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Abstract: Thermally activated delayed fluorescence (TADF) resulting from the harvesting of 
triplet excitons has currently emerged as an excellent candidate for enhancing the efficiency 
of organic light-emitting devices (OLEDs). Highly efficient blue OLEDs based on an 
exciplex host with carbazole/thioxanthene-S, S-dioxide (EBCz-ThX) and 2-phenyl-bis-4, 6-
(3, 5-di-4-pyridylphenyl) pyrimidine (B4PYPPM) acting as a blue TADF emitter were 
fabricated. The maximum values of the current and the power efficiency for the blue OLEDs 
with an EBCz-ThX:B4PYPPM exciplex host were 22.46 cd/A and 28.23 lm/W, respectively. 
The power efficiency of blue OLEDs with an exciplex host was much higher than that of 
conventional blue OLEDs. The efficiency enhancement of the blue OLEDs based on an 
exciplex system with a TADF emitter was attributed to the efficient up-conversion of the 
triplet excitons in the EBCz-thx:B4PYPPM and to the efficient energy transfer from the 
exciplex host to the blue TADF emitter. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Organic light-emitting devices (OLEDs) are currently attracting attention because of the 
increasing interest in their potential applications as full-color flat-panel displays, lighting 
sources, and flexible displays [1–4]. The promising applications of OLEDs have led to 
considerable efforts to fabricate OLEDs with high efficiency and low power consumption 
[5,6]. Various techniques for developing phosphorescent materials, various structure designs 
for enhancing exciton confinement in the emitter layer, and uniquely developed p-i-n and 
tandem structures have been introduced to enhance the device performance of OLEDs [7–11]. 
Among the several kinds of techniques for enhancing the efficiency of OLEDs, thermally 
activated delayed fluorescence (TADF) has been especially attractive due to the ability to 
harvest triplet excitons [12]. The ability of TADF to harvest triplet excitons is attributed to the 
reverse intersystem crossing (RISC) process from the triplet excited state (T1) to the singlet 
excited state (S1) with the assistance of thermal energy, which might result in an internal 
quantum efficiency of 100% [13]. The energy gap difference between S1 and T1 (ΔEST) for 
the formation of efficient TADF should be extremely small to reduce the exchange 
interaction, which is directly proportional to the overlap between the highest occupied 
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) [13]. A 
small ΔEST might allow intermolecular charge transfer (ICT) between mixed electron-
donating molecule (D) and electron-accepting molecule (A) materials [14–17]. 

Extensive efforts have been made to fabricate exciplex OLEDs based on the TADF 
concept in order to achieve highly efficient OLEDs [18,19]. Especially, the host exciplex 
system can be made to exhibit TADF characteristics, bipolar properties and excellent charge 
balance by moderately adjusting the ratio of D to A. Therefore, an exciplex system should be 
an excellent host for achieving highly-efficiency fluorescent OLEDs [12,20]. Even though 
some studies on the efficiency enhancement of exciplex OLEDs have been performed, very 
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Figure 3(a) shows the normalized absorption and PL spectra of the EBCz-ThX, the 
B4PYPPM, and the EBCz-ThX:B4PYPPM (1:1) films. While the absorption peaks at 218, 
235, and 274 nm for the EBCz-ThX:B4PYPPM film correspond to the overlapped peaks of 
the EBCz-ThX film, the intensities of the absorption peaks corresponding to the peaks of the 
B4PYPPM film are increased in comparison with those of the EBCz-ThX film, indicative of a 
decrease in the charge interaction for the ground state of the mixed film. Therefore, the CT 
complex of the ground state does not appear for the EBCz-ThX:B4PYPPM film [22]. The 
dominant PL peaks for the EBCz-ThX, the B4PYPPM, and the EBCz-ThX:B4PYPPM films 
appear at 415, 379, and 442 nm, respectively. The main PL peak of the EBCz-
ThX:B4PYPPM mixed film is significantly red-shifted in comparison with those of the 
EBCz-ThX and the B4PYPPM films. The exciplex emission peak of the EBCz-
ThX:B4PYPPM film at 2.81 eV is close to the offset value between the LUMO of B4PYPPM 
(3.4 eV) and the HOMO of EBCz-ThX (5.95 eV). The exciplex state of the EBCz-
ThX:B4PYPPM film is ultimately formed due to the existence of the ICT system. Figure 3(b) 
shows the PL characteristics at 325 nm at low (77 K) and room (300 K) temperatures for the 
EBCz-ThX:B4PYPPM film. The ΔEST of the EBCz-ThX:B4PYPPM film is 0.03 eV, which is 
the difference between the S1 and the T1 levels of 3.162 and 3.159 eV, respectively, as 
measured from the room- and the low-temperature PL spectra. Because ΔEST is small enough, 
the RISC process from the T1 to the S1 states can occur with the assistance of thermal energy. 
The molecular structures of EBCz-Thz and B4PYPPM are schematically shown in Fig. 3(c). 
The ICT interaction is dominantly generated because of the strong electron-donating property 
of the ethyl-carbazole in EBCz-ThX and the strong electron-accepting property of the 
pyridine or the pyrimidine in B4PYPPM. A small ΔEST can be achieved due to the ICT 
interaction, resulting in the occurrence of exciplex emission. 

 

Fig. 3. (a) Normalized absorption and photoluminescence spectra of the B4PYPPM, the EBCz-
ThX, and the EBCz-ThX:B4PYPPM (exciplex) films, (b) low and room temperature 
photoluminescence spectra of the exciplex film, and (c) schematic diagrams of the molecular 
structures of EBCz-Thz and B4PYPPM. 
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Figure 4 shows the time-resolved PL characteristics at 375 nm for the EBCz-
ThX:B4PYPPM:2CzPN and the EBCz-ThX:2CzPN films. The decays of the PL as functions 
of time for the EBCz-ThX:B4PYPPM:2CzPN and the EBCz-ThX:2CzPN films can be 
expressed as double-exponential functions: 

 ( ) ( ) ( )1 1 2 2f t A B exp t / B exp t / ,τ τ= + − + −  (1) 

where A is the absorption value at 375 nm, B1 and B2 correspond to coefficients, t is the 
measurement time, and τ1 and τ2 are the values of the exciton lifetimes. The decays of the PL 
as functions of time exhibit two lifetimes. While the long and the short exciton lifetimes for 
the EBCz-ThX:2CzPN film are 3.67 and 1.16 μs, respectively, those of the EBCz-
ThX:B4PYPPM:2CzPN film are 4.38 and 1.52 μs. The amplitude-weighted average exciton 
lifetime is given by, 

 avg k k k k if ,    f B / B ,τ τ=  =   (2) 

where τk and fk are the exciton lifetime and the fractional intensity, respectively. The values 
of τavg for the decays of the PL decay as functions of time for the EBCz-ThX:2CzPN and the 
EBCz-ThX:B4PYPPM:2CzPN films are 2.18 and 2.24 μs, respectively. The fitting 
parameters for PL decay spectra of the EBCz-ThX:2CzPN and the EBCz-
ThX:B4PYPPM:2CzPN films are summarized in Table 1. The PL decay time is related to the 
efficiency of the energy transfer from the exciplex host to the dopant. The PL decay time of 
the EBCz-ThX:B4PYPPM:2CzPN film is longer than that of the EBCz-ThX:2CzPN film due 
to the delayed emission of the PL. The energy of the delayed singlet excitons derived from 
the RISC process of the EBCz-ThX:2CzPN film transfers to the singlet state of 2CzPN via 
the Fӧrster energy transfer process, resulting in delayed PL emission. 

 

Fig. 4. Time-resolved photoluminescence spectra of the EBCz-ThX:B4PYPPM:2CzPN and the 
EBCz-ThX:2CzPN films at 375 nm. 

Table 1. Fitting parameters for the PL decay spectra of the EBCz-ThX:2CzPN and the 
EBCz-ThX:B4PYPPM:2CzPN films. 

Parameters τ1 τ2 B1 B2 A 

EBCz-ThX:2CzPN 1.16E-6s 3.66E-6s 0.6231 0.4290 0.00718 

EBCz-ThX: 
B4PYPPM:2CzPN 

1.52E-6s 4.38E-6s 0.7752 0.2590 0.00521 
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