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ABSTRACT A log-structured merge-tree-based key value store (LSMKV) is an append-only database for
storing and retrieving unstructured data, especially in a write-intensive environment. This database uses
hierarchical components to store and manage data. Upper-level components have a shorter data lifespan
and a higher access locality than lower-level components. Hence, the data access latency of the upper-level
components significantly affects the performance of the entire database. Hybrid solid-state drives (SSD)
composed of media with different access speeds can improve the performance of an LSMKV by storing the
upper-level components using a fast storage space. However, many hybrid SSDs use fast storage spaces
to store data that are frequently allocated to the same logical address; they are not suitable for storing
append-only component data, which are allocated to adjacent logical addresses. This article proposes a
hybrid SSD-management method to reduce the data access latency of append-only LSMKVs and increase
the durability of hybrid SSDs. The proposed method allocates the data of upper-level components to a fast
storage space using the level information of the data as a hint. This study utilizes dynamic data separation
to determine the components to be placed in the fast storage space, NAND block management to store the
data with similar lifespans in the same fast NAND block, and a data-relocation method to migrate long-lived
data from the fast NAND region to another NAND region. Experimental results indicate that the proposed
method reduces the average I/O latency by an average of 12% and increases the device durability by an
average of 22%.

INDEX TERMS Data placement, flash storage, hybrid NAND storage, key-value store, log-structured merge
tree.

I. INTRODUCTION
Various systems, such as machine learning, blockchain, and
content delivery networks, use key-value stores for unstruc-
tured data processing. In particular, log-structured merge-
tree-based key-value (LSMKV) stores [2], [3], [6], [24] are
frequently used in write-intensive application systems, such
as financial transactions and social web media. LSMKVs
have low write latency as key-value data are written to the
storage device in an append-only manner [16].

The associate editor coordinating the review of this manuscript and
approving it for publication was Adnan Abid.

LSMKVs manage key-value data with an ‘‘n-level’’
log-structured merge-tree (LSM-tree) [19], which is a lay-
ered structure of components [2], [6], [15], [23], [29]. The
key-value data newly inserted in the storage device are
inserted into the top component. The upper component
with insufficient space is merged into the lower compo-
nent. Because of this operational pattern, key-value data of
upper-level components, compared to those of lower-level
components, are inserted into storage spaces more often [25]
and have shorter lifespans [10]. Therefore, the data access
latency of the upper-level components significantly affects
the performance of the entire LSMKV system.
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Hybrid solid-state drives (SSD) [4], composed of flash
memory with different access latencies and storage capac-
ities, can store key-value data of upper-level components
in a fast storage space, thereby increasing the speed of an
LSMKV while using a large storage space to store the most
amount of key-value data. However, many data classification
and allocation techniques for hybrid SSDs are not suitable
for the access characteristics of an LSMKV. Many previous
techniques have classified data that are frequently written to
the same logical address as hot data and allocate them to fast
storage spaces [1], [7]–[9], [13], [18], [20], [22]. LSMKVs
write key-value data to adjacent logical addresses even if
the write operation is an update to the key-value data in the
storage [10], [16]. Therefore, many existing methods classify
most key-value data of LSMKVs as cold data.

This article proposes a data-classification method that ver-
ifies the level information of data at the storage device and
a data placement method for hybrid SSDs that allocates the
data of upper level components to fast storage space, for
example, single-level cell (SLC). In a general storage system,
the storage device cannot verify the data structure information
of the host side. In this study, the level information of the LSM
tree data structure can be transferred to the device through an
extended host interface.

Two challenges are associated with the proposed data clas-
sification and placement method. (1) If the criterion for deter-
mining the upper-level components is not adaptively adjusted
to the input key pattern, the performance of the proposed
method may be degraded. The less duplicated the input key,
the less are the data deleted from the input of the merge
operation; this leads to an additional merge operation at
the lower level. In this case, the storage device writes the
key-value data from the top level to the lower level, and the
worst case to the bottom level. If the upper level criterion
is excessively high, the SLC writes only a small amount of
data, which increases the SLC idle time and degrades storage
performance. Conversely, if the input key is duplicated fre-
quently, the data merge operation may be terminated at the
upper level. In this case, the storage device intensively writes
the key-value data of the upper components. If the upper level
criterion is extremely low, then the SLC blocks become sig-
nificantlyworn out, and the garbage collection (GC) overhead
of the SLC region is increased, thereby deteriorating storage
performance. (2) Because the page copy overhead of GC can
be increased when data with different lifespans are stored in
the same block [27], storing data of various components to
the NAND block together can decrease the performance of
the proposed method. In a hybrid SSD, GC occurs frequently
in an SLC region composed of a small number of SLC
NANDs; therefore, page copying the SLC GC degrades the
performance of the proposed method. The page copy of the
SLCGC can be reduced by storing the data of one component
to an SLC block. However, if the upper level criterion is
changeable, then some SLC blocks can be retained in the
open state for the level that might not be assigned to the SLC
region, thereby reducing the available storage space.

To solve the challenges of the proposed method, the fol-
lowing are proposed:
• Data placement method for allocating the data of upper
level components to SLC region of hybrid SSD;

• Block management method for placing data of the adja-
cent level components in the same SLC block;

• Dynamic data separation technique that monitors the
amount of data recorded in each NAND region of hybrid
SSDs, detects the intensive write to a NAND region
as a change in the incoming key pattern of LSMKV
workload, and adjusts the write amount in proportion to
the endurance of each NAND region;

• Data relocation technique that migrates data of low-level
components recorded in the SLC region to another
NAND region in accordance with the adjusted data clas-
sification criteria of dynamic data separation.

The proposed method was evaluated using an in-house
hybrid SSD simulator and storage I/O workload collected
from an actual LSM tree-based key-value application. Exper-
imental results show that the proposed method can reduce the
average I/O latency by an average of 12.11% and increase the
durability of the device by an average of 22.39% compared to
the previous method, which uses the request size and access-
frequency-based hot/cold separation [9].

The remainder of this article is organized as follows.
Chapter 2 provides background information regarding hybrid
SSDs and LSMKVs. Chapter 3 provides the storage access
and data life characteristics of LSMKVs, which are the goals
of this study, and Chapter 4 reviews prior studies related to
the storage management of hybrid SSDs. Chapter 5 describes
the proposed method, that is, hybrid SSD management in
the LSMKV system. Subsequently, the experimental environ-
ment and results are presented, followed by the conclusions
of this study.

II. BACKGROUND KNOWLEDGE
A. HYBRID SSD
Chang proposed a hybrid SSD that combines an SLC NAND
with a fast response time and high cell endurance with an
MLC (multi-level cell) NAND with high cell density and
low production cost [4]. In the hybrid SSD, the higher the
proportion of the SLC block in the entire NAND block,
the higher the lifespan and response speed of the flash storage,
but the lower the total capacity (Table 1). The recent hybrid
SSD can be composed of not only SLC and MLC, but also
TLC (triple-level cell) or QLC (quadruple-level cell). Fig. 1
shows the structure of a hybrid SSD composed of SLC and
TLC.

According to Chang [4], a hybrid SSD can reduce the stor-
age access latency by placing small and frequently updated
data on SLCs. In addition, cold data recorded in SLCs can be
relocated to other NAND regions to secure SLC space, and
hot data recorded in MLC can be moved to SLCs to reduce
data access latency. Meanwhile, to increase the durability of
the device, the hybrid SSD should prevent the NAND region
from wearing out significantly.
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TABLE 1. Comparisons of various level cell flash chips.

FIGURE 1. Overall architecture of SLC/TLC hybrid SSD.

B. APPEND-ONLY KEY-VALUE APPLICATION: LSMKV
An LSMKV is a ‘‘not only structured query language frame-
work’’ based on a log-structured merge-tree (LSM-tree) [2],
[3], [6], [24]. In an LSMKV, the input key-value pair is
buffered in the memory and dumped into the storage when
accumulated over a certain size. Buffered key-value data in
memory is called MemTable. The key-value pair file stored
in storage is called a sorted string table (SSTable), which is
an immutable file format.

An SSTable is managed in a hierarchical structure called
a log-structured merge-tree. The new SSTable is assigned to
level 0, which is the highest level. Each level has a limit size,
and the lower level has a larger limit size than the upper level.
At a level beyond the limit size, compaction is performed. The
size limit of the level is not strictly enforced, but functioned
as a trigger for compaction.

Because an SSTable is immutable, LSMKVs follow a
compaction process to merge and delete existing SStables.
Compaction is the data merge operation between levels.
At the level where compaction is triggered, an SSTable is
selected as the compaction-input. In addition, in the neigh-
boring sublevel of the level at which compaction is triggered,
SSTables overlapping the key range of the compaction-input
SSTable are selected simultaneously as the compaction-input.
Compaction-inputs are read from storage, merged and sorted,
and output as new SSTables. The compaction-output SSTa-
bles are assigned to the lower level among the two levels
where compaction-inputs are collected. On the storage side,
the compaction-input SSTables are deleted. As a result of
compaction, SSTables at each level are arranged such that the
key ranges do not overlap with each other. However, the key
range of SSTables at level 0 can be overlapped. Fig. 2 shows
the brief architecture of the LSMKV.

III. MOTIVATIONS
A. STORAGE ACCESS PATTERN OF LSM-TREE-BASED
KEY-VALUE STORE
Unlike many index structures that write the input data to
the same logical address, updating the data in the storage,

FIGURE 2. Overall architecture of LSM-tree based key-value store.

FIGURE 3. Storage workload of a log-structured merge-tree based
key-value (LSMKV) store in a given I/O scenario; (a) and (b) present the
logical-to-physical mapping status at the pointed time. Each file is an
SSTable of LSMKVs. (a) illustrates the allocation of a logical address to a
physical address. (b) presents the invalidation and reallocation of a
logical address to a physical address. LtoP allocation is invalidated when
the LBA of a deleted file is assigned to a new file.

LSMKVswrite all the input key-value data to adjacent logical
addresses of the storage device in an append-only manner.
Fig. 3(a) shows the logical-to-physical address mapping of
flash storage when SSTables are inserted and deleted. If new
data is assigned to a logical address that has already been
assigned to a physical address, the data of an existing phys-
ical address are invalidated, and new data are allocated to
another physical address (Fig. 3(b)). The operation shown
in Fig. 3(b) is similar to the update operation of the flash stor-
age (Fig. 6(a)). However, because SSTables are immutable
in LSMKVs, this operation is performed when (1) new data
are inserted after the existing SSTable is deleted, or (2) the
metadata of the LSMKVs are updated.

B. DATA LIFESPAN CHARACTERISTICS OF LSM-TREE
BASED KEY-VALUE STORE
In LSMKVs, one SSTable is assigned to one level, and
each level has a capacity limit to store SSTables. In general,
the limit size of level N + 1 is 10 times that of level N . When
the level exceeds the limit size, compaction is triggered.
SSTables that are selected as compaction inputs are deleted
from storage and new SSTables, which are obtained from
the compaction, are recorded to storage. Because compaction
occurs frequently at a level with a small capacity limit,
SSTables at a level with a small limit are likely to be deleted
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FIGURE 4. Size difference between compaction triggered at
levels 0 and n.

from storage owing to compaction. Therefore, upper-level
data have a shorter data lifespan and higher access frequency
than the lower levels [12]. Herein, the data lifespan refers to
the time when a file is created on the host side and deleted
from the host.

In addition, owing to the structural characteristics of level 0
SSTables, compaction can occur frequently at levels 0 and 1.
All SSTables are constructed through compaction. Com-
paction is categorized into minor compaction, which is for
dumping data at the memory to storage, and major com-
paction, which is for merging between SSTables stored in
storage. Major compaction sorts SSTables such that the key
ranges do not overlap with each other to reduce the key seek
time. Meanwhile, minor compaction dumps the data recorded
in memory into storage regardless of whether the key range
is duplicated for the quick flushing of the memory space.
Level 0 SSTables, generated as a result of minor compaction,
can be selected together as a compaction input because their
key ranges overlap. Therefore, compaction triggered at level 0
can be performed with many input SSTables (Fig. 4). Com-
paction with massive SSTables can result in an overflow of
the next level and trigger the next compaction in a chain.
Consequently, SSTables from level 0 to 2 are likely to be
deleted in the near future compared with the other levels.
It is noteworthy that compaction triggered at one level deletes
SSTables at the triggered level and at the next level.

Fig. 5 details the average lifespan of an SSTable at each
level, where the input key patterns are fully random, zip-
fian random and latest random (Full-Random-Write, Zipf-
Random-Write and Latest-Random-Write of Table 3). Each
column value was normalized based on the average lifespan
of level 0 SSTables. SSTables of upper-level components,
especially levels 0, 1, and 2, have a shorter data lifespan
compared to the lower levels. It is noteworthy that the exact
lifespan of SSTables may vary depending on the input key
pattern because the key range of each SSTable is depen-
dent on the input key pattern. Nevertheless, according to our
observations, SSTables of the upper-level had shorter average
lifespan than SSTables of the lower-level.

FIGURE 5. Average SSTable lifespan of each level in full random workload,
zipfian random workload and latest random workload. Each column
value was normalized based on average lifespan of level 0 SSTables.

IV. RELATED STUDIES
To improve the performance of hybrid SSDs, many existing
methods allocate the hot data that are frequently written to the
same logical address to SLC regions, or use SLCs as a write
buffer. In previous methods, data temperature was mainly
estimated by the size, sequentiality, or update history of the
requested data.

Park et al. [20] sent write requests to the SLC region.When
the write process is performed a certain number of times,
hot/warm data, which are frequently updated, remain in the
SLC region, and cold data are relocated to the MLC region.

Im and Shin [8] used SLC areas as a log buffer and MLC
areas as a data block. They migrated only cold data that
were not frequently updated from SLCs to MLCs but did
not migrate data when a large number of page copies was
involved in data migration. Furthermore, they assumed large
sequential data to write once to cold data, thereby bypassing
SLCs and writing it to MLCs.

Lee et al. [13] proposed FlexFS, which classifies flash
storage devices into SLC and MLC regions. FlexFS predicts
the idle time of the workload and suspends the background
data migration process when the idle time is insufficient to
perform migration between regions. In addition, when the
update locality of data recorded in the SLC is high, FlexFS
dynamically increases and decreases the sizes of the SLC and
MLC regions, respectively.

Im and Shin [9] proposed ComboFTL for an SLC/MLC
hybrid NAND flash medium, which included request-size-
based data separation and an update-frequency-based data
relocation algorithm. In ComboFTL, small randomwrites are
considered as hot data and assigned to SLCs, whereas large
sequential writes are considered as cold data and assigned to
MLCs. Data recorded in the SLC region are divided into hot
and warm data. Hot data are newly recorded data in the SLC
region and are classified as warm data if no update occurs
during the wrap-around time of the clock. If the warm data are
not updated for more than a certain number of GCs, the warm
data are migrated to theMLC. Among the data recorded in the
MLC, data detected as hot data are migrated to the SLC.

Hong and Shin [7] used an SLC/MLC heterogeneous
NAND flash device as a cache for HDDs. They used the
SLC and MLC regions as the first- and second-level buffers,
respectively; and perform SLC-to-SLC or SLC-to-MLC data
migration based on the data update frequency.
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However, previously proposed methods for hybrid SSDs
are not suitable for the storage access pattern of LSMKVs.
First, the data-classification method based on the request
size or access sequentiality of data classifies small random
and large sequential write data as hot and cold data, respec-
tively (Fig. 6.(b)). Meanwhile, the LSMKV writes key-value
data to a storage device as SSTable files, which involves
writing large sequential data. Hence, hot/cold classification
methods based on the request size or access sequentiality
of data are unsuitable for indicating the difference in lifes-
pans between key-value data as they classify most key-value
data as cold data. Second, the update-frequency-based
data-classification technique estimates the data lifespan using
the update frequency of the logical address (Fig. 6.(a)).
Because LSMKVs do not check whether a key-value write
request is an update request for key-value data in the stor-
age, key-value data are allocated to the logical address
space as illustrated in Fig. 3. New SSTables are inserted
into adjacent logical addresses, and existing SSTables are
deleted. Therefore, update-frequency-based data classifica-
tion is inadequate for estimating the access likelihood of an
SSTable.

V. MAIN IDEA
A. DATA PLACEMENT TECHNIQUE OF HYBRID SSD FOR
LOG-STRUCTURED MERGE-TREE BASED KEY-VALUE STORE
This study aims to effectively estimate the lifespan of SSTa-
bles in storage and allocate short-lifespan SSTables to the
SLC NAND region. The proposed method verifies the level
of each SSTable in the storage and allocates upper-level
SSTables to the SLC region. Because the file-deletion time
at the host does not coincide with the data-invalidation time
at the storage, the proposed method uses the TRIM command
of the SSD to notify the logical block address (LBA), which
is no longer used by the device when the file is deleted from
the host. In addition, to enable the storage to obtain the level
information of each SSTable, the proposed technique uses an
extended host interface that can include the level informa-
tion of each SSTable. Fig. 7 shows the overall architecture
of the SLC/TLC hybrid SSD system using the proposed
method.

The proposed data-placement method is subsequently
detailed. The host sends a data-write command containing
the level information of the data to the storage. To set the
initial value of the level depth to be assigned to the SLC,
the storage initially records all the data to the SLC and
monitors the level depth of the incoming data. The level depth
to be included in the SLC is denoted as SLCTargetLevel
herein. When the first GC of the SLC region is performed,
the storage sets the lowest level recorded in the SLC as
SLCTargetLevel. For subsequent data-write requests, the stor-
age allocates data whose level is higher than SLCTargetLevel
to the SLC. When data is written to the SLC, the storage
media updates the logical-to-level mapping table (LtoLV
table) that maps the data level and the logical address of
the SLC page. The LtoLv table is used to select the page

FIGURE 6. Basic concepts of traditional hot/cold-based data-separation:
(a) update-frequency-based data-separation and (b) request-size- &
access-sequentiality-based data-separation.

FIGURE 7. Overall architecture of the proposed scheme. The highlighted
box represents the scope of this study.

to migrate from the SLC region to the TLC region. Data
migration is described at the end of this section. The LtoLv
table does not replace the address-mapping table managed
by the existing flash storage but complements it. When all
the blocks in the SLC region are filled with valid pages,
incoming data are allocated to the TLC even if their levels are
higher than SLCTargetLevel. Algorithm 1 shows the proposed
data-allocation technique after the initial SLCTargetLevel is
determined.
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Algorithm 1 Data Allocation Process With Level
Information
Input: page address, data size, data, level information of data
(LevelInfo)
Output: none
1: if LevelInfo ≤ SLCTargetLevel then
2: if writable space of SLC > data size then
3: update the address mapping table;
4: update the logical to level mapping table;
5: OpenBlock_SLC ← GetSLCOpen-

Block(LevelInfo);
6: write data to OpenBlock_SLC.freePage;
7: LoadBalancingManager(WRITE, DataSize);
8: SLCLoadBalancer(WRITE);
9: else

10: update the address mapping table;
11: write data to WritableBlock_TLC.freePage;
12: WriteAmount_TLC + = DataSize;
13: LoadBalancingManager(OVERFLOW, 0);
14: SLCLoadBalancer(OVERFLOW);
15: end if
16: else
17: update the address mapping table;
18: write data to WritableBlock_TLC.freePage;
19: WriteAmount_TLC + = DataSize;
20: end if

B. DYNAMIC DATA SEPARATION AND LOAD BALANCING
OF HYBRID SSD FOR LOG-STRUCTURED
MERGE-TREE-BASED KEY-VALUE STORE
SLCTargetLevel, the data placement criterion of the pro-
posed method, is adjusted in two cases. First, the pro-
posed method reduces the SLCTargetLevel when the SLC
GC cannot obtain a free block because the SLC region
is filled with valid pages (SLC overflow). This method
can reduce the average lifespan of data to be included
in the SLC region. Valid data included in the SLC are
removed from the SLC region through data deletion from
the host or data migration. Adjustment of SLCTargetLevel
due to SLC overflow is performed once whenever data
are accumulated in the SLC region by the size of the
SLC region.

Second, SLCTargetLevel is adjusted when intensive writes
to any NAND region of the hybrid SSD occurs. The proposed
method monitors the amount of data input to each NAND
region of the hybrid SSD. Different types of NAND have
different maximum program/erase (P/E) cycles; therefore,
the proposed method adjusts the ratio of the amount of input
data between NAND regions to be similar to the durabil-
ity ratio between NAND regions. Herein, the Durability of
the SLC and TLC regions is the total erase count until all
blocks in each region are worn out, expressed as the prod-
uct of the number of blocks in the region and the maxi-
mum P/E cycle per block(Durability = Block_Count ×
Max_PE_Cycles_per_Block).

Because the data write of flash storage is performed in a
page unit, the total write amount of a NAND region before
a wear-out is LifelongWriteAmount = Pages_per_Block ×
Durability. Finally, the write amount ratio of the SLC region
compared with that of the TLC region proposed herein,
WriteAmountBalance(φ), is expressed as follows:

φ =
LifelongWriteAmount_SLC

LifelongWriteAmount_TLC

=
Pages_per_Block_SLC

Pages_per_Block_TLC

×
Block_Count_SLC

Block_Count_TLC

×
Max_PE_Cycles_per_Blk_SLC

Max_PE_Cycles_per_Blk_TLC

The proposed method adjusts the write amount of the
SLC region by increasing or decreasing the SLCTargetLevel
such that the ratio of the amount of input data between
NAND regions and the durability ratio between NAND
regions become similar. Algorithm 3 shows how the adjust-
ment must be made. The appropriate write amount for
the SLC region proposed herein was derived by multi-
plying the amount of data written in the TLC region by
WriteAmountBalance(φ). The proposed method increases
and decreases WriteAmountBalance(φ) to a constant
BalancingWeight to determine the lower and upper bounds
for the write volumes of the SLC region (lines 3 and 4 of
Algorithm 3). Consequently, the lower limit for the
write amount of the SLC region is calculated as (φ −
BalancingWeight) × WriteAmount_TLC (line 5 of Algo-
rithm 3), and the upper limit write amount is calculated
as (φ + BalancingWeight) × WriteAmount_TLC (line 7 of
Algorithm 3). If the amount of data recorded in the SLC is less
than the lower limit of the write amount, then SLCTargetLevel
is increased by 1 (lines 5 and 6 of Algorithm 3). Conversely,
if the amount of data recorded in the SLC exceeds the upper
limit of the write amount, then SLCTargetLevel is decreased
by 1 (line 7 and 8 of algorithm 3). Algorithm 2 represents a
sequence that determines when SLCTargetLevel is adjusted.
Adjusting the write overhead between NAND regions is
performed once every time data are accumulated in the SLC
region (line 3 of Algorithm 3), as in the SLC overflow.
However, the execution cycle is independent of the SLC
overflow (line 14 of Algorithm 3).

C. SLC BLOCK MANAGEMENT WITH DYNAMIC DATA
SEPARATION
The proposed method allocates the data of the same or adja-
cent level to the same SLC block to reduce the page copy
overhead that occurs in the GC of the SLC region. Suppose
that level N data are requested to be written to the device
when SLCTargetLevel is larger than N . The device selects a
writable block from the free block pool of the SLC region and
sets it as a ‘‘level N open block’’ for recording level N data.
If no writable page occurs in a level N open block, then the
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Algorithm 2 LoadBalancingManager: Calculate Data
Write Amount of SLC Region, to Adjust the SLCTargetLevel
Input: source variable (Source), data size
Output: none
1: if Source ==WRITE then
2: WriteAmount_SLC + = DataSize;
3: if OverflowFlag == TRUE then

//to adjust the load balancing cycle after SLC over-
flow occurs

4: WriteAmount_SLC_Overflow + = DataSize;
5: end if
6: else if Source == OVERFLOW then
7: OverflowFlag← TRUE;
8: end if

Algorithm 3 SLCLoadBalancer: Adjust the
SLCTargetLevel
Input: source variable (Source)
Output: none
1: if Source ==WRITE then
2: ifWriteAmount_SLC ≥ RegionSize_SLC then
3: LoadBalancer_LowerBound ← (WriteAmount-

Balance − BalancingWeight);
4: LoadBalancer_UpperBound ← (WriteAmount-

Balance + BalancingWeight);
5: if WriteAmount_SLC < LoadBal-

ancer_LowerBound*WriteAmount_TLC then
6: SLCTargetLevel++;
7: else if WriteAmount_SLC > LoadBal-

ancer_UpperBound*WriteAmount_TLC then
8: SLCTargetLevel−−;
9: end if

10: WriteAmount_SLC← 0;
11: WriteAmount_TLC← 0;
12: end if
13: else if Source == OVERFLOW then
14: if (OverflowFlag == TRUE) &

(WriteAmount_SLC_Overflow ≥ RegionSize_SLC)
then

15: SLCTargetLevel−−;
16: WriteAmount_SLC_Overflow← 0;
17: OverflowFlag← FALSE;
18: end if
19: end if

level N block is closed. If SLCTargetLevel becomes smaller
than N when the level N block is open, then level N data
are no longer allocated to the SLC region; therefore, the level
N block may remain open. In this case, the device expires the
levelN open block. The expired levelN block is then selected
as the top priority when selecting an open block for recording
level N − 1 data and becomes a level N − 1 open block.
If SLCTargetLevel becomes N again before the expired level
N block becomes a level N − 1 open block and level N data

FIGURE 8. State diagram of SLC block management for LSMKV. The
statement in the circle on the dotted line represents the block state, and
that under the dotted line the block level.

starts to be allocated to the SLC, the expired level N block is
reopened for level N data. Fig. 8 shows the state diagram of
the SLC block management method proposed herein.

D. SLC TO TLC DATA MIGRATION WITH DYNAMIC DATA
SEPARATION
The long-lived data included in the SLC region can reduce
the available space of the SLC, causing frequent SLC GC
or increasing the valid page copy overhead during GC.
Hence, when GC is performed in the SLC region, the pro-
posed method examines the data of lower-level components
recorded in the SLC and relocates the data to the TLC.
To track the level of data recorded in the SLC, the proposed
method utilizes the LtoLv table, which links the logical
address of the SLC page with the level information of the
data allocated to it (line 4 of Algorithm 1). To determine the
SLC block to be relocated, the device verifies the average
data level of pages in the SLC blocks when GC is per-
formed in the SLC region (lines 3 and 4 of Algorithm 4).
The device selects the block with the highest average level
as a relocation candidate, called MigrationCandidateBlock
(line 5 of Algorithm 4). If the average level of pages in the
MigrationCandidateBlock exceeds SLCTargetLevel, then the
candidate is set to MigrationVictimBlock (lines 8 and 9 of
Algorithm 4). In MigrationVictimBlock , every valid-page
whose level exceeds SLCTargetLevel is relocated to the
TLC(line 7 to 10 of Algorithm 5). Algorithm 4 shows
the data-block-selection method for SLC-to-TLC relocation,
and Algorithm 5 shows the method for SLC-to-TLC data
migration.

The proposed method does not migrate data from the TLC
to the SLC; therefore, the LtoLv table does not store the
level information of data included in the TLC. Key-value
data below SLCTargetLevel will be invalidated owing to
the compaction in the near future, and future input of the
key-value data below SLCTargetLevel are allocated to the
SLC region. Therefore, TLC key-value data whose level is
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Algorithm 4 GetMigrationVictimfromSLC: Select the
Migration-Victim-Block
Input: none
Output: block number of the MigrationVictimBlock
1: MigrationVictimBlock← NULL;
2: if SLC region needs the garbage collection then
3: for each block of SLC region do
4: check average level of pages in block;
5: choose the block, which has highest average level

of pages, to MigrationCandidateBlock;
6: end for
7: end if
8: if average level of pages in MigrationCandidateBlock >

SLCTargetLevel then
9: MigrationVictimBlock ← MigrationCandidate-

Block;
returnMigrationVictimBlock;

10: else
return NULL;

11: end if

Algorithm 5 SLC to TLC Data Migration
Input: none
Output: none
1: MigrationVictimBlock = GetMigrationVictimfrom-

SLC();
2: ifMigrationVictimBlock != NULL then
3: for each page of MigrationVictimBlock do
4: Get logical address of the page;
5: if the page has valid logical address then
6: Level← GetLevelInformation(page);
7: if (Level > SLCTargetLevel) then
8: update the address mapping table;
9: invalidate the level mapping of page;

10: migrate the page from SLC to TLC;
11: end if
12: end if
13: end for
14: end if

less than SLCTargetLevel do not require placement correc-
tion. In addition, the LtoLv table for the TLC region is
required for TLC-to-SLC data migration. A massive LtoLV
table, including the level information of the TLC area, has a
longer search time and a larger storage cost.

VI. EVALUATION
A. EXPERIMENTAL SETTINGS
To evaluate the proposed method, we executed a benchmark
of the LSMKV application to extract the storage workload
and then executed the workload in a storage simulator. The
storage simulator was an in-house event-driven simulator for
the SLC/TLC hybrid SSD. Our simulator is implemented
based on Flashsim [11], a widely used event-driven SSD

simulator. Event-driven SSD simulators wrap the I/O request
event from the host as an FTL event. The FTL event is pro-
cessed in units of NAND pages when reading and writing and
in units of NAND blocks when erasing. The unit size of the
event-processing can be more than the size of a single NAND
page or a single NAND block, if the internal parallelism of
SSD is exploited. By modifying Flashsim, the simulator of
this study includes SLC/TLC hybrid SSD hardware compo-
nents, the proposed FTL, and ComboFTL. Table 2 shows
the SSD structure and NAND cell specifications used in the
experiment.

The LSMKV application used in the experiment was
RocksDB [2]. We generated the key-value I/O for RocksDB
using DBBench, a built-in benchmark tool of the RocksDB
framework, and YCSB [5], one of the widely used bench-
mark tool for cloud systems and databases. We extracted the
storage I/O commands which are requested from RocksDB,
including the data level information. The three key input
patterns used in the experiment, as summarized in Table 3,
were the full-random key order, which is the basic scenario
of DBBench; the zipfian distribution random order (zipf),
which is frequently used for the performance evaluation of
key-value stores [14], [17], [21], [26], [28]; and the latest dis-
tribution random order (latest), one of the distribution options
of YCSB. Zipf- and latest-randomworkloads are skewed ran-
domworkloads in which specific keys are frequently inserted.
The compaction operation of LSMKV deletes more dupli-
cate keys in zipf- and latest-random workloads (especially
in the latest-random workload) than in full-random workload
because key duplication occurs more frequently in the zipf-
and latest-random workloads than in the full-random work-
load. Therefore, in the zipf- and latest-random workload,
the average size of the compaction output is smaller than that
in a full-randomworkload. Furthermore, the compaction does
not cascade down to the lower level but ends at the upper level.

For the experiment, we performed a comparison among the
ratios of SLC blocks in the total NAND block of 1%, 2%, 3%,
5%, and 10% (see Table 4). The overprovision block ratio
(that is, the additional space excluding the user area among
the physical areas) of the SSD used in the experimental device
was 20%.

In the experiment, the proposed method was compared
with the existing request-size- & LBA-update-frequency-
based hot/cold separation method, ComboFTL [9]. Com-
boFTL was originally proposed for SLC/MLC hybrid SSDs;
however, in this study, all experiments were performed for
SLC/TLC hybrid SSDs. The proposed method uses the
greedy algorithm as the GC victim selection policy. The
greedy algorithm selects the block with the highest invalid
page count as the victim block of the GC. In this experiment,
we set BalancingWeight of the proposed SLC load-balancing
technique to 0.1.

B. EXPERIMENTAL RESULTS
Fig. 9 shows a comparison of the performances of Com-
boFTL and the method proposed herein. The x- and y-axes
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TABLE 2. Configurations of the simulated SSD.

TABLE 3. Workload setting.

FIGURE 9. Average I/O latency and durability of the hybrid SSD of the proposed method, compared to the ComboFTL. Boxes represent the
latency (lower is better), and lines show the device durability (higher is better). Each value was normalized to the result of ComboFTL for
the given condition.

TABLE 4. Simulator storage space setting.

represent the proportions of SLC blocks in the total NAND
blocks and performance measurements, respectively. Each
column of the column graph represents the normalized aver-
age I/O latency, which corresponds to the left y-axis value.
The line graph shows the normalized durability of the hybrid
SSD, which corresponds to the right y-axis. All values
in Fig. 9 were normalized to the measurement results of
ComboFTL under the corresponding experimental condi-
tions. For example, in a full-random-write workload, when
the proportion of the SLC region was 10%, the average
I/O latency of the proposed method was 0.80 times, and
device durability was 1.38 times that of the ComboFTL.
In the experiment performed in this study, the device dura-
bility was measured by the number of workload iterations
until all NAND blocks in any NAND region were worn out.
Hence, in the experiment, even if one NAND region was
still writable, the hybrid SSD was considered to be unusable
if all NAND blocks of the other NAND region were worn
out. The durability of the hybrid SSD was calculated as
MIN ( Durability_SLC

EraseCount_SLC ,
Durability_TLC
EraseCount_TLC ). EraseCount_NAND is

the total erase count of the NAND region when the workload
is performed once. When the EraseCount_NAND was 0,
the value of Durability_NAND

EraseCount_NAND was replaced with ∞ in our
experiment. As a reminder, the Durability of the SLC and
TLC regions was derived by calculating Block_Count ×
Max_PE_Cycles_per_Block in this study.

1) RESULTS: AVERAGE I/O LATENCY
As shown in Fig. 9, the proposedmethod has a shorter average
I/O latency than ComboFTL and reduces the average I/O
latencymore as the SLC region size increases. In the LSMKV
environment, the size-based data separation of ComboFTL
records only a small amount of data (only the small-random
writes) to the SLC. Meanwhile, as the size of the SLC region
increases, the proposed method stores more data (SSTables)
to the SLC, by increasing SLCTargetLevel.
Fig. 10 also shows that the proposed method writes a

larger amount of data to the SLC as the SLC region size
increases. The x-axis represents the applied schemes; Base
is ComboFTL, and Prop is the proposed method. The y-axis
represents the ratio of data I/O recorded in SLC and TLC
out of total data I/O. The column value in Fig. 10 (a) was
normalized to the total amount of data read from storage by
the host for each workload, and the column value in Fig. 10
(b) was normalized to the total amount of data written from
the host to storage for eachworkload. For example, in the full-
random-write workload of (b), when the SLC region ratio was
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FIGURE 10. Proportion of the data I/O request arriving at the SLC and TLC. The column values were normalized to the total read (a) or
write (b) data size of each workload, which is requested from the host to the storage. The bold line of the box separates the experimental
results by the case of each workload.

10%, the proposed method allocates 29.66% of the total data
written to storage by the host to the SLC and allocates 3.91%
of the total write-requested data to the SLC when the SLC
region ratio was 1%.

Exceptionally, in the latest-random-update-heavy work-
load, when the SLC region ratio was 10%, the proposed
method wrote a smaller amount of data to the SLC than the
other workloads (as shown in Fig. 10 (b)). Hence, the average
I/O latency reduction was small due to the characteristics
of the input key pattern of the latest-random-workload. The
latest-random-workload exhibits strong temporal locality of
the key-value operations [25], and thus frequently updated
’latest’ key-value pairs exist in the upper-level SSTable. As a
result, many compactions occurring in the latest-random-
workload did not cascade down to a lower level, but ended
at an upper level. Therefore, the SLCTargetLevel of the
proposed method in the latest-random workload remained
smaller than in the case of other workloads. In latest-random-
update-heavy and zipf-random-update-heavy workloads,
L1 (level 1) was the highest in terms of the amount of data
written to storage for each level of LSMKV. In the latest-
random-update-heavy, storage writes of L1 SSTables were
about 61% of the total storage writes of SSTables; 10%
in full-random-write, 18% in zipf-random-write and latest-
random-write, and 53% in zipf-random-update-heavy. There-
fore, the data write size to the SLC region significantly
changed depending onwhether L1 SSTables were allocated to
the SLC. In the latest-random-update-heavy workload, when
the SLC region ratio was 10%, the proposed method had
difficulties in determining the appropriate SLCTargetLevel
that enabled the SLC and TLC to wear-out similarly.

Fig. 11 shows the classification of the NAND I/O opera-
tion. The NAND read/write operation of the proposedmethod
is classified as a page copy for GC, requested page read/write

to serve the host-request, and SLC page read/TLC page write
for SLC-to-TLC data kickout (migration). Data migration
between the SLC and TLC of ComboFTL was considered
a copy operation for GC. The x-axis represents the applied
schemes, and the y-axis denotes the ratio of data I/O size of
the threeNAND I/O operations relative to the total NAND I/O
size. Each column of Fig. 11 (a) was normalized to the total
data read size for the SLC region; Fig. 11 (b) was normalized
to the total data write size for the SLC region; and Fig. 11 (c)
was normalized to the total data write size for the TLC region
in each given environment. As a valid page copy in the TLC
GC did not exist, all reads to the TLC region were requested
from the host. Note that the total data size, which is the
basis for normalization of each column, is different for each
column. Even if the workload and SLC region ratio are the
same, the amount of data recorded in each NAND region is
different if the applied scheme is different. For example, in the
zipf-random-update-heavy workload, when the SLC region
ratio is 2%, 19.66% of total SLC read operations were page
copy operations for GC in ComboFTL, and 21.33% of total
SLC reads were page copies for GC in the proposed method.
This appears similar, but the size of the copied data for GC is
about 30 times greater. This is because the proposed method
stored more data in the SLC, than the ComboFTL.

Overall, the SLC GC overhead of the proposed scheme is
higher in the write-only workload than in the update-heavy
workload. This is because in both cases, the key-value pair
with high temporal locality is inserted, but the write-intensity
is different between workloads. The more intensively the KV
pair write is requested, the more frequent and larger com-
paction occurs. Generally, because compaction causes stor-
age writes, the more write requests of the key-value pair are
intensively requested, the more storage writes occur. Herein,
compaction occurs more frequently in the upper-level than in
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FIGURE 11. NAND I/O operation breakdown. Each column was normalized to the total write or read data size for each corresponding
environment: each column in (a) was normalized to the total amount of reads to SLC, (b) was normalized to the total amount of writes to
SLC, and (c) was normalized to the total size of writes to TLC. Since all reads to the TLC were requested from the host (no valid page copy
read for the GC occurred), the graph for the reads to TLC region was not presented from the figure.

the lower-level, and in general, the size of the SLC region is
smaller than the size of the TLC region. Therefore, when the
key-value pair write is intensively requested, the SLC GC of
the proposed method occurs frequently. If the SLCGC victim
block is not fully deleted (e.g., in an environment where com-
paction is performed in multi-threads, the L2 SSTables are
being recorded in the SLC, but the L0 SSTables have not
yet been deleted), the GC overhead increases because of the
valid page copy overhead. As shown in Fig. 11 (a), if the
size of the SLC area is insufficient or the SLC has long-lived
data, the copy overhead of SLC GC is high. Nevertheless,
because the proposed method allocates a larger number of
data writes requested by the host to the SLC than the Com-
boFTL, the average I/O latency can be reduced.

2) RESULTS: DEVICE DURABILITY
The line graph in Fig. 9 shows the device durability of of
the proposed method compared to ComboFTL. The proposed
method increases the device durability of hybridSSD in the
LSMKV operating environment compared to ComboFTL.
Because the amount of data which are requested as small
random-writes are not large in the LSMKV operating envi-
ronment, the amount of host-requested data which were allo-
cated to the SLC region space, in the case of ComboFTL,
was from 0.001 to 0.033 multiplied that of the proposed
scheme. Owing to the SLC under-utilization of ComboFTL,
the SLC NANDs wear less and the TLC NANDs wear more
in ComboFTL than in the proposed method. This causes a

difference in device durability between ComboFTL and the
proposed method.

Generally, the difference in device durability between the
two methods increases as the SLC region ratio increases.
However, the proposed method did not significantly improve
the device durability compared to other workloads in the
latest-random-update-heavy workload, when the SLC region
ratio was 10%. This is for the same reason that the pro-
posed method did not significantly improve the average
I/O latency in the same experimental environment, as men-
tioned in the section above. When SSTables of a specific
level are intensively input to storage (e.g. L1, in case of
the zipf and latest-random-update-heavy workload), the pro-
posed method repeatedly excludes and includes the level
from SLCTargetLevel. If the SSTables of the corresponding
level are stored in the SLC, the SLC is worn out exces-
sively; conversely, if not stored in the SLC, then the SLC is
underutilized.

VII. CONCLUSION
A hybrid SSD-management technique for an LSMKV system
was proposed. The proposed method monitored the level
information of the LSMKVs of the device and estimated
that the lifespan of the data of higher-level components was
shorter than that of the data of lower-level components. This
method stored the data of upper-level components in the SLC
and the data of lower-level components in the TLC. Data that
were included in the same level component were assigned
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to the same SLC block. Subsequently, the proposed method
adjusted the data placement amount of the SLC region such
that the ratio of data written to the SLC and TLC regions was
similar to the durability ratio of the two NAND regions. The
experiment indicated that the proposedmethod can reduce the
average I/O latency and increase the average device durability
by approximately 12.11% and 22.39% compared with the
existing method, respectively.
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