
Active safety technologies are used in most vehicles. Typical
examples are adaptive cruise control, autonomous emergency
braking system, an anti-lock braking system (ABS), and a
traction control system (TCS). Precise information on vehicle
state is crucial for these systems [1]. For example, as the slip
ratio is a controlled variable in ABS and TCS [2], an accurate
longitudinal speed is required to determine the slip ratio.
Maintaining a slip ratio in the desired region is essential for
vehicle safety and performance because it allows the wheel
to sustain a friction coefficient with the road surface above a
certain level. In other words, the performance and safety of
the vehicle can be improved by enhancing the accuracy of its
longitudinal speed data.

However, the longitudinal speed of a vehicle is complex or
expensive to measure [3], [4], additional sensors such as radar
may be required [5]. Its estimation rather thanmeasurement is
therefore sometimes preferred. Researches related to vehicle
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speed estimation have primarily been conducted using either
indirect or direct methods.

Indirect methods based on observers or Kalman filters
uses precise vehicle models and dynamics to determine a
filtering method that estimates longitudinal speed. In the
observer-based method, vehicle dynamics and a precise vehi-
cle model were used to design the state observer. In a previ-
ous study, yaw-and-roll models of a vehicle were employed
for switching observer schemes, and a full-state observer
was used in speed estimation [6]. Another study utilized a
six-degrees-of-freedom vehicle model with a second-order
sliding-mode observer [7]. The Kalman-filter-based model
also requires accurate vehicle parameters and a complex
vehicle model. A nine-degrees-of-freedom bicycle model
and extended Kalman filter (EKF) have been presented [1].
In addition, an unknown input Kalman filter was applied with
a nonlinear tire model to estimate vehicle speed [8]. A mixed
EKF algorithmwas applied to a six-degrees-of-freedom vehi-
cle model with longitudinal and lateral velocities, yaw rate,
and four-wheel rotational speeds as state vector [9]. Although
indirect methods can estimate the speed of a vehicle with high
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accuracy, they are time-consuming and complex because they
require a complex vehicle model. This requirement refers
that all vehicle parameters must be accurately determined
to develop a reliable speed-estimation algorithm in various
vehicle models and road conditions.

The direct method requires a relatively simple vehicle
model, and thus, does not need to identify all vehicle param-
eters. This method is generally classified by the diversity
of used sensor data. A typical combination is wheel speed
data and/or longitudinal acceleration data. The vehicle speed
was estimated using only wheel speed data applied to an
adaptive nonlinear filter [10]. In this work, an experimental
algorithm was used to estimate the true speed of the vehi-
cle during braking. This approach has the advantage that
it only uses wheel speed sensor data. However, when the
data are noisy, the estimation result is not reliable. Addi-
tively, data on both wheel speed and longitudinal accelera-
tion were used [11]–[13] to estimate vehicle speed. These
studies focused on designing the best filter algorithms for
vehicle speed estimation, by controlling the weights of the
wheel speed and longitudinal acceleration, in given vehicle
driving conditions. A gain-tuning algorithm based on the
Kalman filter [11] sets the weight of the wheel speed data
to zero under certain conditions, so that only the longitu-
dinal acceleration is used when a slip occurs. Fuzzy logic
can also be applied to vehicle speed estimation [12], [13].
Fuzzy logic was employed to determine the P, Q, and R
matrices of the Kalman filter according to wheel speed and
longitudinal acceleration data [12]. Another method using
fuzzy logic has been proposed to directly determine the
weights of the wheel speed, longitudinal acceleration, and
previous estimates [13]. All these studies presented accurate
estimation results using weight-tuning algorithms. However,
these algorithms are heavily dependent on experiments and
experiences, implying that it is difficult to define an algorithm
that will reliably enable optimized performance in all driving
situations.

Recently, neural network techniques have been vigorously
applied to estimating various vehicle states [14]–[21]. Neural
network structures can overcome the limitations of empirical
methods because they can identify data characteristics that
a human observer cannot detect [22]. Simple deep neural
network was applied for predict the vehicle sideslip angle
[14]. Another study employed a feedforward neural network
with a fully connected model to estimate road grade and
vehicle mass [15]. Depending on the purpose, neural network
models have been adopted in various forms [16]–[18]. Time
variant data were processed by a time-delayed neural network
in a sideslip angle estimation [16]. An integrated time-series
model based on a multivariate deep recurrent neural network
with long short-term memory was demonstrated to estimate
vehicle brake pressure [17]. Another effort attempted to solve
the lateral state estimation problem of a preceding target vehi-
cle using multiple neural networks, consisting of a nonlinear
autoregressive exogenous model net, feedforward net, and
Elman net [18]. In addition, hybrid approaches, combining

a neural network with other methods, have been applied to
estimate vehicle states [19]–[21]. Vehicle roll dynamics based
unscented Kalman filter coupled with an artificial neural
network provided a good estimation of vehicle roll angles
[19]. A recurrent neural network combined with a vehicle
kinematic model was trained using simulation data to esti-
mate vehicle sideslip angles [20]. A principal component
analysis was adopted for the preprocessing of input data of
a neural network to estimate vehicle sideslip angles [21].
These methods reportedly lowered computational loads with
increased accuracy.

A neural network has also been applied to a longitudi-
nal speed estimation problem [23], using a simple regres-
sion method with a feedforward net. The study presented
promising estimation performance using wheel speed and
longitudinal acceleration data. However, the results were
only evaluated using data derived from limited road-surface
conditions. Moreover, the simple regression technique is
disadvantageous in that the range to be estimated is too wide.

In this study, a neural network is not used to estimate vehi-
cle speed directly. Instead, two deep neural networks (DNNs)
are employed to accurately estimate the gain of an adaptive
filter. The dual DNN structure was evaluated in four road
conditions (dry, wet, snowy, and icy) and two vehicle situ-
ations (ABS on and off). The results were compared with the
accuracy achieved with either a single DNN structure or a
conventional adaptive Kalman filter (AKF).

Our proposed approach is the first attempt to estimate
vehicle longitudinal speed using two DNNs with an adaptive
filter, which has generally not been used for this purpose.
In our dual DNN (D-DNN) approach, the training data are
sorted by their accelerations and used to train each of the two
DNN models. Owe to this, one of the two DNN models is
optimized to the data having low accelerations while the other
is optimized to high-acceleration data. Thus, it is anticipated
to achieving superior optimized models compared with using
only one DNN model, named as a single DNN.

The overall structure of this study is depicted in Fig. 1.
Wheel speed (V k

w) and longitudinal acceleration (Akx ) data
are acquired using Carsim software and preprocessed using a
low-pass filter. The preprocessed data is stored in data storage
with the estimated speed (V̂x

k ) and filter gain (K k−1) of the
previous step. They are stacked in a time order to be the
input feature (uk ) for the DNN. The features are sorted by the
amplitude of the vehicle acceleration (|Akx |) and individually
used to generate the two DNN models optimized at high
and low accelerations. The dual DNN derives the adaptive
filter gain (K k ) as its output. The adaptive filter structure is
designed to function as a state observer. The adaptive filter
receives an estimated longitudinal speed of the previous step
(V̂x

k ), current longitudinal acceleration (Akx ), current wheel
speed (V k

w) and the gain (K k ). The filter outputs the longi-
tudinal speed of a vehicle (V̂x

k+1) as adaptively determined
by the filter gain. The proposed DNN model is trained using
640,000 samples and evaluated using 320,000 samples.
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FIGURE 1. Overall structure of this work.

II. DESIGN OF ADAPTIVE FILTER AND DEEP NEURAL
NETWORK
This section describes the overall system design procedure.
First, the structure of the adaptive filter is introduced. Then,
the characteristics of the desired gain and the method for
determining the target gain are explained. The DNN models
used in this study are introduced, including the DNN training
process. The DNN output corresponds to the current filter
gainK k , which is compared with the target gain of the current
step K̃ k . The mean square error between the K k and K̃ k is
used as the loss function to update the weights and biases
of each DNN model. The structure of the DNN model is
explained in the last subsection.

A. ADAPTIVE FILTER: FILTER STRUCTURE
The adaptive filter derives the estimated speed by receiving
the wheel speed and longitudinal acceleration as input. It also
uses the estimated speed and filter gain of the previous step.
The filter equations employed in this study are:

V̂x
k+1
= V̂x

k
+ Akx ·1t + K

k
· (V k

w − V̂w
k ), (1)

V̂w
k
= H · V̂x

k (H = 1), (2)

V k
w = reff ∗ ωkw (3)

where V̂x
k+1 and V̂x

k are the estimated speeds of the current
and previous steps, respectively. 1t represents a sampling
time of 0.01s andAkx is themeasured longitudinal acceleration
at time step k . K k indicates the current filter gain, and V k

w is
themeasuredwheel speed, which is a product of themeasured
wheel angular speed ωkw and efficient wheel radius reff . The
V̂w

k is the estimated speed of the front right wheel.

B. ADAPTIVE FILTER: TARGET GAIN
As shown in Eq. (1), Akx and V

k
w are used to estimate vehicle

speed. The magnitude of the current filter gain determines
whether the measurement of Akx or V k

w is reliable. If |K k
|

is low, Akx is highly weighted, which means the integration
value of the acceleration is primarily used to obtain the
longitudinal speed. Conversely, when the |K k

| is high, V k
w is

more reliable than Akx , and thus, the wheel speed is principally
used.
The reliability of Akx or V

k
w is determined by the wheel slip

condition. The wheel slip ratio (λ) is defined in Eq. (4) to
denote the difference between the vehicle and wheel speeds.

λ = (V k
x − V

k
w)/max(V

k
x ,V

k
w), (4)

When a wheel slip occurs, the gain should be lowered,
because the wheel speed is inaccurate, and the longitudinal
acceleration is more reliable. Alternatively, under non-slip
conditions, the wheel speed is almost the same as the vehicle
speed and the integration of acceleration has a cumulative
error, and thus, the gain should be elevated.
Equation (5) shows the estimated speed updated by the

integration value of Akx . Note that the cumulative error can
be explained by measurement noise.

V̂a
k+1
= V̂a

k
+ Akx ·1t (5)

Here, the true speed value of the next step, V k+1
x , can be

acquired from offline data. Therefore, the target gain value
of the current step K̃ k can be derived by Eq. (6), following
Eq. (1). K̃ k is used as the desired value of the DNN output,
which estimates the true speed.

K̃ k
= (Vxk+1 − V̂x

k
+ Akx ·1t)/(V

k
w − V̂w

k ) (6)

C. DEEP NEURAL NETWORK: TRAINING PROCEDURES
A DNN is an artificial neural network comprising an input
layer, hidden layers, and an output layer, and is equipped with
weights, biases, and activation functions such as a rectified
linear unit (ReLU) [24]. Figure 2(a) depicts the simplified
DNN structure used in this study. As shown in the figure,
two hidden layers are used. The numbers of input and output
data items are 24 and 1, respectively, and the number of
nodes in the hidden layers is discussed in the next subsec-
tion. The DNN input is denoted as uk and comprises six
consecutive steps of ϕk , which consists of αk, β

k
, K

k , and

V̂x
k . The total number of DNN input data items for each
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FIGURE 2. A simplified structure of the used DNN structure and diagram
of single and dual DNN model.

sample is therefore 24. One DNN structure in Fig. 2(a) is
employed in the single DNN shown in Fig. 2(b), while two
DNN structures, labeled by DNN model 1 and 2, are adopted
in the dual DNN.

uk = [ϕk−5,ϕk−4,ϕk−3,ϕk−2,ϕk−1,ϕk ] (7)

ϕk = [αk , βk ,K k−1, V̂x
k ] (8)

αk = V̂w
k
− V k

w (9)

βk = Akx − A
k
w (10)

In these equations, αk represents the error between the
estimated wheel speed V̂w

k and the measured wheel speed
V k
w . β

k is the error between the derivative of the wheel speed
Akw and Akx . As wheel speed and vehicle longitudinal speed
differ when wheel slip occurs, both αk and βk values become
higher compared with non-slip conditions. As a consequence,
αk and βk are useful measures representing slip situations,
and they are selected as input variables to the DNN.

The DNN training procedure can be divided into two steps:
feedforward and backward. In feedforward, the output of
DNN K k is computed using the activation function, weights
and biases given in Eq. (11).

K k
= f (W4 · f

(
W3 · f

(
W2 · uk + b2

)
+ b3

)
+ b4) (11)

TABLE 1. Comparison of training MSES’s for eight DNN structures.

Wi and bi (I = 2, 3, 4) indicate the weights and biases of the
hidden and output layers. In this study, the ReLU activation
function is applied to all layers, and f in Eq. (11) represents
the ReLU function. In backward process, loss function is
selected as the mean squared error of gain (MSEG) between
the output of DNN K k and the target gain K̃ k .

MSEG =
1
n

n∑
k=1

(K̃ k
− K k )

2
. (12)

The loss function is minimized by updating the weights of
layers. The RMSprop optimizer is applied to the update. After
the backward process, the adaptive filter derives the estimated
speed V̂x

k+1 using the output of the DNN, K k . Additionally,
the mean squared error of speed (MSES) is derived to define
the speed estimation performance.

MSES =
1
n

n∑
k=1

(V k
x − V̂x

k )
2
. (13)

Finally, for each training step, the estimated speed V̂x
k+1 and

gain of filter K k are stored for the next training procedure.
Once an over-fitting is observed, the training procedure is
reset and re-initialized using the He initialization method.

D. DEEP NEURAL NETWORK: STRUCTURE SELECTION
Several DNN structures are examined to find the optimal
structure for the data used in this study. Table 1 compares the
MSES of eight DNN structures after training. The quantity
of nodes in the input and output layers is the same for all
structures. Structure 5 is selected because the MSES value is
lowest.

III. DATA ACQUISTION CONDITIONS
Wheel speed and longitudinal acceleration data are acquired
considering the generalized performance of the selectedDNN
structure. The generalized performance indicates a proper
operation even in unlearned circumstances and is crucial
when applied to vehicle control and estimation systems. This
requires training the DNN with the various slip data features
that may occur when driving. For this purpose, data collection
was conducted in three simulation conditions that can affect
vehicular wheel slip: acceleration, road, and ABS conditions.

A. ACCELERATION CONDITIONS
Vehicular wheel slip is affected by the magnitude of accel-
eration and deceleration even on the same road condition.
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FIGURE 3. Desired longitudinal speed of the test vehicle to be exposed to
various acceleration and deceleration conditions.

FIGURE 4. Comparison of true speed and wheel speed. The difference
between the blue and green data represents the wheel slip.

Thus, the simulated vehicle is exposed to various acceleration
and deceleration conditions by setting its desired speed as
shown in Fig. 3. Note that the slope in the figure changes
with every cycle, indicating the acceleration and deceleration
also changes. Figure 4 shows the wheel speed V k

w and true
speed Vx on a wet surface following the target speed scenario
in Fig. 3. If the gradient of Vx(which is proportional to Akx )
exceeds a certain value, the difference between the true and
wheel speeds increases, indicating the occurrence of wheel
slip.

B. ROAD CONDITIONS
Road conditions also affect the vehicular wheel slip.
To achieve a generalized performance, the DNN should be
able to function in various road conditions. We selected four
normal road conditions [25]: ice-covered, snow-covered, wet,
and dry roads. The road friction coefficient of each road
condition is set to 0.2 (ice), 0.3 (snow), 0.5 (wet), or 0.85
(dry). Figure 5 depicts the distribution of the slip ratio in the
different road conditions following the target speed scenario
in Fig. 3. Each road condition has 40,000 data points. The
blue, yellow, green, and red lines represent the slip ratio
distribution on icy, snowy, wet, and dry roads, respectively.
For icy roads, which has the lowest road friction coefficient,
the data are heavily distributed in a high slip-ratio region.

FIGURE 5. Slip ratio distributions of four road surface conditions.

TABLE 2. Dataset for training and testing.

This means that slip occurs more easily on icy roads than on
other road conditions. Conversely, on the dry road, the data
are distributed in the low slip-ratio region, meaning that the
slip occurrence is relatively rare.

C. ANTI-LOCK BRAKING SYSTEM CONDITIONS
The features of Akx and V k

w differ depending on whether or
not ABS is activated, because the ABS controller activates
the brake actuator to follow the desired slip [26]. In addition,
as Akx and V k

w are entered as DNN input, the DNN must
be able to correctly respond to given situations. Therefore,
we collected data when the ABS was on or off.

The dataset for training and testing (Table 2 ) is divided
into eight cases for the four road surfaces and two ABS con-
ditions. Each case consists of 120,000 data samples, of which
80,000 are used for training and the left 40,000 samples are
used for testing.

As an example, the ‘‘D-F’’ datasets in the table are
acquired when a vehicle drives on a dry road condition
(initialed by ‘‘D’’) with ABS-off (abbreviated by ‘‘F’’) fol-
lowing the speed scenario in Fig. 3. Likewise, the data
obtained on a snowy road condition (initialed by ‘‘S’’) with
ABS-on (abbreviated by ‘‘N’’) are marked as ‘‘S-N’’ in the
table.

IV. SPEED ESTIMATION RESULTS
After the training, the developed DNN model is validated
using test data. For comparison purposes, the dual DNN is
compared with a single DNN. In addition, the estimation
results using a conventional AKF are also compared as a
reference, because it is a typical case of an empirically
determined indirect speed estimation method.

A. SPEED ESTIMATION USING A SINGLE DNN
Figure 6 shows the process of speed estimation using a single
DNN. The procedure is the same as explained in Fig. 1, except
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FIGURE 6. Speed estimation procedure using a single DNN.

FIGURE 7. Speed estimation results and corresponding filter gains from a
single DNN. The red- and blue-boxed regions indicate examples of the
slip and non-slip regions, respectively. The focused A and B regions are
further explained in Fig. 8.

the single DNN is employed instead of a dual DNN. The
DNN input uk is derived from the data storage, and the DNN
computes the filter gain K k using Eq. (11). The adaptive
filter determines the estimated speed using Eq. (1). K k and
estimated speed V̂x

k+1 are stored in the data storage for the
next step. In the figure, xk1 is the vector of data that acts
as the input to the data storage and xk2 is the longitudinal
acceleration andwheel speed data that are used in the adaptive
filter for speed estimation.

xk1 = [Axk ,V k
w,A

k
w], xk2 = [Axk ,V k

w]. (14)

The estimated speed and filter gain are illustrated in Fig. 7.
This is the estimation results of structure 5 (in Table 1) using
the test data generated from the wet and ABS-off condition
(W-F in Table 2 ). The blue, red, green, and yellow lines repre-
sent the vehicle’s true speed, estimated speed using the single
DNN, wheel speed, and integration of longitudinal accelera-
tion obtained by Eq. (5), respectively. As shown in Fig. 7,
a slip occurs during acceleration and deceleration situa-
tions, where the true speed (blue) and wheel speed (green)

FIGURE 8. Enlarged images of speed estimation results from Fig. 7, noted
as (a) region A and (b) region B.

FIGURE 9. Speed estimation procedure using a dual DNN.

TABLE 3. Test MSES’s of different acceleration thresholds.

significantly differ. This judgment is based on Eq. (4). The
gain of filter K k (black) is shown to be almost zero in the slip
regions, meaning that no weighting is applied to the wheel
speed data. Conversely, in the non-slip region, the K k has
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FIGURE 10. Speed estimation errors of the three compared methods for the eight cases in Table 2. (a) error on D-F, (b) error on W-F,
(c) error on S-F, (d) error on I-F, (e) error on D-N, (f) error on W-N, (g) error on S-N and (h) error on I-N cases.

a value between zero and one, which implies that the DNN
is now applying a higher weight to V k

w than to Akx .
Specific regions of Fig. 7, which are specified as A and B,

are enlarged and depicted in Fig. 8. It is clear that the wheel
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slip occurs at the acceleration and deceleration conditions.
In the non-slip regions, the yellow graph, calculated by Eq.
(5), drifts over time and is obviously different from other three
speed values. It is because of the accumulated error stemming
from the integration of the acceleration Akx . However, the red
line, showing the V̂x

k estimated by the single DNN, follows
the true vehicle speed closely across entire regions. In addi-
tion, the estimated speed has less noise than the wheel speed
V k
w . These observations result in a low average test MSES

of 0.293.

B. SPEED ESTIMATION USING A DUAL DNN
Although the single DNN provides a relatively high degree
of estimate accuracy, it would be challenging for one DNN
model to optimally handle diverse vehicle driving conditions.
This motivated the introduction of the D-DNN approach
employing two different DNN models. The key strategy is
the threshold value of the current longitudinal acceleration,
Athr , classifying current vehicle states.

Figure 9 shows the estimation procedure considering the
threshold Athr . If the absolute value of Akx is higher than the
threshold value, DNN1 is employed as a gain-tuning model.
Otherwise, DNN2 is used. This rule is applied to training as
well as test processes. The structure of each DNN is the same
as that of a single DNN described in the previous section.

The longitudinal acceleration threshold value is selected
empirically. Table 3 shows the test MSES of the eight data
conditions, according to several Athr values. Based on the
observations, the threshold value is set at 0.2, because the
average MSES value is lowest.

C. COMPARISION OF SPEED ESTIMATION ERRORS
Figure 10 compares the speed estimation errors of the three
methods. The green line indicates the AKFmethod. An adap-
tive filter using a single DNN is visualized using a red
line. The blue line represents the proposed model: an adap-
tive filter using a D-DNN. The figure includes errors of all
eight considered conditions (four road surfaces in two ABS
conditions). The speed estimation error is derived using the
following equation:

errork =
∣∣∣V k

x − V̂x
k
∣∣∣ (15)

All three methods are found to make accurate estimations.
Most error values are less than 0.3 m/s. More specifically,
81.81%, 75.02%, and 73.13% of the error points are less
than 0.3 m/s in the dual DNN, single DNN, and AKF meth-
ods, respectively. As Fig. 10 shows, in all eight conditions,
the error of the AKF method often rises rapidly, compared
with the other two methods. The AKF and single DNNmeth-
ods produce larger errors when the ABS is on, compared with
conditions in which the ABS is off. These results imply that
the two methods may be more dependent on vehicle driving
conditions.

Conversely, when using the D-DNN method, whether the
ABS is on or off does not change the errors notably. Another
advantage is that the error value is noticeably small and rarely

TABLE 4. Test MSES values for the three compared methods.

rises suddenly. Consequently, our proposedmodel is expected
to offer superior accuracy.

Table 4 compares the test MSES values of the three meth-
ods used to estimate vehicle speed. Our proposed model has
the lowest MSES for all test conditions. The D-DNN greatly
reduces the average MSES value by 74% and 65% compared
with a single DNN and AKF, respectively, confirming that
the proposed dual DNN model provides a generalized per-
formance with a high degree of accuracy for vehicle speed
estimation.

V. CONCLUSION
In this study, a filter-gain tuning method using a dual DNN
to estimate the absolute speed of a vehicle was proposed.
The generalized performance and high degree of accuracy of
the resulting speed estimation were achieved with a trained
D-DNN model. Although our proposed method produced
accurate estimation of longitudinal speeds, the trained model
was optimized for the datasets used in this study. This implies
that the trained model presented here could be trained further
using additional datasets, generated from different road or
driving conditions, and become a more generalized model.
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