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Modelling of long waves generated by bottom-tilting wave
maker

Heng Lua, Yong Sung Parka,∗, Yong-Sik Chob

aSchool of Science and Engineering, University of Dundee, Perth Road, Dundee DD1 4HN, United
Kingdom

bCivil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of
Korea

Abstract

In order to generate very long waves in laboratory, a bottom-tilting wave maker is

designed and used at the University of Dundee. This new type of wave maker can

produce waves longer than solitary wavesin terms of the effective wavelength, which

provides better long wave model. Nonlinear and dispersive numerical models are built

for modelling the wave tank. A shock-capturing finite volume scheme with high-order

reconstruction method is used to solve the governing equations. By comparing to the

experimental measurements, the numerical models are verified and able to approximate

the resulting waves in the wave tank.

Keywords: nonlinear shallow water equation, Boussinesq equation, linear wave

theory, WENO, UNO, wave maker

1. Introduction

Over the last few decades, there have been great interests in tsunami behaviour in

near shore region and coastal areas. Among these studies (e.g., Hammack, 1973; Syn-

olakis, 1987; Liu et al., 1995; Li and Raichlen, 2002; Craig, 2006), solitary wave has

been the most commonly used tsunami wave model theoretically and experimentally.5

Indeed one of the reasons that solitary waves have been so popular for such a long time

was that they are relatively easy to generate in laboratory (Goring, 1978).
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Solitary wave propagates in constant depth with permanent form, whose surface

elevation is described as

η(x, t) = As sech2 [Ks(x − ct)] , Ks =
1
h0

√
3As

4h0
, (1)

in the horizontal coordinate x and time t, where η, As, c and h0 denote free surface

elevation, wave height, phase velocity and static water depth, respectively. However,

recent studies such as Madsen et al. (2008) show that wavelength-to-depth ratios of

solitary waves are much smaller than that of tsunamis in reality in the respect of the

effective wave period Ts and the effective wavelength Ls of solitary waves:

Ts =
2π
Ksc

, and Ls =
2π
Ks
. (2)

In other words, the link between its effective wavenumber Ks and wave height As

is not realistic. In particular, when tsunamis are approaching the beach, nonlinearity

increases significantly, leading to skewness of waves, which is already beyond the KdV10

scale.

Piston-type wave makers are popular and widely used to generate long waves in

laboratory, but the disadvantage is that the wavelength of the generated waves is limited

by the stroke length Lp as shown in figure 1. Very few studies mention using bottom-

wave-generator to simulate tsunami generation or create long waves. The one designed15

by Hammack (1973) is well known, which was designed for generating solitary waves

excited by positive bed motion under the control of a hydraulic servo-system. We note

here that waves generated by sudden bottom motion have been studied in the context

of impulsive sloshing in a partially-filled tank (e.g., Kit et al., 1987; Liu and Lin, 2008;

Tyvand and Miloh, 2012).20

In the present study, a bottom-tilting wave maker at the University of Dundee is

investigated. The wave maker is able to generate very long waves, considerably longer

than the effective wavelength of solitary waves with same amplitude. The bottom-

tilting wave maker is designed based on a simple idea that moving the entire bottom

can generate waves as long as the tank itself, which should be the longest wave in25

any given tank. A schematic drawing of concept of the bottom-tilting wave maker is

depicted in figure 1. Note that, in comparison with typical piston-type wave maker,
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Figure 1: Comparison between piston-type wave maker and the bottom-tilting wave maker.

the bottom tilting wave maker has much longer moving length L, which can produce

longer waves. In addition, the generated waves have very short distance to arrive at the

shoreline by using the adjustable slope, which can be used to model long wave run-up.30

There are a variety of wave theories which have been adopted to examine long

waves. In early stage, people evaluated the wave motion from the linear wave theory

in tsunami studies. For instance, Kajiura (1963), Keller and Keller (1964), Tuck and

Hwang (1972) and Synolakis (1987) have proposed the linear wave theory to approxi-

mate near and far field waves. Although, the linear wave theory is limited to situations35

where nonlinear effects are small for both near and far field waves, it is used as first

approximation of long waves in this work.

When nonlinearity makes significant influence, the classical nonlinear shallow wa-

ter (NSW) equations have been usually employed for simulating waves:

ηt + ((h + η)u)x + ht = 0,

ut + uux + gηx = 0,

 (3)
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where η, u, h and g denote the free surface elevation, the depth-averaged fluid veloc-

ity, the static water depth and the gravitational acceleration, respectively. Carrier and

Greenspan (1958) proposed an analytical solution to NSW equations for monochro-40

matic waves running up a beach with constant slope. An analytical solution was ob-

tained by Synolakis (1987) for run-up of non-breaking solitary waves. Further de-

velopment of the analytical solution has been made subsequently, e.g. Antuono and

Brocchini (2007), Antuono et al. (2009), Antuono and Brocchini (2010) and Madsen

and Schäffer (2010).45

On the other hand, frequency dispersion is of great importance during wave gen-

eration and propagation when pressure cannot be assumed hydrostatic. Many studies

have shown that dispersive models have good performances on long wave simulation

(e.g., Peregrine, 1967; Zelt, 1991; Dutykh et al., 2011; Dutykh and Kalisch, 2013).

Hence, Boussinesq equations become a good choice to demonstrate the evolution of

the surface waves, meanwhile both dispersion and nonlinearity are considered on the

basis that they are both small and of the same order of magnitude. Dutykh et al. (2011)

introduced a variety of Boussinesq-type wave systems, among which some are ap-

plicable for flat bottom and some for arbitrary bottom. In this work, time-dependent

bathymetry variations have to be coupled with surface wave. Therefore, the Boussinesq

system derived by Wu (1987) for dynamic bathymetry is employed:

ηt + ((h + η)u)x + ht = 0,

ut + gηx + uux = 1
2 h(ht + (hu)x)xt −

1
6 h2uxxt,

 (4)

which is an extension of the classical Boussinesq systems.

A wide range of numerical methods are developed in solving these hyperbolic equa-

tions, such as finite difference methods, finite element methods, finite volume methods

and discontinuous Galerkin methods. Dutykh and Kalisch (2013) used a finite volume

scheme to solve the Boussinesq equations for modelling surface waves due to underwa-50

ter landslides. They demonstrated that finite volume method is good at approximating

solutions to conservative equations with high efficiency, accuracy and robustness ow-

ing to its conservative and shock-capturing properties. Their numerical results have a

good agreement with not only solitary wave propagation and interaction theoretically
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but also some experimental measurements. Since how to deal with the discontinuity55

of discrete solution at the cell interfaces is of key importance, Dutykh et al. (2011)

introduced three types of numerical fluxes which can take effect along with some re-

construction techniques such as TVD (Sweby, 1984), UNO (Harten and Osher, 1987)

and WENO (Liu et al., 1994) schemes. Among the three types, the central flux, as

a Lax-Friedrichs type flux, is chosen in this work. Characteristic flux function is the60

one Dutykh and Kalisch (2013) used, and confirmed by Dutykh et al. (2011) that it

works as well as the central flux. Li and Raichlen (2002) used Lax-Friedrichs flux

splitting, which also shows a good performance. For reconstruction techniques, either

UNO2 scheme (Harten and Osher, 1987) or WENO scheme uses adaptive stencil to in-

terpolate the numerical flux and keep the piecewise polynomial representations always65

non-oscillatory. Note that, UNO2 scheme is of second order accuracy while WENO

scheme can obtain higher-order accuracy.

The present study introduces the numerical modelling for this new bottom-tilting

wave tank system. The fluid is under the assumptions of being inviscid, incompressible

and irrotational flow. In addition, bottom dissipation is ignored and full reflection hap-70

pens at the tank ends. In section 2, linear wave theory is used for preliminary estima-

tion. Then, in section 3 the numerical models considering nonlinearity and dispersion

for this specific wave tank are described in detail, including the numerical schemes and

methods. By comparing the theoretical and experimental results, this numerical model

is validated in section 4. Finally, conclusion remarks are given in section 5.75

2. Preliminary estimation by linear wave theory

Figure 2 shows the schematic sketch of the two-dimensional wave tank with a bot-

tom moving in a combined rotating and lifting manner. Clearly, the analysis is divided

into two parts at the toe of the slope (hinge). The moving bottom part will generate long

waves, and the other part is for the generated waves propagating in the constant water80

depth or running up the slope. In this section, slope is not considered. The coordinate

system origins at the end wall of the generation part, meanwhile the positive x axis is

pointing the other end wall and z axis is pointing upwards. Thus, the fluid domain is
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Figure 2: Sketch of the two-dimensional wave maker.

bounded by the two end walls, the free surface and the bottom solid boundary, while

the latter two are defined as z = η(x, t) on the surface and z = −h(x, t) at the bottom.85

For 0 < x < L, water depth is expressed by h(x, t) = h0 + ζ(x, t), where ζ denotes the

bottom motion displacement, and h0 the initial water depth.

Linear wave theory is useful for quick estimate of the generated waves, although

limited by the conditions that it only applies to non-breaking waves and where non-

linear effects are small. The fluid motion in the wave tank can be described by the

two-dimensional Laplace equation along with the simplified boundary conditions by

linear wave theory. With Φ denoting the velocity potential, continuity equation reads

∇2Φ =
∂2Φ

∂x2 +
∂2Φ

∂z2 = 0, (5)

with boundary conditions introduced from the linearised kinematic and dynamic bound-

ary conditions:
∂η

∂t
=
∂Φ

∂z
, z = 0, (6)

∂Φ

∂t
+ gη = 0, z = 0, (7)

∂Φ

∂z
= 0, z � −h0. (8)

6



Under the assumption that the moving bed is flat, solid and impermeable, the fluid

velocity normal to the bed vn is the same as that of the moving bottom. Thus, the

bottom boundary condition becomes

vn = r
∂θ

∂t
, (9)

where r and θ denote rotating radius and angle, respectively. In figure 2, the radius

r can be described as r = (L − x)
√

1 + tan2 θ with 0 < x < L. Since vn also can be

described as

vn = w cos θ + u sin θ, (10)

this leads to

(L − x)
√

1 + tan2 θ
∂θ

∂t
= w cos θ + u sin θ, (11)

where u and w are the horizontal and vertical components of vn, respectively. For small

θ, w cos θ ≈ w, u sin θ ≈ 0, tan2 θ � 1 and θ ≈ ζ(x, t) (L − x)−1, hence left-hand side of

(11) approximates ∂ζ/∂t. As a result, the bottom boundary condition (8) becomes

∂Φ

∂z
= W (x, t) =

∂ζ

∂t
, z � −h0. (12)

In this study, the bottom motion is of finite duration, which can excite the fluid

and produce transient waves. Therefore, the Laplace transform in t (denoted by¯ ) and

Fourier transform in x (denoted by˜) are applied (Mei, 1989). Then, the equations

become
d2Φ̃

dz2 − k2Φ̃ = 0, −h0 ≤ z ≤ 0, (13)

dΦ̃

dz
+

s2

g
Φ̃ = 0, z = 0, (14)

∂Φ̃

∂z
= W̃, z = −h0, (15)

where Eq. (14) is obtained by combining Eq. (6) and Eq. (7). Now, the velocity poten-

tial is given in the form

Φ (x, z, t) =
1

2π

∫ ∞

−∞

dkeikx 1
2πi

∫
Γ

dsestΦ̃ (k, z, s) . (16)
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Under the conditions that η(x, 0) = Φ(x, 0) = 0 and Φ → 0 as | x |→ ∞ within finite t,

the solution to the transformed velocity potential is

Φ̃ =
W̃(s2 sinh kz − gk cosh kz)

k(s2 + ω2) cosh kh0
, (17)

where ω2 = gk tanh kh0 and k denotes wavenumber. Finally, by substituting Eq. (16)

and Eq. (17) into Eq. (6), the solution for the free surface elevation resulting from

general bottom motion is obtained as

η (x, t) =
1

2π

∫ ∞

−∞

dk
eikx

cosh kh0

1
2πi

∫
Γ

ds
sW̃est

s2 + ω2 . (18)

To apply the solution (18) for the bottom tilting wave maker, we specify the bottom

motion displacement as below

ζ (x, t) = D0 (x) B (t) , (19)

where the motion amplitude D0 is presented as

D0 (x) =

 a − a
L |x| , −L ≤ x ≤ L,

0, x < −L and x > L,
(20)

with a denoting the motion amplitude at x = 0. We note here that the bottom motion

amplitude described in (20) is for unbounded domain (−∞ < x < ∞) and symmetric

with respect to the vertical axis at x = 0. Then, (12) becomes

∂Φ

∂z
=
∂ζ

∂t
= W (x, t) = D0 (x) Q (t) , (21)

where

Q (t) =
dB
dt
. (22)

Taking Fourier transformation of (20),

D̃0 (k) =

∫ ∞

−∞

D0 (x) e−ikxdx = aL
sin2 (kL/2)

(kL/2)2 , (23)

in which, we made use of the fact that D0(x) is an even function. It is straightforward

to calculate the solution for impulsive bottom motion, namely, Q(t) = δ(t). Then,

the solution for general bottom motion, Q(t) =
∫ t

0 Q(u)δ(t − u) du, is obtained as a

superposition of the impulsive motions:

η (x, t) =
aL
π

∫ t

0
du

∫ ∞

0
dk

sin2 (kL/2)
(kL/2)2

cos kx
cosh kh0

Q (u) cosω (t − u) . (24)
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3. Numerical model of the bottom-tilting wave maker

Ursell number Ur = (A/h) (kh)−2 = ε µ−2 can be used to demonstrate the relation

between nonlinearity ε and dispersion µ2, where ε = A/h and µ = kh. Thus, the an-90

alytical solutions by linear wave theory are useful when ε � 1 and µ � 1. But in

fact, ε is not small in this shallow water tank, so linear wave theory cannot describe the

resulting waves accurately. Moreover, dispersion can be important during wave gener-

ation and propagation. If both nonlinearity and dispersion are taken into consideration,

Boussinesq equations can be a good choice under the condition that the fluid should95

satisfy O(ε) = O(µ2) < 1. However, if ε/µ2 � 1, in particular during run-up, nonlinear

shallow water equations can describe the fluid motion more practically.

After normalisation, the dimensionless variables are given by

x∗ =
x

h0
, h∗ =

h
h0
, η∗ =

η

h0
, t∗ = t

√
g
h0
. (25)

For the sake of convenience, asterisk denoting non-dimensionality is dropped in the

following discussions.

3.1. Wave generation modelling100

Boussinesq equations for time-dependant bathymetry (4) are rewritten in conserva-

tive form as below

Ht + [Hu]x = 0,

ut + [ 1
2 u2 + (H − h)]x = 1

2 hhxtt + 1
2 h(hu)xxt −

1
6 h2uxxt,

 (26)

where H = η + h. In order to conform to the conservation law, Eq. (26) are rearranged

in the form (Dutykh and Kalisch, 2013):

Vt + [F(V)]x = Sb +M(V), (27)

where the variable V, the advective flux F(V), the source term Sb and the dispersive

term M(V) are denoted respectively by V =

 H

u

 , F(V) =

 Hu
1
2 u2 + (H − h)

 , Sb = 0
1
2 hhxtt

 andM(V) =

 0
1
2 h(hu)xxt −

1
6 h2uxxt

 .
9



The finite volume discretization divides a real line R uniformly into cells Ci =[
xi− 1

2
, xi+ 1

2

]
with centers xi = 1

2

(
xi− 1

2
+ xi+ 1

2

)
(i ∈ Z) while ∆xi regarded as the length

of the cell. After discretization, the equations become

dV̄i

dt
+

1
∆x

[F(V(xi+ 1
2
)) − F(V(xi− 1

2
))] = S̄i + M̄i, (28)

where V̄i(t) = 1
∆x

∫
Ci

V(x, t)dx is regarded as cell average, so as the source term and the

dispersive term.105

To deal with the discontinuity at cell interfaces in the discrete solution, numeri-

cal flux functions are replaced at the cell interfaces by Lax-Friedrichs numerical flux

function. For the purpose of achieving higher order approximations to V(xi± 1
2
, t), a

piecewise polynomial representation called UNO2 (Harten and Osher, 1987) is intro-

duced which has a good performance as being of second order accuracy and results in110

small dissipation in wave computation. On the other hand, WENO type reconstruction

can lead to higher order accuracy, for example, 3rd order accurate WENO3 and 5th

order accurate WENO5 (Shu, 1998).

For the right-hand side, the second component of the dispersive terms M(V) are

discretized by finite difference scheme:

Mi(V̄) =
1
2

h̄i
h̄i+1(ūt)i+1 − 2h̄i(ūt)i + h̄i−1(ūt)i−1

∆x2

−
1
6

h̄2
i

(ūt)i+1 − 2(ūt)i + (ūt)i−1

∆x2

=
h̄i

2∆x2 (h̄i−1 −
1
3

h̄i)(ūt)i−1

−
2

3∆x2 h̄2
i (ūt)i +

h̄i

2∆x2 (h̄i+1 −
1
3

h̄i)(ūt)i+1,

(29)

which is of the second order accuracy. The semi-discrete scheme for Boussinesq equa-

tions (Dutykh and Kalisch, 2013) can be rewritten as

dH̄
dt + 1

∆x

[
F(1)

+ (V̄) − F(1)
− (V̄)

]
= 0,

(I − M) · dū
dt + 1

∆x

[
F(2)

+ (V̄) − F(2)
− (V̄)

]
= S(2)

b ,

 (30)

where F(1,2)
± (V̄) are the right (+) and left (-) components of the flux vector F, respec-

tively, S(2)
b is the second component of the source term vector Sb and M is the diagonal115

matrix obtained by factoring out ūt of the M as discretized in (29).
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Owing to the solid wall on each end, respectively, the boundary conditions are

determined as totally reflective. Hence, the horizontal velocity at the wall is imposed

to be zero. In addition, ghost cells are added to the boundaries depending on the three

different reconstruction methods. According to the finite volume discretization, the

imposed boundary conditions are described
H0 = H1,

(u)0 = −(u)1,

(u) 1
2

= 0,

(31)

where the index 0 indicates the ghost cell.

Time discretization used here is a Runge-Kutta scheme of the third order with four

stages proposed by Bogacki and Shampine (1989). The computational domain was

discretized with δx = 1/3, and δt = 0.1 for computational efficiency and stability. The

Courant-Friedrichs-Lewy (CFL) condition, which demonstrates the variants cannot run

faster and skip any cell in a single time step, has been verified and satisfied with this

discretization. For the equation system (27), the propagation speed is determined by

the eigenvalues of the flux Jacobian matrix, where the flux Jacobian matrix is given by

∂F(V)
∂V

=

 u H

1 u

 (32)

and it leads to two eigenvalues defined as

λ± = u ± cs, cs ≡
√

H. (33)

Therefore, the propagation speed λ cannot exceed the cell speed dx
dt , which can be used

to define the Courant number as shown below:

Cr =
dt
dx

max(|λ|) (34)

and to ensure Cr < 1 all the time to satisfy the CFL condition. In fact, by using this

discretization, Cr is less than 0.5 at each time step.

In the case where dispersive term M(V) could be neglected, (27) reduce to NSW

equations and are discretized in the form:

dV̄i

dt
+

1
∆x

[F(V(xi+ 1
2
)) − F(V(xi− 1

2
))] =

1
∆x

∫
Ci

Sb(V)dx ≡ S̄i. (35)

11



Figure 3: Coordinate system used for run-up modelling

The equations are solved by the same finite volume method for the Boussinesq equation120

system. Satisfying the CFL condition has been ensured for this scenario as well. Later

in section 4.3, this system will be used to compare with the Boussinesq equation system

for wave generation. Moreover, nonlinear shallow water equations will also used for

wave run-up modelling where nonlinearity plays a key role, which will be discussed in

detail in the next section.125

It is noted that the WENO5 scheme is used for nonlinear shallow water system as it

has higher accuracy. WENO schemes take longer time, but the neglect of the dispersion

term saves time for the calculation. For Boussinesq equations, all three reconstruction

schemes (UNO2, WENO3 and WENO5) are used and compared to one another, which

is further discussed in section 4.1.130

3.2. Wave run-up modelling

For sloping beach, the generated wave will soon run up the beach, as shown in

figure 3. A corresponding numerical wave model for wave run-up is built based on

nonlinear shallow water equations owing to the dominance of nonlinearity during wave

run-up. The nonlinear shallow water equations with bottom friction in the conservative

12



and non-dimensional form are given by

Ht + (Hu)x = 0,

(Hu)t + (Hu2 + 1
2 H2)x = Hhx −Cdu|u|,

 (36)

because conservative form is beneficial to dealing with the discontinuous solutions.

Moreover, for breaking waves, bore is used to model the wave after collapse.

However, because of the difficulties in treating the shoreline position during run-up

and run-down on the beach, a computational domain mapping technique (e.g., Zhang,

1996; Li and Raichlen, 2002) is applied to the numerical scheme by transforming the

moving space domain into fixed space domain. For convenience, the computation do-

main is changed, which is now defined as (−Γ, 0). −Γ is the seaward boundary and 0 is

the shoreline where Γ denotes the initial length of the computation domain as shown in

figure 3. Hence, the real coordinates are described by the transformed coordinates as

below:
x = (1 + X/Γ)x′ + X,

t = t′,

 (37)

where X(t) is the shoreline position function, x′ and t′ are the transformed coordinates.

Under the transformation, the grid points of the new computation domain will always

keep unchanged as the shoreline position x = X(t) always corresponds to x′ = 0, and

the another boundary x = −Γ corresponds to x′ = −Γ. In addition, Eq. (37) can lead to

the following relations:

∂

∂t
=

∂

∂t′
−

1 + x′/Γ
1 + X/Γ

U
∂

∂x′
,

∂

∂x
=

1
1 + X/Γ

∂

∂x′
,

 (38)

where U(t) =
dX(t)

dt indicates the shoreline velocity.

Then, (36) should be modified in the new coordinate system (primes dropped from

now on) as below:

Ht + (−c1UH + c2uH)x = − c2
Γ

UH,

(Hu)t +
(
−c1UHu + c2Hu2 + 1

2 c2H2
)

x
= c2Hhx −

c2
Γ

UHu −Cdu|u|.

 (39)

where c1(x, t) =
1+x/Γ

1+X(t)/Γ and c2(t) = 1
1+X(t)/Γ .135

13



Similarly, the equations are rearranged as the form in (35) with the variables V,

the advective flux F(V) and the source term Sb determined by V =

 H

Hu

 , F(V) = −c1UH + c2uH

−c1UHu + c2Hu2 + 1
2 c2H2

 , and Sb =

 −
c2
Γ

UH

c2Hhx −
c2
Γ

UHu −Cdu|u|

. In order to

solve these equations, the shock-capturing finite volume scheme is still used with the

reconstruction of the conservative variables V by WENO5 scheme and the flux func-140

tion F(V) by Lax-Friedrichs central method as well. The same Runge-Kutta scheme

is used for time discretization. For modelling the wave tank, computational domain

was discretized with δx = 1/3, and δt = 0.05, which can ensure the computational

efficiency and stability, and satisfy CFL condition.

3.2.1. Boundary condition145

Ghost cells are used on the seaward boundary, which is fully reflective. For the

shoreward boundary, the boundary elevation and velocity in the transformed computing

domain can be defined based on the following relations of Lagrangian descriptions

proposed by Zhang (1996):

h(X(t)) + η(X(t), t) = 0,
dX(t)

dt = U(t),
dU
dt = −ηx.

 (40)

Then, according to Beam-Warming scheme and trapezoidal integration, the boundary

velocity U(t) and shoreline position X(t) can be estimated by the following schemes of

second-order in space and time (Zhang, 1996):

Un+1
N = Un

N −
δt

2δx (3ηn
N − 4ηn

N−1 + ηn
N−2) + δt2

2δx2 (ηn
N − 2ηn

N−1 + ηn
N−2),

Xn+1
N = Xn

N + 1
2δt(U

n+1
N + Un

N),

 (41)

where N is the last grid index of the transformed computing domain, which indicates

the shoreline position all the time. In addition, the two conservative variables on

the shoreward boundary are H(X(t), t) = h(X(t)) + η(X(t), t) = 0 and Hu(X(t), t) =

H(X(t), t) · U(X(t), t) = 0.
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3.2.2. Bottom friction term150

Bottom friction terms are commonly used in order to make the numerical results

more practical. In this study, a quadratic form Cdu|u| is used in conservative form

where Cd is a drag coefficient. Cd also can be defined by g n2 H−1/3 where n denotes

the Manning roughness coefficient. It is clearly found from the definition that bottom

friction will be very large in shallow water, hence it is not ignorable during run-up since155

the water depth decreases significantly. The value of Cd can be chosen by comparing

some experimental data.

4. Validations and Results

4.1. Wave generation validation

Test of a solitary wave in constant-depth water is used to validate the finite volume

scheme for Boussinesq equations by examining if the resulting wave will always keep

its shape during its propagation. The solitary wave solution η = As sech2 [Ks(x − x0)] at

t = 0 is used as the initial condition, in which x0 denotes the position of the initial wave

crest. Also, Sb = 0 is used for constant depth. Figure 4 displays the solitary waves

solved by the finite volume scheme with UNO2, WENO3 and WENO5, respectively.

The three numerical methods all closely approximate the exact solution. However,

UNO2 reconstruction method is the least time-consuming with comparable accuracy

to the other higher-order schemes. Comparably, WENO5 has the highest accuracy.

Figure 5 shows the time history of the conservation of mass and energy denoted by Vs

and E respectively with the following normalization:

V∗s =
Vs

h2
0

, E∗ =
E

ρgh3
0

. (42)

It is clearly seen that the mass and energy are conserved during the computation for160

the three reconstruction methods. To maintain consistency in terms of accuracy and

well-balanced, only UNO2 scheme is chosen to be used with the second order accurate

scheme of the dispersive terms for solving Boussinesq equations, while WENO scheme

is used for solving nonlinear shallow water system as no dispersive terms considered.
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Figure 4: Comparisons of solitary wave among the three schemes (distinguished by line style) and the exact

solution (markers) to the solitary wave with A/h0 = 0.2.
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Figure 5: Comparisons of the conservation of mass and energy between the three schemes (dashed line, dash-

dot, solid line and dotted line indicate potential energy, kinetic energy, total energy and volume, respectively,

while the three schemes are distinguished by colour as marked).
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4.2. Wave run-up test cases165

The numerical scheme with WENO5 is used to solve nonlinear shallow water sys-

tem and estimate wave run-up. The method is verified here by producing a time-

periodic wave on a sloping beach with amplitude 0 < A ≤ 1 and comparing to the

corresponding Carrier-Greenspan periodic solution. Note that bottom friction is ne-

glected here. When amplitude A = 1 and t0 = 3π/4 are defined, the initial conditions

become
η0 = 1

4 J0(σ),

u0 = 0,

x = −σ
2

16 + 1
4 J0(σ),

 (43)

where σ is a new variable defined as σ = 4
√
−x + η0. Besides, the seaward boundary

is determined from exact solution. Given some x, the corresponding σ can be obtained

with iteration by using Newton-Raphson method. Then, substituting σ into the first

relation in (43) leads to the initial water elevation η0. Figure 6 presents the comparison

between the numerical results and their corresponding exact solutions. The wave runs170

down from t = 3π/4 and stops at t = 5π/4 with velocity u = 0 instantly. The compari-

son shows the scheme can closely approximate Carrier-Greenspan periodic solution.

4.3. Validation of the bottom-tilting wave maker

Given the bottom motion, the numerical method enables to approximate the evolu-

tion of the free surface waves, while the analytical solution gives a rough estimation.

Cases in which the bottom moves at constant speed are considered for simplicity in the

present study. Here, only upward or downward motion from the initial position θm is

considered, where θm is the amplitude of the rotating angle. As shown in figure 2, ro-

tating angle θ can be represented as θ(t) = θm(1 − t/b), where b is the motion duration.

Hence, the trajectory of the bottom for upward motion is described as

S (x, t) = −h0 − (L − x) tan θ

≈ −h0 − (L − x)(θm − θm/b · t)

≈ −h0 − D0(x)(1 − t/b),

(44)
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Figure 6: Comparison of the wave run-up model to Carrier-Greenspan periodic solution (solid line indicates

the numerical results and dotted line indicates the exact solution).
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Table 1: Parameters for varying bottom motions.

Parameters Values

Water depth h0 (m) 0.060, 0.050, 0.040,

Bottom motion displacement a (m) 0.005, 0.010 · · · 0.040

Bottom motion duration b (s) 0.5, 1.0, 1.5, 2.0

or for downward motion similarly:

S (x, t) ≈ −h0 + D0(x)(1 − t/b), (45)

where motion amplitude D0 is already determined by (20). Thus, B(t) is defined as

B(t) =

−(1 − t/b), upward motion,

1 − t/b, downward motion,
(46)

so its time derivative Q(t) is defined as

Q(t) =

 1/b, upward motion,

−1/b, downward motion.
(47)

Therefore, by substituting (47) into (24) for upward motion, the free surface eleva-

tion at the hinge becomes

η (L, t) =


aL
π

∫ t
0 du

∫ ∞
0 dk 1

b
sin2(kL/2)

(kL/2)2
cos kL
cosh kh cosω (t − u) , 0 ≤ t ≤ b,

aL
π

∫ b
0 du

∫ ∞
0 dk 1

b
sin2(kL/2)

(kL/2)2
cos kL
cosh kh cosω (t − u) , t ≥ b.

(48)

Similarly, for downward motion, the bottom motion displacement leads to the free

surface elevation at the hinge

η (L, t) =

−
aL
π

∫ t
0 du

∫ ∞
0 dk 1

b
sin2(kL/2)

(kL/2)2
cos kL
cosh kh cosω (t − u) , 0 ≤ t ≤ b,

− aL
π

∫ b
0 du

∫ ∞
0 dk 1

b
sin2(kL/2)

(kL/2)2
cos kL
cosh kh cosω (t − u) , t ≥ b.

(49)

Lu et al. (2016) carried out experiments and the parameters used for wave genera-

tion are summarized in table 1, in which the moving bottom length is L = 1 m. Note175

that the following results are demonstrated in dimensionless form.

First of all, figure 7 shows the comparison of time history of the free surface el-

evation at hinge between experimental data and theoretical results, where (a) shows

the waves generated by upward motion and (b) downward motion, with h0 = 0.05 m,
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Figure 7: Comparison of free surface elevation at hinge (BE: Boussinesq equations, NSWE: nonlinear shal-

low water equations, LT: linear wave theory).
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a = 0.025 m and b = 1.0 s. Apparently, the numerical model based on Boussinesq180

equations can closely approximate the waves generated by the new wave maker. The

numerical results by solving nonlinear shallow water equations show good agreement

with the experimental data as well, but cannot simulate the dispersion in the genera-

tion region. Therefore, Boussinesq equations have better performance than nonlinear

shallow water equations for wave generation, in particular the later period of time.185

Compared to the analytical solution by linear wave theory for the leading wave, the nu-

merical results display a slight asymmetry, in particular the downward motion, which

is caused by marked nonlinearity in this shallow water tank. Thus, nonlinear effects

can not be ignored even for wave generation in this wave tank. Still, linear wave theory

can be useful for quick estimate.190

Wave amplitude and wave period of the resulting waves are the main features to be

examined for wave generation. The influences of varying bottom motion displacement

a and duration time b on the amplitudes and periods of the resulting leading waves are

respectively shown in figure 8 for upward motion and figure 9 for downward motion

with water depth of 0.05 m.195

The figures confirm again that the Boussinesq equation system approximates the

experimental data well. In particular, the analytical solution cannot predict the depen-

dence of the wave period T on the bottom displacement a, which is a nonlinear effect.

Besides, by applying the run-up numerical model, the maximum run-up of differ-

ent generated waves is compared to experimental data (Lu et al., 2016) and shown in200

figure 10 (a) for upward bottom motion and figure 10 (b) for down-upward bottom

motion. Here, the varying bottom motion displacements a in dimensionless form are

different from the wave generation investigation, which ranges from 0.17 to 0.67 now,

since the water depth is limited within 0.03m to ensure run-up can be completely ob-

served without touching the wall at the top of the slope in the experiments. Clearly, the205

numerical results can successfully model the experimental data by choosing appropri-

ate drag coefficient.
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(a) Wave amplitude A with varying motion parameters a and b
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Figure 8: Relations between the bottom motion parameters (amplitude a and duration b) and the character-

istics of the resulting wave (amplitude A and period T ) for upward motion (dotted line, solid line and circle

indicate results by linear wave theory, Boussinesq equations and measurements, respectively).
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Figure 9: Relations between the bottom motion parameters (amplitude a and duration b) and the characteris-

tics of the resulting wave (amplitude A and period T ) for downward motion (dotted line, solid line and circle

indicate results by linear wave theory, Boussinesq equations and measurements, respectively).
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5. Conclusions

The new wave generator used in this study is a bottom-tilting wave maker, which

makes very long waves by moving the bottom hinged at the toe of the beach with210

adjustable slope under the command of an electric servo motor. This new type of wave

maker is built because of the query of whether solitary wave is able to represent the

geophysical scales of tsunamis or not arisen by recent researches. In other words, it is

of great importance to generate waves that are longer than solitary waves in laboratory.

Some theoretical methods are used and discussed for modelling this bottom-tilting215

wave maker. The linear wave theory can provide the estimation of the leading order of

the waves generated. Furthermore, a numerical model based on the nonlinear shallow

water equation has been built to approximate the evolution of the surface waves for

more practical consideration. Additionally, another numerical model based on weakly

nonlinear and weakly dispersive wave theory has been built for only wave generation.220

Finite volume discretization combined with reconstruction methods (UNO, WENO)

has been used to numerically solve the equations, which is conservative and shock-

capturing.

Numerical schemes have been verified by various validation tests. Then, good

agreement between the theoretical results and the experimental measurements con-225

firms that the numerical model can model the generated wave accurately, both in wave

generation and wave run-up. Moreover, it should be noted that nonlinear effects are

important and necessary to be taken into consideration for practically modelling the

waves generated by this new wave maker. For wave generation, including dispersion in

the numerical model is helpful in simulating higher order waves more accurately. Thus,230

surface waves studied in Boussinesq scaling with time-dependent bottom bathymetry

gives a better performance in approximating the wave generation, while nonlinear shal-

low water system is good at approximating the wave run-up.

We remark here that active absorption of the reflected waves needs to be considered

for this wave maker to be more practical. We have not discussed the issue here as the235

focus is on modelling of the waves during and immediately after the generation stage.

Within the linear theory, it can be shown that active absorption is possible without

26



modification of the wave tank. We will further pursue this subject in the future work.
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