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Abstract

Mortalin/mthsp70 (HSPAY) is a stress chaperone enriched in
many cancers that has been implicated in carcinogenesis by
promoting cell proliferation and survival. In this study, we
examined the clinical relevance of mortalin upregulation in
carcinogenesis. Consistent with high mortalin expression in
various human tumors and cell lines, we found that mortalin
overexpression increased the migration and invasiveness of
breast cancer cells. Expression analyses revealed that proteins
involved in focal adhesion, PI3K-Akt, and JAK-STAT signaling,
all known to play key roles in cell migration and epithelial-to-
mesenchymal transition (EMT), were upregulated in mortalin-
expressing cancer cells. We further determined that expression

Introduction

Recent progress in cancer diagnosis and treatment regimens has
contributed to better treatment outcomes and survival. However,
it is still complicated by metastasis and recurrence that are the
foremost contributors of fatality. The process of metastasis, spread
of cancer from one organ to the other, not connected to it directly,
is facilitated by a number of steps including (i) acquisition of
increased motility of proliferating tumor cells, (ii) their detach-
ment from the primary tumor site, and (iii) travel to the secondary
sites through extracellular matrix (ECM) and blood stream. The
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levels of the mesenchymal markers vimentin (VIM), fibronectin
(FN1), B-catenin (CTNNB1), CK14 (KRT14), and hnRNP-K
were also increased upon mortalin overexpression, whereas
the epithelial markers E-cadherin (CDH1), CK8 (KRT8), and
CK18 (KRT18) were downregulated. Furthermore, shRNA-
mediated and pharmacologic inhibition of mortalin sup-
pressed the migration and invasive capacity of cancer cells and
was associated with a diminished EMT gene signature. Taken
together, these findings support a role for mortalin in the
induction of EMT, prompting further investigation of its ther-
apeutic value in metastatic disease models. Cancer Res; 76(9);
2754-65. ©2016 AACR.

molecular mechanisms involved in metastasis have been shown
to involve deregulation of the signaling pathways that control
normal epithelial-to-mesenchymal transition (EMT). During this
process, the epithelial cells lose their cell polarity and cell-cell
adhesion (epithelial characteristics) and acquire migratory and
invasive properties (mesenchymal characteristics) by multiple
pathways; several of these are yet to be clarified. Shift in protein
profiles and cytoskeleton characteristics are often considered as
biomarkers of EMT. For example, cell surface proteins, E-cadherin
(biomarker of epithelial cells), or integrins are replaced by mes-
enchymal markers (N-cadherin, vimentin, or fibronectin). These
processes are driven by several regulatory proteins including key
transcriptional factors, Snail, Slug, and Twist (1-4). Consistent
with the enrichment of these transcription factors in tumors as
compared with normal tissues, their ectopic expression has been
shown to induce EMT, downregulation of E-cadherin, and
increase in tumor metastasis (1). On the basis of these data, they
have also been suggested as prognostic markers for cancer metas-
tasis (5-7). Several signaling pathways including Ras-MAPK,
TGFB, EGF, FGF, FAK, and Wnt/B-catenin have been shown to
activate Snail, Slug, and Twist transcription factors and regulate
EMT (8-10). Active Wnt/B-catenin pathway causing upregulation
of Snail and vimentin has been correlated with poor prognosis
and advance stages of breast cancer. TGFf that acts as a tumor
suppressor at early stages of cancer has also been shown to
promote malignant properties of tumors, including invasion and
metastasis at the later stages. It is found enriched in breast cancer
bone metastasis (11). p53, on the other hand, has been shown to
repress EMT by transcriptional repression of SNAIL and noncod-
ing regulation mediated by miRNAs (12). EMT has also been
correlated with the drug resistance characteristics of cancer cells.
Tamoxifen-resistant MCF-7 cells showed aggressive and invasive
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behavior that could be reversed upon the inhibition of the
autocrine EGFR pathway, also known to be involved in EMT
(3, 13-15). Despite the wealth of existing data on the role of EMT
in cancer metastasis, its clear picture, diagnostic, and therapeutic
targets are yet to be clearly elucidated.

Stress chaperone mortalin/mthsp70 is an essential protein
often enriched in cancer cells, and promotes their pro-prolifer-
ative characteristics by multiple pathways (16-19). It interacts
with tumor suppressor protein p53 and inactivates its functions,
including transcriptional activation and control of centrosome
duplication leading to uncontrolled proliferation, a hallmark of
cancer cells (19-22). Most recently, it was shown to activate
telomerase and hnRNP-K proteins and contribute to malignant
phenotype of cancer cells (23). In agreement with these reports,
knockdown of mortalin in cancer cells was shown to activate p53
function and cause their growth arrest or apoptosis (17, 18, 24~
27). Some studies have shown correlation of mortalin expression
level with metastatic potential and tumor recurrence in case of
hepatocellular carcinoma, suggesting clinical application of mor-
talin as a chemotherapeutic drug target (17, 28, 29). Chen and
colleagues also showed that the genetically isogenic cell lines with
variable metastatic potentials possess tight correlation with the
level of expression of mortalin, suggesting its role in metastatic
hepatocellular carcinoma (HCG; ref. 29). Furthermore, mortalin-
compromised cells showed inhibition of EMT, suggesting morta-
lin as a therapeutic target for HCC metastasis, and hence war-
ranted further studies.

We, in this study, examined the clinical relevance of mortalin in
tumorigenesis and tumor progression using public cancer patient
databases and commercially available tumor tissue samples.
cDNA, miRNA, and antibody microarray analyses revealed upre-
gulation of several EMT signaling proteins in mortalin-overex-
pressing breast cancer cells, both at the transcript and protein
levels. Furthermore, these could be reversed by knockdown of
mortalin, suggesting it to be a therapeutic target for cancer
metastasis.

Materials and Methods

Materials

Antibodies were procured from different sources as follows:
f-catenin, E-cadherin, and vimentin (Cell Signaling Technology);
o smooth muscle actin (a-SMA; Abcam); hnRNP-K, MMP-2,
MMP-3, and fibronectin (Santa Cruz Biotechnology); keratin 8
(OriGene Technologies); keratin 14 (Anaspec); keratin 18, myc-
tag, and B-actin (Cell Signaling Technology), and Alexa Fluor 488-
conjugated/568-conjugated secondary antibodies. Monoclonal
anti-mortalin antibody (Clone C1-3) was raised in our labora-
tory. Hoechst 33342 (1 pug/mL) and tetramethylrhodamine iso-
thiocyanate (TRITC)-conjugated phalloidin were from Sigma.
Tumor tissues and microarray slides with clinical tumor samples
(of diverse origin, histology, grades, and of differentiation status)
and their matched normal controls were procured from Superb-
iochips Laboratories and BioChain Institute Inc.

IHC

Paraffin-embedded tissues and tissue microarray slides were
deparaffinized in xylene and stained with anti-mortalin antibody
using Dako REAL EnVision Detection System as described previ-
ously (23). Images of mortalin staining in matched normal
and tumor tissue were captured under a fluorescence microscope
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(BZ-9000, Keyence), using BZ-II Analyzer software (Keyence).
Tissue sections incubated without anti-mortalin antibody were
used as negative control. ImageJ software (NIH, Bethesda, MD)
was used for quantification of mortalin expression in acquired
images.

The Cancer Genome Atlas and Human Protein Atlas analysis

Information on mortalin (HSPA9) genetic alterations, patient
survival, and expression levels (mRNA expression, z score, thresh-
old-1.5), mRNA expression analysis for Kidney RCCC dataset was
performed with grade I, III, and IV tumors; grade II consisted of
information of only one patient case and thus excluded from
quantitation; n = number of patients, on omitting outliers
(expressions fluctuating beyond threshold) with tumor progres-
sion (grades) was examined using The Cancer Genome Atlas
(TCGA) http://www.cbioportal.org/index.do. Human Protein
Atlas (HPA) http://www.proteinatlas.org, an antibody-based
proteomic database was used to examine mortalin expression in
normal and cancer tissues.

Cell culture

Human normal (TIG-3; JCRB Cell Bank), cancer (breast epi-
thelial, MCF7 and MDA-MB-231; osteosarcoma (DS Pharma
Biomedical) and U20S and melanoma, G361 (JCRB Cell Bank)
were grown in DMEM (Life Technologies) as described previously
(22, 23). Cells were authenticated by either STR-PCR or Isozyme
analysis at the respective sources. The original cells were stocked
(in multiple vials) in LN2 within five population doublings from
the time of procurement (1-3 years for different cell lines). To
avoid genetic instability due to prolonged cultures, cells were
revived from the original stocks at times, as required, for the
current study. Mortalin-overexpressing derivative cells were gen-
erated by mortalin encoding retroviral vector as described previ-
ously (16, 23). The stably infected cells were maintained in G418
(100 pg/mL) supplemented medium.

Generating shMot-expressing adenoviral vectors

To generate an adenovirus-expressing shMot or shScr at the E3
regions, pdE1-RGD was linearized by Spel digestion and cotrans-
formed into Escherichia coli B]5183 with the XmnI-digested pSP72-
E3/CMV-shMot or pSP72-E3/CMV-shScr E3 shuttle vector (25)
for homologous recombination, generating a dE1-RGD/shMot or
dE1-RGD/shScr adenoviral vector. The propagation, purification,
and titration of adenoviruses were performed as described pre-
viously (30).

Cell proliferation assay

Cell proliferation was measured by MTT assay (DUCHEFA
Biochemie). Cells were seeded in 48-well plates (5 x 10° cells/
well) and treated with either PBS, dE1-RGD/shScr or dE1-RGD/
shMot (10, 20, 50, 100, 200 MOI) after 24 hours. Cell morphol-
ogy and viability of control and virus-treated cells were also
monitored every day under a microscope and by staining with
crystal violet (0.5% in 50% methanol), respectively. All assays
were performed independently, at least, three times.

Migration and invasion assay

Cells were treated with PBS, dE1-RGD/shScr, or dE1-RGD/
shMot (20-50 MOI) and plated on the top chamber (5 x 10*
cells/well) of Transwell chamber. FBS (10%) was placed in the
bottom of Transwell chamber and the assembly was incubated at
37°C for 4 to 6 hours, fixed, and stained with hematoxylin and
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Figure 1.

Mortalin enrichment in tumors correlates with tumor progression and poor survival of patients. A, percentage occurrence of mortalin mutations, gene amplification,
and mRNA upregulation observed in a number of TCGA clinical cancer datasets. B, enrichment of mortalin mRNA in advanced grade kidney-renal clear cell
carcinoma (TCGA, provisional; n = number of patients). C, quantitation showing overall survival of kidney-renal clear cell carcinoma (RCCC) patients with and
without mortalin amplification. D, overall survival of patients with and without mortalin amplification in other tumor patient datasets (kidney-renal clear cell
carcinoma; Nature, 2013, ovarian serous cystadenocarcinoma; TCGA, provisional and sarcoma; TCGA provisional) are shown.

eosin (23). In vitro Matrigel invasion assays were performed using
BD BioCoat Matrigel Invasion Chamber (BD Biosciences) follow-
ing the manufacturer's instructions and as described previously
(23).

Wound-healing assay

Cells grown in monolayer were scratched straight by a 100-uL
pipette-tip followed by washing with PBS and culture in normal
medium. The time of scratch was designated as 0 hour and cells
were allowed to migrate into the gap. Movement of cells to the
scratch area was followed for the next 24 to 48 hours. Images were
acquired under the phase contrast microscope (Nikon) with a
10x phase objective lens at 0, 24, and 48-hour time points. For
shRNA experiments, equal number (5 x 10* cells/well) of cells
were plated on 12-well plates and then treated with dE1- RGD/
shScr or dE1- RGD/shMot (20-50 MOI). After 48 hours, straight-
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line scratch was made and followed by microscopic observations
at 0, 3, 6, and 16 hours. The WimScratch software (Wimasis) was
used for analysis of captured images in shRNA experiments.
Wound-healing activity is expressed as percentage filling of
scratched area from three independent experiments.

cDNA, miRNA, and antibody array analyses

Control- and mortalin-overexpressing cells were harvested at
80% confluency. For miRNA microarray, small RNAs (less than
200 nt including precursor and mature miRNAs) were extracted
using mirVana miRNA Isolation Kit (Ambion) following the
manufacturer's protocol. Purified RNA was labeled with Cy3 or
Cy5 using the mirVana miRNA labeling kit (Ambion). Labeled
RNA was hybridized with miRNAs arrayed on slides (Hok-
kaido-System Science), and detected by a scanner (Agilent
Technologies).

Cancer Research

Downloaded from cancerres.aacrjournals.org on June 16, 2021. © 2016 American Association for Cancer Research.


http://cancerres.aacrjournals.org/

Published OnlineFirst March 9, 2016; DOI: 10.1158/0008-5472.CAN-15-2704

Mortalin Contributes to Breast Cancer Metastasis

Astrocytoma

rae [}

v

ONormal
®Cancer

Skin

Breast
Lung
Kidney
C P <0.001 Lymph -
80 vs. normal ONormal 60, ONormal Brain
70 T ek SCancer x:rocytoma gra:e :| Py
50 rocytoma grade Uterus -
5 @ 60 o w#* s £ | WAstrocytoma grade Il
o ®
@ o O
§ 8 50 - A5 ax Esophagus
= T 2 it
Qo 58 )
g5 3E 30 Liver -
£ 3 £%
g5 % g% 20 Colon
282 Se
10 Ovary ax
10 ] : ,
0 0 50 100

Liver

Breast Ovary Brain

Lung Kidney

Figure 2.

Relative mortalin expression

Upregulation of mortalin in tumor tissues. Normal (control) and matched tumor tissues were stained with anti-mortalin antibody. Increased expression of mortalin in
tumors (A and C) and its correlation with tumor aggressiveness (B and D). E, upregulated mortalin expression in a variety of tumors as compared with their
normal tissue controls, as detected on tissue microarray slide. Quantitative analysis was performed using ImageJ software. All results are shown as mean + SE.
*, P<0.05; **, P < 0.0T; ***, P < 0.001 compared with normal. Original magnification, x200.

For cDNA array, total RNA was prepared using TRIzol reagent
(Gibco BRL) following manufacturer's instructions, and labeled
with Cy3 or Cy5 using Low Input Quick Amp Labeling Kit, Agilent
Technologies, hybridized to human cDNA array slides and ana-
lyzed using Agilent 2100 BioAnalyzer series II (Hokkaido-System
Science).

Antibody membrane array containing antibodies to growth
factors and proteins involved in metastasis (Abcam) was used.
Cell lysates and conditional medium from control and mortalin-
overexpressing cells were prepared at 80% confluency. Lysate/
conditional medium (collected and centrifuged at 3,000 rpm to
remove cell debris) was incubated with the Human Growth Factor
Antibody Array membrane following manufacturer's instructions
and reagents provided in the kit. The membranes were developed
using Universal hood I (Bio-Rad) and the intensities of blots were
analyzed with Image Lab software.

miRNA array data were analyzed on the miRNA targets pre-
dicted by mirPath, DIANA-microT-CDS, and combined with
meta-analysis using the Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) databases (31-34) using software from DIANA

www.aacrjournals.org

Laboratory. The results of the analysis were presented on the chart
based on the P value, targeted genes, and number of miRNAs that
were actively involved in the pathway. The array data were
analyzed using Gene Annotation Tool to help explain relation-
ships (Gather; ref. 32) and Advaita Bio's iPathway Guide (http://
www.advaitabio.com/ipathwayguide). The software analysis tool
implemented the "Impact Analysis" approach that took into
consideration the direction and type of all signals on a pathway,
the position, role, and type of the genes (33). The genes were
plotted in KEGG pathway database (34).

Western blotting

Cells were lysed using 1% Nonidet P-40 buffer containing a
protease inhibitor cocktail (Sigma Aldrich), and subjected to
Western blotting as described previously (22, 23) using specific
antibodies as indicated above.

Immunofluorescence assay

For immunofluorescence microscopy, cultured cells were
washed with PBS, fixed in 4% paraformaldehyde for 10 minutes
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Mortalin-overexpressing cells showed increase in migration and invasion properties. Mortalin-overexpressing MDA-MB-231 (MDA) cells (A) showed change in
cell morphology (B), increase in cell proliferation (C), migration (D and E), and invasion (F) capacities. Data are presented as mean+SE (n = 3). *, P < 0.05;

** P < 0.01 compared with MDA.

at room temperature, and permeabilized by 0.1% Triton X-100 in
PBS for 15 minutes. Fixed cells, blocked with 1% BSA, were
incubated with primary antibodies (as indicated), washed, and
visualized by secondary antibodies (Alexa Fluor 488-conjugated
anti-rabbit IgG or Alexa Fluor 568-conjugated anti-mouse IgG) as
described previously (22, 23). TRITC-conjugated phalloidin and
Hoechst 33342 (both at 1 ug/mlL, Sigma) were used for actin and
for nuclear staining, respectively. The cells were viewed under a
confocal laser scanning microscope (LSM510, Carl Zeiss Micro
Imaging).

MMP-2 ELISA

MMP-2 ELISA was performed using SensoLyte520 MMP-2
Assay Kit (Anaspec) following the manufacturer's instructions.
Cells were seeded in G-well plates (1 x 10° cells/well), and
supernatants were collected at 48 hours after incubation at 37°C.
The fluorescence intensity was read using a SpectraMax M2 plate
reader (Molecular Devices) with 490/520 nm filter set.

Reverse transcription (RT)-PCR and real-time PCR

Total RNA from cultured cells was prepared with TRIzol reagent
(Gibco BRL). Complementary DNA was prepared from 1 ug total
RNA by random priming using a First-Strand cDNA Synthesis Kit
(Promega Corp.) as described previously (23). For real-time PCR,
first-strand cDNA synthesis and real-time PCR were performed
using QuantiTect Reverse Transcription Kit (Qiagen) and Eco
Real-Time PCR System (Illumina; ref. 23). The sequence of the
primers were as follows: 18S; forward primer 5-AACCCGTT-

2758 Cancer Res; 76(9) May 1, 2016

GAACCCCATT-3' and reverse primer 5'-CCATCCAATCGGTAG-
TAGCG-3’; mortalin, forward primer 5-AGCTGGAATGGCCT-
TAGTCAT-3" and reverse primer 5-CAGGAGTTGGTAGTACC-
CAAATC-3’; B-catenin, forward primer 5'- AAAGCGGCTGTTAGT-
CACTGG-3' and reverse primer 5-GACITGGGAGGTATCC
ACATCC-3’; E-cadherin, forward primer 5'- CGGGAATGCAGTT-
GAGGATC-3' and reverse primer 5- AGGATGGTGTAAGC-
GATGGC-3'; vimentin, forward primer 5'- CCITGAACG-
CAAAGTGGAATC-3’ and reverse primer 5'- GACATGCTGTTCCT-
GAATCTGAG-3’; 0-SMA, forward primer 5'- CCGACCGAATGCA-
GAAGGA-3' and reverse primer 5'- ACAGATATITGCGCTCCGAA-
3/; fibronectin, forward primer 5-GGAGAATTCAAGTGT-
GACCCTCA-3' and reverse primer 5- TGCCACTGITCTCC-
TACGTGG-3’; VEGF, forward primer 5-CTACCTCCACCATGC-
CAAGT-3' and reverse primer 5'-GCAGTAGCTGCGCTGATAGA-
3’; MMP-2, forward primer 5-TACAGGATCATTGGCTACACACC-
3/, and reverse primer 5'-GGTCACATCGCICCAGACT-3'; MMP-3,
forward primer 5'-ATTCCATGGAGCCAGGCTTTC-3" and reverse
primer 5'-CATTTGGGTCAAACTCCAACTGTG-3'; MMP-7, forward
primer 5-GAGTGAGCTACAGTGGGAACA-3’ and reverse primer
5-CTATGACGCGGGAGTTTAACAT-3’; MMP-9, forward primer
5-TGTACCGCTATGGTTACACTCG-3' and reverse primer 5'-
GGCAGGGACAGTTGCITCT-3’; hnRNP-K, forward primer 5'-
AGCAGAGCTCGGAATCITCCTCTT-3' and reverse primer 5'-
ATCAGCACTGAAACCAACCATGCC-3’; CK8, forward primer 5'-
CAGAAGTCCTACAAGGTGTCCA-3' and reverse primer 5'-
CTCTGGTTGACCGTAACTGCG-3'; CK18, forward primer 5'-
CACAGTCTGCTGAGGITGGA-3' and reverse primer 5'-
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Figure 4.

MMP-1 MMP-2 MMP-3 MMP-8 MMP-9 MMP-10 MMP-13 TIMP-1 TIMP-2 TIMP4

Mortalin-overexpressing cells showed upregulation of proteins involved in EMT and metastasis signaling. cDNA (A) and miRNA microarray analysis (B) of control and
mortalin-overexpressing MDA cells revealed upregulation of focal adhesion, PI3K-Akt, cytoskeleton, and TGFp signaling in the latter. The top five pathways
upregulated by miRNA depletion in mortalin-overexpressing cells are shown (B, a-c). C, upregulation of proteins (a) involved in cell migration and

metastasis and their secretion (b) as detected by antibody membrane array is shown. Data are presented as mean + SE (n = 2).*, P<0.05; **, P< 0.01 compared with

control MDA cells.

CAAGCTGGCCTITCAGATTTC-3'; Wnt-30,, forward primer 5'-CAA-
GATTGGCATCCAGGAGT-3' and reverse primer 5-TCCCTGG-
TAGCTTTGTCCAG-3’; and TGFpB, forward primer 5'-CAATTC-
CTGGCGATACCTCAG-3' and reverse primer 5'-GCACAACTC-
CGGTGACATCAA-3'.

Statistical analysis

Results are expressed as mean + SD. Group results were
compared by one-way ANOVA, followed by post hoc Student ¢
test for unpaired observations or Bonferroni correction for mul-
tiple comparisons when appropriate. P < 0.05 was considered
significant.

Results

Overexpression of mortalin enhanced the migration and
invasion potential of MDA-MB-231 cells

To explore the clinical relevance of the role of mortalin in
carcinogenesis, we surveyed cancer patient database, TCGA, and
found that mortalin/HSP9A gene locus and mRNA expression
were frequently amplified in cancer patients; upregulation of
mRNA was most frequent. On the other hand, mutations occur
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only rarely and most of them were functionally insignificant (Fig.
1A). Examination of the tumor database with information on
mRNA expression and tumor grades (kidney-renal clear cell
carcinoma; grades I, 111, and IV) exhibited its positive association
with tumor grades (Fig. 1B) and negative correlation with patient
survival (Fig. 1C). Of note, decreased survival was also recorded in
patients with mortalin amplification as compared with the ones
without amplification in a number of other tumor datasets (Fig.
1D). Furthermore, the expression of mortalin was seen to upre-
gulate with the aggressiveness of cancer- and stage-dependent
manner in several tumor types, as validated by tissue microarray.
For example, (i) grade III invasive breast carcinoma exhibited
higher level of expression as compared with the grade II (Sup-
plementary Fig. S1A), (ii) poorly differentiated aggressive lung
tumors showed high level of mortalin expression as compared
with the differentiated tumors (Supplementary Fig. S1B), and (iii)
melanomas showed higher level of expression as compared with
osteosarcoma and carcinoma (Supplementary Fig. S1C). In line
with the above information, survey of public HPA database
revealed that mortalin protein is enriched in tumors as compared
with their normal tissue controls (Supplementary Fig. S1D), and
consistent with the mRNA database information, it showed
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higher expression level in melanoma than carcinoma tumors
(Supplementary Fig. S1E). At this end, we also examined several
tumor tissues and their matched controls for mortalin expression
by IHC using commercial tumor tissue samples. As shown in Fig.
2A-D and data not shown, all the examined tumor tissue sections
(breast fibroadenoma and invasive ductal carcinoma, ovarian
teratoma, astrocytoma, hepatocellular carcinoma, squamous
lung cell carcinoma, papillary renal cell carcinoma) and tissue
microarray sections (skin, breast, lung, kidney, lymph, brain,
uterus, esophagus, liver, colon, ovary cancer tissues) showed
higher level of expression as compared with the control. Further-
more, aggressive tumors such as grade III astrocytoma showed
higher level of expression as compared with the less aggressive
gradeland Il tumors (Fig. 2B and D). These data suggested that the
overexpression of mortalin contributes to carcinogenesis and its
progression to aggressive stages by multiple ways. It, therefore,
possesses prognostic value and may serve as a therapeutic target.

On the basis of the above data, we predicted that mortalin
might play a critical role in EMT and cancer metastasis. To define
mechanisms, we first examined its expression level in a variety of
cancer cells (Supplementary Fig. S2A). Four cell lines, A549,
G361, MCF7, and MDA-MB-231 (MDA), with different level of

2760 Cancer Res; 76(9) May 1, 2016

expression were examined for their migration ability. We found a
correlation between the level of mortalin expression and migra-
tion capacity of cells. A549 with highest level of expression among
the four cell lines showed highest migration, G361 showed a
moderate level, and MCF7 and MDA-MB-231 cells were slow as
compared with the other two cell lines (Supplementary Fig. S2B
and S2C), suggesting that mortalin may contribute to migration
capacity of cancer cells. To investigate further, we selected MDA-
MB-231 cells that possess moderate level of mortalin expression,
and generated their mortalin-overexpressing derivatives by trans-
duction with myc-tagged mortalin expressing retrovirus (Fig. 3A).
Several clones were examined for the level of mortalin expression
in MCF7/mot derivatives as described previously (23).They all
were found to possess about 2- to 3-fold increase (23), and the
current analysis was restricted to pooled cultures. The derivative
MDA/mot cells showed somewhat rounded morphology (Fig.
3B), increased proliferation (Fig. 3C), migration (Fig. 3D and E),
and invasion (Fig. 3F) capacities, as compared with the control
vector-transfected cells. The difference in these phenotypes was
statistically significant as analyzed by several independent experi-
ments (Fig. 3D-F, bottom) in mortalin-overexpressing MDA as
well as -MCF7 cells (data not shown). Electron microscopic
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examination of cells showed increase in microfilaments (Supple-
mentary Fig. S3). To further validate the contribution of mortalin
in cell migration, we generated mortalin-overexpressing human
normal fibroblasts (TIG-3). As shown in Supplementary Fig. S4,
the latter showed faster migration than the control cells endorsing
that the upregulation of mortalin causes an increase in the
migration capacity of cells.

Overexpression of mortalin induces endothelial-to-
mesenchymal transition

To unravel the mechanism of role of mortalin in increased
migration and invasion of cells, we subjected control and
mortalin-overexpressing derivative to ¢cDNA, miRNA, and
metastasis-antibody arrays. As shown in Fig. 4A and Supple-
mentary Table S1, cDNA array showed upregulation of focal
adhesion, JAK-STAT, and basal cell carcinoma signaling. miRNA
array also showed that PI3K-Akt, focal adhesion, cytoskeleton,
and TGFp signaling were affected, at large, in mortalin-over-
expressing cells (Fig. 4B). In agreement with these data, morta-
lin-overexpressing MDA cells showed increase in several key
regulators of metastasis and EMT signaling (Fig. 4C, a). Fur-
thermore, conditional medium of mortalin-overexpressing cells

www.aacrjournals.org

showed increased level of expression of metastasis and EMT
markers (Fig. 4C, b).

We next validated these findings by gene and protein specific
analyses using specific primers and antibodies, respectively. As
shown in Fig. 5A and B, Western blotting and immunostaining
revealed increase in mesenchymal cell markers including vimen-
tin, fibronectin, B-catenin, hnRNP-K, o-SMA, and CK14. Of note,
the epithelial marker proteins, E-cadherin, CK18, and CK8
showed sharp decrease (Fig. 5A and B). In line with the antibody
array data, mortalin-overexpressing derivatives showed increase
in MMP-2 protein as well as mRNA (Fig. 5C and D). Similar results
were obtained for MMP-3 and MMP-9 in mortalin-overexpressing
MDA as well as MCF-7 derivatives as compared with their parent
control cells (Fig. 5D and Supplementary Fig. S5). We next
performed qPCR for the expression of several key genes involved
in cell migration, EMT, and metastasis signaling, and found that
these genes (MMP-3, MMP-9, hnRNP-K, VEGF, vimentin, Wnt3a,
and B-catenin) were upregulated in mortalin-overexpressing deri-
vatives (Fig. 5E). Of note, epithelial cell markers (E-cadherin,
CK8) and tumor suppressor TGF(3 were decreased in these cells as
compared with the control (Fig. 5E). These data supported therole
of mortalin in EMT signaling.
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Mortalin targeting by shRNA-expressing adenovirus leads to
reduction in migration and invasion of MDA cells

To examine whether overexpression was essential for migration
or invasion characteristics of cancer cells, we treated the MDA cells
and their mortalin-overexpressing derivatives with mortalin-tar-
geting shRNA-expressing adenovirus. The target sequence that has
earlier been defined as the most effective one was used for this
study (25). Cells were transduced with subtoxic doses (20-50
MOI) of virus. As shown in Fig. 6A-E, we found that at the low
subtoxic doses, mortalin-shRNA expressing adenovirus caused
significant reduction in cell migration as examined by chemotaxis
as well as wound scratch assays (Fig. 6D and E). Of note, although
mortalin targeting caused significant reduction in vimentin, fibro-
nectin, and hnRNP-K, CK18 expression increased, suggesting the
reversion of EMT in mortalin-compromised cells (Fig. 6F).

Mortalin targeting by MKT-077 reversed the EMT

We next used MKT-077 (a mitochondrion-seeking delocalized
cationic dye that causes selective death of cancer cells) that was
shown to be a chemical inhibitor of mortalin at subtoxic doses
(35, 36). It was shown that fairly low drug doses of MKT-077 were
sufficient to induce senescence in tumor cells (36). As shown
in Fig. 7A and B, MKT-077-treated cells showed significant
reduction in proteins crucial for cell migration and EMT. Expres-
sion analysis of several genes by qPCR revealed downregulation of
MMPs, hnRNP-K, VEGF, vimentin, fibronectin, VEGF, a-SMA,
B-catenin, CK18, and Wnt-3a. in MKT-077-treated cells; major
epithelial cell markers, E-cadherin showed increase. The changes
in transcript level were also translated to the protein level (Fig.
7B). In view of our recent findings that the nuclear mortalin leads
to aggressive malignant phenotype of cancer cells (23), we exam-
ined itin control and MKT-077~treated cells. As shown in Fig. 7C,
we found that the latter possessed reduced levels of nuclear
mortalin accounting for downregulation of its downstream sig-
naling responsible for malignant transformation of cancer cells.

Discussion

Metastasis is the major cause of mortality in all the cancer
patients. Although primary breast cancer is often treated with
surgery and radiation, it is the later stage when cells escape
treatment due to chemoresistance and metastasis to the brain,
bones, liver, and lungs. Mortalin was shown to activate telome-
rase, hnRNP-K, E2F1A, and PI3K/AKT proteins (23, 37, 38). In
agreement with these known functions of mortalin, it has been
detected as an upregulated protein in a variety of human tumors.
Cancer genome databases revealed that the renal cell carcinomas
(RCCQ) that accounts for 90% to 95% of malignant neoplasms and
2% to 3% of all malignant diseases in adults most frequently
possess amplification of mortalin locus and show high degree of
resistance to radiation and chemotherapy. Association of upre-

Mortalin Contributes to Breast Cancer Metastasis

gulation of mortalin with cancer malignancy and metastasis was
also supported by other tumor types as shown in Fig. 2 and
Supplementary Fig. S1 and some earlier reports (16, 19, 28, 29).
We examined the TCGA database (kidney renal clear cell carci-
noma datasets that showed highest frequency of mortalin ampli-
fication) for mutual cooccurrence and exclusiveness of mortalin
with other proteins. Interestingly, we found tight association of
mortalin with FGF1 amplification (Supplementary Fig. S6A and
S6B). FGF1 is an established key regulator of cell migration and
EMT (39, 40). Mortalin has been reported to interact with FGF1
and to aid in its intracellular trafficking (41, 42), suggesting that
this interaction is clinically relevant for carcinogenesis. On the
other hand, we found that mortalin amplification and p53
mutations were mutually exclusive (Supplementary Fig. S6B). In
contrast to their approximately 70% to 94% occurrence in high-
grade epithelial cancers, mortalin-enriched tumor datasets
showed extremely low (2%) occurrence of p53 mutation. This
was consistent with the earlier established role of mortalin in
inactivation of p53 protein and endorsed its clinical relevance.
Targeting of mortalin caused growth arrest or apoptosis of cancer
cells by activation of p53 signaling (17, 18, 22, 25). However, its
relationship with EMT has not been elucidated.

In this study, cDNA and miRNA array analyses in control and
mortalin-overexpressing breast epithelial cells revealed upregula-
tion of PI3K-Akt and focal adhesion signaling in the overexpres-
sing derivatives (Fig. 4). PI3K-Akt signaling has been reported to
regulate EMT through the transcription factor snail, a critical EMT
mediator (43, 44). The proinvasive and prometastasis effects of
sorafenib (antiangiogenic agent that inhibits tumor growth but
promotes tumor invasion and metastasis in HCC) were assigned
to activate PI3K/Akt/snail pathway (45). Overexpression of miR-
19a was also shown to activate PI3K/AKT signaling, and induced
EMT in gastric cancers (43). Overexpression of mortalin was
earlier shown to inactivate p53, activate telomerase, and anti-
apoptotic signaling through Raf/MEK/ERK pathway and inhibi-
tion of conformational change of Bax (17, 18, 38), and to mediate
erythropoietin-induced growth of erythroid progenitor cells
(Fig. 7D; ref. 46). It was identified as one of the ten signaling
partners of Akt (a serine/threonine kinase) by mass spectrometry
analysis (47). Gene-specific analyses indeed revealed activation of
EMT in mortalin-overexpressing derivatives (Fig. 7D). These cells
showed upregulation of vimentin, fibronectin, a-SMA, CK14,
VEGF, Wnt-30, and hnRNP-K (Fig. 7D). Furthermore, key reg-
ulators of metastasis, MMPs, and VEGF showed upregulation at
protein as well as transcript levels (Fig. 7D). We found that the
mortalin-overexpressing cells possess decreased level of expres-
sion of TGFP tumor suppressor (Fig. 5), a factor that controls cell
proliferation, differentiation, and transformation (48). Taken
together, in addition to the already accepted role of mortalin in
activation of pro-proliferation and antiapoptotic signaling during
carcinogenesis, we, in this study, found that it plays a key role in

Figure 7.

Targeting mortalin by MKT-077 caused reversal of EMT signaling. A, expression analysis of the indicated genes by gRT-PCR in control and MKT-077-treated cells. B,
the level of indicated proteins in control and MKT-077-treated cells as examined by Western blotting. C, immunostaining for mortalin in control and
MKT-077-treated cells showing reduction in nuclear mortalin in the latter. Wide-field low magnification (a) and small field high-resolution cross-section (b) images
are shown. Nucleus was stained with Hoechst and made transparent by graphic workstation and analyzed with the "Imaris" software (Bitplane). Data are
presented as mean + SE (n = 3).*, P< 0.05; **, P< 0.01; ***, P< 0.001 compared with mock. D, schematic diagram showing the role of mortalin in carcinogenesis,
EMT, metastasis, and invasion. Increase in mortalin expression in cancer cells caused upregulation of several proteins involved in EMT; whereas, proteins
involved in epithelial cell characteristics (a) decreased, the proteins involved in mesenchymal, migration, and invasion characteristics (b and ¢) showed increase.
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EMT by activation of several proteins and pathways (Fig. 7D). The
data were validated by mortalin-knockdown using (i) mortalin-
specific oncolytic adenovirus and (ii) anti-mortalin small-mole-
cule MKT-077 that resulted in downregulation of several key
regulators of EMT both at protein as well as transcript levels
(Supplementary Table S1). Of note, E-cadherin, an established
marker of epithelial cells, decreased in mortalin-overexpressing
cellsand increased in MKT-077-treated cells. These data suggested
that mortalin works upstream of these factors in regulation of
EMT and cancer cells metastasis. Furthermore, only 2- to 3-fold
increase in mortalin expression caused increase in migration
capacity and activated EMT signaling in a variety of cancer cell
lines, such as breast carcinomas (MDA and MCF7), osteosarcoma
(U20S), and melanoma (G361), suggesting that it is a strong
regulator and independent of cancer cell types (Supplementary
Fig. S4 and S5). We have recently demonstrated that mortalin
resides in the nucleus of cancer cells wherein it activates telome-
raseand hnRNP-K (23), both are related to cancer progression and
malignant properties (23, 49, 50). Of note, MKT-077-treated
MDA cells showed decrease in nuclear mortalin that may account
for downregulation of several proteins involved in EMT (Fig. 7C
and D). Together with the results of HCC study (29), the value of
mortalin targeting for therapeutic success of aggressive and met-
astatic cancers is endorsed. Findings suggest that the aberrant
enrichment of a stress chaperone protein in multiple tumor types
elicits an EMT-like phenotype and promotes the invasiveness of
cancer cells, warranting further investigation as a potentially
broad-acting therapeutic target.
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