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Herein, we present robust shrinkage range estimation algorithms for which received signal strength measurements are used to
estimate the distance between emitter and sensor. The concepts of robustness for the Hampel filter and skipped filter are combined
with shrinkage for the positive blind minimax and Bayes shrinkage estimation. It is demonstrated that the estimation accuracies of
the proposed methods are higher than those of the existing median-based shrinkage methods through extensive simulations.

1. Introduction

Range estimation is a crucial technique in which the distance
between the emitter and sensor is estimated utilizing time-
of-arrival (TOA) or received signal strength (RSS) measure-
ments. Distance information is important for range-based
source localization utilizing TOA and RSS measurements
because distance is used for source localization. Namely, the
more accurate is the distance measurement; the better is the
localization accuracy. Range estimation problems under line-
of-sight (LOS) environments have been studied in previous
works [1-5]. In [1], the ad hoc closed-form hybrid TOA/RSS
range estimation algorithm is developed. The ad hoc closed-
form range estimator is superior to the iterative maximum
likelihood (ML) method in a certain parameter space. Also,
a fusion algorithm is studied for range-based tracking using
two independent processing chains for RSS and TOA [2].
In addition, the Cramér-Rao lower bound (CRLB) for the
TOA/RSS-based range estimation is derived in [3]. The RSS-
based ranging is famous for its low cost; thus it is more pop-
ular than the TOA-based ranging algorithm. In [4], the best
unbiased and linear minimum mean square range estimates
are studied in the context of RSS-based range estimation.
Also, a range estimation method based on the multiplicative
distance-correction factor (MDCEF) is developed to attenuate

the inaccuracy for the estimated range, where grid based
optimization and particle swarm optimization are employed
[5].

The shrinkage estimation approach has received attention
because it outperforms the ML and least squares (LS) in
conditions of small samples or low signal-to-noise ratio
(SNR). Although the shrinkage algorithms based on math-
ematical optimization methods are superior to the blind
minimax estimation, we adopt the positive blind minimax
(PBM) algorithm in this paper because its computational
complexity is much simpler than that of the mathematical
optimization-based methods [6, 7]. Also, the Bayes shrinkage
(BS) estimation is utilized because PBM and BS estimators are
known to outperform the conventional shrinkage estimator
(7, 8].

However, some open problems exist and a crucial task
among range estimation problems is to determine the dis-
tance between the emitter and sensor in LOS/non-line-of-
sight (NLOS) mixed situations. For example, the LOS path
between the source and sensors may be obstructed under
indoor scenarios. Motivated by the above problems, we pro-
pose the algorithm combining the shrinkage and robustness.
To make the shrinkage estimator robust to outliers, we adopt
the Hampel [9-11] and skipped filters [9]. We summarize our
main contributions as follows:
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(i) The variance of the range estimate based on the
Hampel filter is found algebraically.

(ii) The variance of the range estimate based on the
skipped filter is calculated in the analytical form.

(iii) We develop the closed-form robust shrinkage range
estimation methods based on the Hampel filter/PBM
and Hampel filter/BS estimator.

(iv) We propose the closed-form robust shrinkage range
estimation methods based on the skipped filter/PBM
and skipped filter/BS method.

The algorithms that use the Tyler’s estimator for the robust
shrinkage estimation of the covariance matrix have been
studied [12-15]. But, to the best of our knowledge, the
robust shrinkage approaches combined with the Hampel and
skipped filters have not been investigated in the existing
literatures. Also, note that the proposed methods are the
closed-form algorithms. Thus, the complexities of the pro-
posed algorithms are lower than those of the mathematical
optimization or iteration-based algorithms.

This paper is organized as follows. Section 2 deals with
the LOS/NLOS mixed range estimation problem. Section 3
addresses the existing range estimation methods in detail.
Section 4 describes the proposed robust shrinkage distance
estimation algorithms based on the Hampel filter, skipped
filter, PBM, and BS methods. Section 5 evaluates the mean
square error (MSE) performances through simulation results.
Section 6 presents the conclusion.

2. Problem Formulation

The aim of the range estimation method using RSS mea-
surements is to accurately predict the distance between the
emitter and sensor so that the error criterion, e.g., the MSE
or squared error, is minimized. In the context of LOS/NLOS
mixed range estimation, the RSS measurement equation is
determined as [16]

P,-:Po—loyloglo%+ni, i=12,....M 1
where P, is the ith RSS for the sensor in decibel (dB), P, is
the signal strength at the reference distance (d,), d, is set
to 1 m for convenience, d is the true range (distance) to be
estimated, y is the path loss exponent, »; is distributed by
(1 - e)N(O,alz) + eN(yz,ag) with M denoting samples in
the sensor, and N(u, %) is the Gaussian probability density
function (PDF) with mean y and variance o?, respectively
[17]. It is assumed that p and P, are known a priori from the
calibration campaign [18, 19]. The measurement error #; is
the random process that follows a Gaussian distribution with
N(0, 0?) in conventional LOS situations. However, the noise
distribution rarely follows the conventional Gaussian distri-
bution due to multipath effects in indoor and urban regions.
Therefore, the noise distribution should be designed as a two-
mode Gaussian mixture distribution in which the LOS noise
component is distributed as N (O,Gf) and the NLOS noise
follows N (u,, 03). The LOS noise has a probability of 1-¢ and
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the NLOS noise has a probability of €. Like previous research
for the LOS/NLOS mixture localization, while the statistics
of the inlier can be obtained, the mean and variance of the
outlier distribution are unavailable. Here, € (0 < € < 1) is
a measure of contamination, which is usually lower than 0.1
[20-22].

3. Review of Conventional Robust
Shrinkage Approaches

3.1. ML-Based Shrinkage Range Estimation Algorithm. In
the LOS situations, the shrinkage estimator is obtained by

multiplying the ML estimator (™ = d10® /1% = 4.1¢")
and shrinkage factor (c) [4, 23], where P = (Zf\fl P)/M,
n= (Zf\fl n;)/ M. The MSE for the shrinkage range estimation
is represented as follows:

MSE=E[(c-d™ ~d)' (c-d"" - d)]
=E[c@d+v)-d)" (c(d+v)-d)]
=(c-1’d*+PE[V’] +2c(c-1)dE[v] ()
=(c-1)7*d*+c’E [vz]
= (c—1)*d* + c*var (JML)

where v is the error of the ML estimate (c?ML) and E[v] = 0
by means of the delta method [24]. Then, the shrinkage factor

for distance estimation is derived by minimizing the MSE as
follows:

e ( ML )2
Cc= — = — ) — . (3)
d?* + var (dML) (dML) + var (dML)

The shrinkage range estimator is obtained as follows:
()

b=— 5 —
(dML) + var (dML)

caME, (4)

Although var(d™") can be calculated analytically, d™' is
linearized to apply the shrinkage algorithm (see (2)). For this,
the ML range estimator is linearized for E[#] using the Taylor-
series as follows:

= = In10
Mg {10”"1/“’? +10EmNy 2w g [ﬁ])}

10y
:d+<—ln10)d-ﬁ.
10y

)

Then, var{d™'} = d*((In 10)/10y)zvar{?}. Because d is an
unknown true value to be estimated, the variance of d™"

can be approximated as {WL}Z((IH 10)/10y)2(02/M), where

o* is the variance per sample. It should be noticed that

the approximated variance of d™ is different from the true
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variance of d™" as can be seen from our simulation results.
Furthermore, the conventional shrinkage estimator can be
improved in two ways: the PBM algorithm and BS method.
Finally, the PBM estimator is represented as follows [7]:

bpgnm = Opp - M+ (1 - appy) d” (6)

where apgy = [(@MY)? = var(@™Y)], /([(dM")* - var(d@Y)], +
Var(chL)), d” is the prior point guess value to be determined
empirically, and (-), denotes the max(0,-). Also, the BS
estimator is obtained in the following [8]:

bys = g - A+ (1 — g ) d”. (7)

where agg = (M —d*)? /(@™ - d*)? +var(d™")). When the
prior value, d”, is properly selected, the MSE performance of
the BS method is superior to that of the existing shrinkage
algorithm.

3.2. Median- (Med-) Based Robust Shrinkage Range Estima-
tion Algorithm. The ML-based range estimator is an optimal
estimator in LOS environments; however it becomes much
inaccurate when there are outliers among samples. To cir-
cumvent this problem, the median-based range estimator
can be utilized because it is insensitive to outliers when
the contamination ratio is less than 50%. In this case,
the median-based range estimator can be represented as
aMed dOIO(P_P°)/IOV, where P = median{P,,..., P,}.
Then, in the same manner as the ML-based range estimator,
the variance of the median-based robust range algorithm
(var[d™*d]) can be obtained as d?((In 10) /IOy)zvar{ﬁ} =
{d™*}((In 10)/10y)*(0*/M)(1/2). Note that, in the deriva-
tion of variance of the median-based robust range estimation
method, the constant 77/2 is multiplied because the variance
of the sample median is asymptotically 77/2 times larger than
that of the sample mean in the LOS situation [25]. Also, the
median-based shrinkage range estimator can be categorized
into the median-based PBM (Med/PBM) and median-based
Bayesian shrinkage (Med/BS) estimator. The Med/PBM and
Med/BS estimators are represented as follows:

(/_’i‘Med

bMed/PBM = OMed/PBM * + (1 - “Med/PBM) d’

(8)

TMed *
bMed/BS = OMed/BS A+ (1 - “Med/Bs) d

where ayeqppy = (@) — var(@)], /([(dV)* -
var(d™)], +var(d™*)) and aeq ps = (@4 -d")?/(d™e -
d*)? + var(dMe?)).

var [Ph’f ]

(Var [one inlier ( yq)] x number of inliers + var [median for y; (i=1,...,M)] x number of outliers)

3.3. Hampel Filter. The version considered, herein, represents
a moving-window implementation of the Hampel filter as in
[9-11], an outlier detection procedure based on the median
and median absolute deviation (MAD) scale estimator.
Specifically, this filter’s response is given by

P, |P—m|<tD,
Vi = 9)
m, |R - ml > tD
where m is the median value from the moving data window
and D is the MAD scale estimate of the sensor, defined as D =
1.4826 x median|P,.,, — m|. Namely, the sensors are catego-
rized into the LOS sensor set and LOS/NLOS mixture sensor
set with the use of (9). If the entire elements of the sensor meet
the first condition of (9), it is predicted as an LOS sensor. If
at least one sample satisfies the second condition of (9), the
corresponding sensor is regarded as an LOS/NLOS mixture
sensor. The factor 1.4826 allows the MAD scale to produce
an unbiased estimate of the standard deviation for Gaussian
data. Also, P,.,, is the RSS from the first to the Mth in the
sensor and the parameter ¢ is selected empirically. When t =
0, the Hampel filter is reduced to the standard median filter.
The Hampel filter suffers from implosion, which means more
than 50% of data values are identical, i.e., D = 0, implying
that y; = m irrespective of the constant .

3.4. Skipped Filter [9]. In the Hampel filter of the previous
section, when the absolute value of the difference between
the sample and median is larger than the threshold, the
sample median is substituted for the corresponding sample.
In contrast, in the skipped filter, when the sample is predicted
as an outlier, the corresponding sample is removed from the
sample set of the sensor. Because the contamination ratio (the
percentage of outliers in the sample set) is usually smaller
than 10% [20-22], the probability that the filtered samples are
depleted is much small.

4. Proposed Robust Shrinkage Range
Estimation Method

Below, we explain in detail the proposed Hampel filter-based,
skipped filter-based shrinkage range estimation algorithms.

4.1. Hampel Filter/PBM and Hampel Filter/BS-Based Range
Estimation Algorithms. In this subsection, the Hampel filter-
based shrinkage range estimation algorithms are described in
detail. The filtered data, y,.5,, are averaged using the sample
mean, ie., P/ = (Zf\fl y;)/M. Then, the variance of the

statistic P/ is found as follows:

S/IQxQ+m/2xS/Q* xR S+m/2xS/Q* xR
- M? - M?

M2

(10)



whereS =} (y,- m)?, ¢’s are the sample indices determined
as inliers in the LOS/NLOS mixture state, and Q is the
number of samples predicted as inliers with the use of (9).
Also, R is the number of samples determined as outliers
and M = (Q + R) is the total number of samples in
the sensor. In the numerator of the second equation of
(10), the constant /2 is multiplied by the variance of the
sample mean [25] since the variance of the sample median
is asymptotically /2 times larger than that of the sample
mean in the LOS situation. Furthermore, we do not consider
the implosion because it rarely occurs. Then, the variance
of the Hampel filter-based range estimator is obtained as
var{d®™} = {d"*™2((1n 10)/10y)* - var[P"/], where ™™ =

d,10® R0y Additionally, the robust shrinkage range
estimator based on the Hampel filter and PBM estimator is
obtained as follows:

TH *
Bitam/pBM = Otiam/pBM * 9 T (1- “Ham/PBM) d (1)

where apppy = (@77 = var(d@™™), /(d™*™) -

var(d™®™)) L+ var(d™®™)). Furthermore, the robust shrinkage
range estimator based on the Hampel filter and BS method is
found as

st *
bHam/BS = “Ham/BS -d o + (1 - “Ham/BS) d (12)

where agyyps = (@ = d*) /(@™ = d°)? + var(d™™)),

4.2. Skipped Filter/PBM and Skipped Filter/BS-Based Range
Estimation Methods. In the same manner as the Hampel
filter-based shrinkage range estimation method, the filtered

data, y,, are averaged using the sample mean, ie., Pl =
Zq(yq/Q). The variance of the statistic P/ is calculated in
the following:

var [Ps’f]
var [one inlier ( yq)] x number of inliers
= Qz (13)
_S/QxQ S
= T = &

Then, the variance of the skipped filter-based range estimator
is obtained as var{d>} = {d>}*((In10)/10y)* - var[P*/],

where d°¢ dOIO(PS =R)/10y Additionally, the robust
shrinkage range estimator based on the skipped filter and
PBM method is obtained as follows:

7Sk *
bowpem = Asipem * A+ (1- "‘Sk/PBM) d (14)

where ag ppy = ((@%) = var(d®)), /(@) - var(d™)), +

Var(c?Sk)). Indeed, the robust shrinkage range estimator based
on the skipped filter and BS method is obtained as follows:

7Sk *
bSk/BS = Og/Bs a” + (1 - “sk/Bs) d (15)

where g s = (@™ —d*)*/(d™ - d*)* + var(d™)).
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TABLE 1: Simulation settings.

Distance (d) 5m

Parameter (d*) 10

Parameter (t) 1.5

Number of Monte-Carlo simulation 1000

Number of sensors 1

Path loss exponent (y) 3

P, 5dB

d, Im

Directivity of source omnidirection
TABLE 2: List of abbreviations.

TOA Time of Arrival

RSS Received Signal Strength

LOS Line of sight

ML Maximum Likelihood

CRLB Cramér-Rao lower bound

MDCF multiplicative distance-correction factor

LS Least Squares

SNR Signal-to-noise ratio

PBM positive blind minimax

BS Bayes shrinkage

NLOS Non-line-of-sight

dB decibel

PDF Probability density function

MSE Mean square error

Med/PBM Median/Positive blind minimax

Ham/BS Hampel filter/Bayes shrinkage

SK/PBM Skipped filter/Positive blind minimax

Furthermore, the distance can be also estimated in the
energy-based acoustic ranging problem [26, 27]. Unlike the
RSS-based ranging algorithm, the reference signal power is
not known in the energy-based ranging method. Therefore,
the distance cannot be estimated directly from the mea-
surement equation. In this case, the range can be estimated
sequentially, i.e., the source location is firstly estimated using
the energy minimization-based localization algorithm [27]
(the robust version of the measurement is used in the
localization algorithm), then the distance is obtained from
the estimated position. The shrinkage factor can be found
using the estimated source coordinates and delta method. The
difference between the shrinkage factor in the LOS situation
and that of LOS/NLOS mixture environment lies in that the
position estimate using the robust algorithm is utilized under
the LOS/NLOS mixed situation. The details for the algorithm
and performance evaluation remain as future works.

5. Simulation Results

We compare the performance of the proposed LOS/NLOS
mixed range estimation methods with that of the median-
based shrinkage range estimator in this section. The sim-
ulation setting is provided in Table 1. Table 2 explains the
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FIGURE 1: MSE averages of the range estimation algorithms as a function of the distance.

abbreviations used in this paper. The MSE average is defined
as follows:

10 (d (k) - d)’
1000

MSE average = (16)

where d(k) is the estimated range from the point target to the
sensor in the kth range set and d denotes the true range to be
estimated.

Figurel is the distance versus MSE averages. As the
distance increased, the MSE average increased and the MSE
averages of the proposed methods were lower than those of
the other methods.

Figure 2 is the MSE averages versus the standard devia-
tion of inliers. The MSE averages of the proposed methods
were lower than those of the other existing methods based
on the median in Figure 2. The performances of all robust
methods deteriorated as the standard deviation of LOS error
was increased.

Figure 3 shows the MSE averages as a function of standard
deviation of NLOS noise. The MSE averages for the proposed
robust shrinkage range estimation methods were lower than
those of the other methods. The localization performances of
the proposed and median-based existing algorithms were not
affected by the NLOS noise because the Hampel and skipped
filters are insensitive to the adverse effects of outliers.

Figure 4 shows the MSE averages versus the bias. The
MSE averages of all methods were nearly constant as the bias
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FIGURE 2: MSE averages of the range estimation algorithms as a
function of variance of LOS noise (bias of NLOS noise (y4,): 4m,
contamination ratio: 30%, and standard deviation of NLOS noise
(0,):100 m).
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varied and the proposed methods outperformed the other
existing algorithms. Namely, the estimation performances of
the proposed range estimation algorithms are not affected by
the bias because the Hampel and skipped filters are robust to
the outliers.

Figure 5 shows the variation of the MSE averages with
respect to the parameter ¢ in (9). The MSE averages of the pro-
posed algorithms, i.e., the Hampel and skipped filter-based
methods, were much affected by the selection of parameter ¢,
but those of the median-based methods were nearly constant
and the MSE average of the proposed algorithms was minimal
at t = 1.5. The MSE averages of the proposed methods
are sensitive to the parameter ¢ because P/ and P*/ are
dependent on the value of ¢.

Figure 6 is the sample size versus the MSE averages.
Again, the proposed range estimation methods outperformed
the other methods, as shown in Figure 6 and the MSE
averages decreased as the sample size increased. Figure 7
shows the variation of the MSE averages with respect to the
contamination ratio (¢). When the contamination ratio was
lower than 50%, the MSE averages of all algorithms increased
slightly as the contamination ratio increased. However, when
the contamination ratio became larger than 50%, the MSE
averages of the existing range estimation methods were
significantly increased. Meanwhile, those of the proposed
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FIGURE 4: MSE averages of the range estimation algorithms as a
function of bias (contamination ratio: 30%, standard deviation of
LOS noise (0,): V10 m, and standard deviation of NLOS noise (0,):
100 m).

methods were slightly incremented. Figure 8 shows the true
and approximated variances of the ML range estimator. The
true variance and approximated variance using the Taylor-
series were nearly the same when the standard deviation of
LOS noise was V10 m. However, the approximated variance
diverged from the true variance when the standard deviation
of LOS noise increased to 17 m because the Taylor-series was
adopted. Thus, the approximated variance should be utilized
to apply the shrinkage estimator effectively.

6. Conclusions

The robust shrinkage range estimation methods were devel-
oped utilizing the Hampel filter, skipped filter, PBM, and
BS estimators. Namely, the concepts of robustness for the
Hampel and skipped filters and shrinkage for the PBM and
BS estimators were mixed. The MSE performances of the pro-
posed robust shrinkage methods were superior to those of the
existing median-based shrinkage algorithms in the various
simulation environments. Note that the MSE performances of
the proposed methods were more robust, even in the regimes
where € > 0.5, than those of the median-based shrinkage
algorithms. Also, the proposed algorithms were developed in
closed-form; thus, the computational complexities would be
lower than those of the iteration methods.
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