
Received September 21, 2020, accepted October 7, 2020, date of publication October 12, 2020, date of current version October 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3030089

GALRU: A Group-Aware Buffer Management
Scheme for Flash Storage Systems
JAEWOOK KWAK 1, JUNGKEOL LEE 1, DAEYONG LEE 1, JOONYONG JEONG 1,
GYEONGYONG LEE 1, JUNGWOOK CHOI 1, (Member, IEEE),
AND YONG HO SONG1,2, (Member, IEEE)
1Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, South Korea
2Samsung Electronics Company Ltd., Hwaseong 18448, South Korea

Corresponding author: Yong Ho Song (yhsong@hanyang.ac.kr)

This work was supported by the Ministry of Trade, Industry and Energy/Korea Institute for Industrial Economics and Trade
(MOTIE/KEIT) through the Research and Development Program (Developing Processor–Memory–Storage Integrated Architecture for
Low-Power, High-Performance Big Data Servers) under Grant 10077609.

ABSTRACT Many flash storage systems divide input/output (I/O) requests that require large amounts of
data into sub-requests to exploit their internal parallelism. In this case, an I/O request can be completed only
after all sub-requests have been completed. Thus, non-critical sub-requests that are completed quickly do not
affect I/O latency. To efficiently reduce I/O latency, we propose a buffer management scheme that allocates
buffer space by considering the relationship between the processing time of the sub-request and I/O latency.
The proposed scheme prevents non-critical sub-requests from wasting ready-to-use buffer space by avoiding
the situation in which buffer spaces that are and are not ready to use are allocated to an I/O request. To allocate
the same type of buffer space to an I/O request, the proposed scheme first groups sub-requests derived from
the same I/O request and then applies a policy for allocating buffer space in units of sub-request groups.
When the ready-to-use buffer space is insufficient to be allocated to the sub-request group being processed
at a given time, the proposed scheme does not allocate it to the sub-request group but it instead sets it aside
for future I/O requests. The results of the experiments to test the proposed scheme show that it can reduce
I/O latency by up to 24% compared with prevalent buffer management schemes.

INDEX TERMS Buffer management, flash memory, flash translation layer, flash storage system.

I. INTRODUCTION
To compensate for the difference in throughput between
a flash memory device and the host interface, many flash
storage systems use parallelism. The throughput of flash
memory devices is substantially lower than that of the host
interfaces [1]–[3]; consequently, flash memory devices can
limit the throughput of the host interfaces. To overcome this
limitation, the hardware architectures of many flash storage
systems have been designed to utilize internal parallelism
[4]–[6] at the channel, package, die, and plane levels. Many
flash storage systems reconstruct I/O requests to use internal
parallelism because the size of the data requested through I/O
requests is not constant. An I/O request requesting a large
amount of data is divided into sub-requests, depending on the
unit of I/O operation of the flash memory device, and these
sub-requests are processed in parallel.

The associate editor coordinating the review of this manuscript and
approving it for publication was Adnan Abid.

Several studies have reported improvements in the I/O per-
formance of flash storage systems by adjusting the processing
times of the sub-requests. Because an I/O request divided into
sub-requests can be completed only when all sub-requests
have been completed, I/O latency is determined by the sub-
request that has the longest processing time. If the processing
of critical sub-requests that determine I/O latency can be
accelerated by delaying the processing of non-critical sub-
requests that do not affect I/O latency, the I/O performance of
a flash storage system can be improved. Many studies have
reported improvements in I/O schedulers [7], [8] and data
allocation schemes [9]–[11] by adjusting the processing times
of the sub-requests.

Because dirty data significantly affect the processing time
of a sub-request, the buffer space that contains clean data
must be efficiently managed to improve the I/O perfor-
mance of the flash storage system. To prevent the speed of
the host interface from being limited by the slow speed of
the flash interface [12]–[14], a flash storage system uses

185360 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1890-2910
https://orcid.org/0000-0002-1153-9736
https://orcid.org/0000-0003-3092-1057
https://orcid.org/0000-0002-5411-8368
https://orcid.org/0000-0002-8186-573X
https://orcid.org/0000-0002-3075-8694


J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

a high-performance memory device as a buffer to temporarily
store the data transferred between the host system and the
flash memory device. The data accessed in the past remain in
the buffer, and thus the sub-request can use the buffer space
after performing an eviction process that allocates the buffer
space and removes data already present in it. The clean data
can be removed from the buffer immediately; however, dirty
data can be removed only after being written to the flash
memory device. Because the flash memory device takes a
long time for the write operation, the dirtiness of the data
present in the allocated buffer space significantly influences
the processing time of the sub-request. If the buffer space
containing clean data is used for critical sub-requests, I/O
latency can be reduced. It is necessary to prevent the buffer
space containing clean data from being wasted by non-critical
sub-requests because the amount of clean data in the buffer is
not always sufficient.

However, many buffer management schemes [15]–[28]
have limitations in efficiently managing the buffer space
containing clean data because the size of the unit in which
the eviction process is executed is not the same as the size
of the data requested by the I/O request. Buffer management
schemes for flash storage systems manage the buffer space by
dividing it into buffer entries, which are units of the same size
as a page or a block. The value of each entry is determined by
examining such characteristics of the data as access frequency
and dirtiness, but the criteria for determining this value differ
depending on the buffer management scheme. If there are no
free buffer entries, the entry with the lowest value is usually
allocated to a new sub-request. Because the eviction process
is performed in a unit of the buffer entry whenever the free
buffer entry is insufficient for a given sub-request, clean and
dirty data can be stored together in buffer entries allocated
for an I/O request that is the parent of the sub-requests.
In this case, a sub-request assigned with a dirty entry, which
is the buffer entry containing dirty data, is likely to be a
critical sub-request because the flash device takes a long
time for the write operation. On the contrary, a sub-request
assigned with a clean entry, which is the buffer entry con-
taining clean data, is likely to be a non-critical sub-request.
As a result, clean entries can be wasted by non-critical
sub-requests.

We propose a buffer management scheme called the group-
aware least recently used (GALRU) scheme to efficiently
manage clean entries. The basic idea of the GALRU is to
unify the type of buffer entries allocated for I/O requests
as clean or dirty entries. Allocating clean and dirty entries
together to an I/O request is not effective for reducing its
processing latency, as mentioned above. In addition, it can
reduce the probability that the latency of future I/O requests
can be reduced because it reduces the number of the clean
entries that can be used for future I/O requests. The GALRU
increases opportunities for clean entries to be used to reduce
I/O latency by avoiding the allocation of clean and dirty
entries together to an I/O request. It has the following
features:

• The GALRU groups sub-requests derived from the same
I/O request and applies an eviction policy in units of a
sub-request group. The eviction policies can limit the
type of buffer entries to be allocated to sub-requests.
Furthermore, the GALRU applies the same eviction
policy to sub-requests belonging to the same group;
thus, such sub-requests can use the same type of buffer
entries.

• The eviction policy is determined depending on the
number of clean entries. If the number of clean entries
is insufficient to be allocated to the sub-request group
being processed, the GALRU uses an eviction policy
that selects a dirty entry as the victim entry so that clean
entries can be accumulated in the buffer to reduce the
I/O latency of future I/O requests. If the number of clean
entries is sufficient, the GALRU uses an eviction policy
that selects a clean entry as the victim entry to reduce the
latency of the sub-request group being processed.

• Even though the GALRU applies an eviction policy in
units of a sub-request group, it executes the eviction
process in a unit of the buffer entry. Because the unit of
the eviction process is identical to that of many currently
available buffermanagement schemes, the eviction algo-
rithms of the latter can be improved by adopting the
idea of the GALRU without requiring major changes.
Section 5 presents case studies of the application of the
eviction policies of the GALRU to buffer management
schemes.

FIGURE 1. Architecture of flash storage system.

II. BACKGROUND AND RELATED WORK
A. FLASH STORAGE SYSTEM ARCHITECTURE
Figure 1 shows the common hardware components of a flash
storage system [29]–[33]. The processor, which executes the
algorithm for the flash translation layer and the buffer, gen-
erates control words for the host interface controller and the
storage controller to process sub-requests. The host interface
controller, which manages communication between the host
system and the flash storage system, moves data requested by
the sub-request between the host system and the buffer. The
storage controller, which controls the flash memory devices,
moves the data requested by the sub-request between the flash
memory device and the buffer. Many flash storage system
contain flash memory devices constructed using a multi-
channel, multi-way architecture [34], [35] to utilize channel-
level and die-level parallelism.

VOLUME 8, 2020 185361



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

FIGURE 2. Comparison of I/O request handling processes of legacy schemes and GALRU.

B. RELATED WORK
The buffer management scheme has a significant influence
on the performance of the flash storage system because it can
modulate the pattern of access to the flash device. In general,
the buffer management scheme improves the performance of
the flash storage system by storing frequently accessed data
in the buffer for a long time or changing the pattern of write
access of the host system to one suitable for reducing thewrite
amplification factor. The buffer structure of prevalent buffer
management schemes can be classified into three types:
a write-only structure in which only the write buffer exists,
a separate structure in which the read and write buffers are
separated from each other, and an integrated structure in
which the read and write buffers share the buffer space. The
write-only structure [36]–[39] cannot reduce the frequency
of read access to the flash device. The separate structure
[40]–[42] struggles to copewith changes in workload because
it is difficult to dynamically adjust the sizes of the read and
write buffers. In addition, when read andwrite requests access
the same address, it difficult to efficiently manage the buffer
space compared with that in the integrated structure.

Buffer management schemes for integrated structures
[15]–[28], [43] use the dirtiness of the data as a criterion for
selecting the victim entry for the eviction process because the
flash device has a write life limit and takes a long time for
the write operation. To reduce the frequency of flash write
operations, the CFLRU [15] contained an eviction policy
based on the clean-first method, which involves selecting a
clean entry over a dirty entry as the victim entry of the evic-
tion process. Many buffer management schemes [16]–[28]
have since featured eviction policies based on the clean-first
method. To improve the buffer hit ratio, they mainly use an

eviction policy that integrates the clean-first method with a
cold-first method. The cold-first method selects a cold entry
over a dirty entry as the victim entry of the eviction process;
the cold entry contains data that are unlikely to be accessed
again, and the dirty entry contains data that are likely to be
accessed again. Even though the criteria for determining the
value differ depending on the buffer management scheme,
the schemes usually assign low values to a cold entry or a
clean entry, and select the one with the lowest value as the
victim entry of the eviction process. They usually employ
page-level buffer entries because the accuracy of classify-
ing the data improves as the granularity of management
decreases.

III. MOTIVATION
Buffermanagement schemes for integrated structures are lim-
ited in the extent to which they can improve the performance
of the flash storage system due to the eviction process in
units of buffer entry. Case 0 in Figure 2 shows the problem
encountered by buffer management schemes for integrated
structures. As mentioned above, they allocate the buffer entry
with the lowest value to a new sub-request. If clean and dirty
entries are mixed among low-value buffer entries, clean and
dirty entries can be allocated together for an I/O request
as shown in Case 0. I/O operations for the sub-requests
A-0 and B-0, which use dirty entries, are delayed by the
eviction process for writing dirty data to the flash device,
whereas I/O operations for the sub-requests A-1 and B-1,
which use clean entries, are completed early. As a result, I/O
latency (t0 and t1) is determined by the sub-requests A-0 and
B-0 using the dirty entry, and clean entries do not contribute
to reducing I/O latency.

185362 VOLUME 8, 2020



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

The GALRU is proposed to efficiently manage clean
entries to reduce I/O latency. It can create an opportunity for a
clean entry, which was previously used by a non-critical sub-
request of a preceding I/O request, to be used for a critical
sub-request of a subsequent I/O request. Case 1 of Figure 2
shows the basic idea of the GALRU. It allocates buffer entry 3
to sub-request A-1, instead of buffer entry 4, and allocates
buffer entry 4 to sub-request B-0 instead of buffer entry 3,
to unify the types of buffer entries allocated for I/O requests.
As a result, even though the I/O latencies of I/O request A in
Case 0 (t0) and Case 1 (t2) are the same, the I/O latency (t3)
of I/O request B in Case 1 is less than the I/O latency (t1) of
I/O request B in Case 0.

IV. PROPOSED GALRU SCHEME
The GALRU is a buffer management scheme that applies
eviction policies in units of a sub-request (SR) group. The
SR group contains sub-requests derived from the same I/O
request. The GALRU processes an SR group by selecting one
of three eviction policies. The eviction policy of the GALRU
determines the victim entry of the eviction process depending
on the dirtiness of the buffer entry. Because sub-requests
belonging to the same group are processed by the same
eviction policy, the dirtiness of buffer entries allocated for I/O
requests are unified. Details of the GALRU are described in
the sub-sections below.

A. BUFFER STRUCTURE
Figure 3 shows the buffer structure of the GALRU. It man-
ages the buffer by dividing it into a common region and a
victim region. The common region is used to manage recently
accessed data, and the victim region is used for managing
data pushed out of the common region. Data in the buffer are
managed in units of the page-level buffer entry. The GALRU
maintains the sizes of the common region and victim region.

FIGURE 3. Buffer structure of the GALRU.

The buffer entries of the common region are managed by
a common list that sorts them using the LRU algorithm. The
buffer entry for data accessed by a new sub-request is moved
to the most recently used (MRU) location of the common list.

If the buffer entry is input from outside the common region,
the entry of the LRU location of the common list is moved to
the victim region to maintain the size of the common region.
This process is called region migration.

The victim region consists of two lists that manage differ-
ent types of buffer entries. The dirty list, which is for dirty
entries, and the clean list, which is for clean entries, use the
LRU algorithm to sort their buffer entries. The buffer entry
moved by region migration is entered into one of the two lists
depending on its dirtiness. The victim entry of the eviction
process is selected from among buffer entries in the victim
region and moved to the common region after being used by
a new sub-request.

B. EVICTION POLICY
Before performing the eviction process for an SR group,
the GALRU selects one of the following three policies: clean
only (CO), dirty only (DO), or mix available (MA). The
CO policy selects the LRU buffer entry of the clean list as
victim entry, the DO policy selects the LRU buffer entry of
the dirty list as victim entry, and the MA policy selects the
oldest among the LRU buffer entries of each list as victim
entry. Because the GALRU applies the same eviction policy
to sub-requests belonging to the same SR group, the dirtiness
of buffer entries allocated to an I/O request is unified except
when the MA policy is applied.

The GALRU selects an eviction policy by comparing the
size of an SR group with the number of clean entries in the
victim region. The size of an SR group refers to the sum of
data sizes requested by sub-requests of the group. In other
words, the size of an SR group is identical to the size of data
requested by the I/O request. To unify the dirtiness of buffer
entries allocated to an SR group, the number of clean or dirty
entries in the victim region should be greater than the size of
the SR group. The GALRU uses the CO policy only if the
size of the clean list is larger than that of the given SR group.
Likewise, it uses the DO policy only if the size of the dirty list
is larger than that of the given SR group. Because the eviction
process of a clean entry is faster than that of a dirty entry,
the GALRU uses the CO policy when the size of each list is
larger than that of the given SR group. Furthermore, it uses
the MA policy only if the size of each list is smaller than that
of the given SR group.

C. SR GROUP DISTINCTION
The GALRU uses an identifier (RID) for the I/O request
to classify sub-requests belonging to different SR groups.
Numerous flash storage systems insert an RID into a sub-
request to complete the I/O request. The flash storage system
can determine the operating status of the I/O request by
checking the RID of the completed sub-requests. Because an
RID contains unique information pertaining to an I/O request,
it is useful for distinguishing SR groups. Figure 4 shows
an example in which the GALRU distinguishes among SR
groups. It determines that sub-requests containing the same
RID belong to the same SR group.

VOLUME 8, 2020 185363



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

FIGURE 4. Example of SR group distinction.

D. EVICTION POLICY REGISTER
To apply the same eviction policy to sub-requests belonging
to the same SR group, the GALRU uses an eviction policy
register (EPR) to maintain information regarding the eviction
process. The EPR stores the RID and eviction policy identifier
(PID) of the SR group being processed. Furthermore, the PID
can be set to one of four states: reset, CO, DO, andMA. Reset
indicates that the eviction policy has not been determined
yet. When the GALRU starts processing a new SR group,
it updates the RID of the EPR with the RID of the new
SR group and sets the PID of the EPR to reset. It selects a
new eviction policy only when the PID of the EPR is reset.
Because the PID of the EPR is retained until a new SR group
is processed, the GALRU can apply the same eviction policy
to sub-requests belonging to the same SR group by checking
the PID of the EPR.

E. GALRU ALGORITHM
Algorithm 1 shows the pseudocode of the sub-request han-
dling process. This process is performed in two stages. In the
first stage, the GALRU compares the RID of the sub-request
with that of the EPR to determine whether the request belongs
to an SR group being processed (lines 1–3). If the RIDs are
the same, the GALRU retains the information of the EPR.
If the RIDs are not the same, it updates the information of
the EPR for the new SR group (line 2). In the second step,
the GALRU reorganizes the buffer following several steps
that are determined depending on the location of the data
requested by the sub-request. If the requested data are in the
common region, the GALRU performs a list sort, where this
moves the buffer entry storing the requested data to the MRU
location of the common list (line 6). If the requested data are
in the victim region, the GALRU performs a list sort and
region migration, where this keeps the size of each region
constant (lines 8–13). If the requested data do not exist in
the buffer, the GALRU performs a list sort, region migration,
and the eviction process, which allocates buffer entry for the
requested data (lines 16–28).

Algorithm 2 shows the process of victim selection. This
process is performed in two stages. In the first stage,
the GALRU checks the PID of the EPR to determine whether
a new eviction policy should be chosen (lines 1–9). It selects
a new eviction policy only if the PID is reset. If the PID
is not reset, the GALRU keeps the PID to use the eviction

Algorithm 1 Sub-Request Handling Process
CR; common region; VR: victim region; CML: common list
of CR; CL: clean list of VR; DL: dirty list of VR; EPR:
eviction policy register; LPA: logical page address; D(X):
data of X; E(X): buffer entry of X; RID: ID of I/O request;
victim: victim entry
Input: LPA, RID
Output: Reference of E(D(LPA))
1: if RID != RID of EPR then
2: Reset EPR and update RID of EPR;
3: end if
4: if D(LPA) ∈ buffer then
5: if D(LPA) ∈ CR then
6: Move E(D(LPA)) to the MRU of CML;
7: else
8: Move E(D(LPA)) to the MRU of CML;
9: if E(LRU of CML) are the clean data then
10: Move E(LRU of CML) to the MRU of CL;
11: else
12: Move E(LRU of CML) to the MRU of DL;
13: end if
14: end if
15: else
16: victim← Victim_Selection()
17: if D(victim) are the dirty data then
18: Evict D(victim) to the flash memory device;
19: else
20: Discard D(victim);
21: end if
22: Store D(LPA) to victim
23: Insert E(D(LPA)) into the MRU of CML;
24: if E(LRU of CML) are the clean data then
25: Move E(LRU of CML) to the MRU of CL;
26: else
27: Move E(LRU of CML) to the MRU of DL;
28: end if
29: end if
30: return E(D(LPA));

policy chosen for previous sub-requests. In the second stage,
it selects the victim entry according to the eviction policy
determined in the first stage (lines 10–21).

F. COMPLEXITY OF GALRU ALGORITHM
Because the GALRU uses an algorithm based on the LRU
algorithm, this section analyzes the additional space and time
complexities that the GALRU algorithm incurs compared
with the LRU algorithm. The additional space complexity of
the GALRU is generated by the EPR and additional LRU
lists. Compared with the LRU algorithm, metadata for the
two LRU lists is added because the GALRU uses three LRU
lists. Because the sizes of the metadata for the EPR and LRU
lists are constant, the additional space complexity is O(1).
The additional time complexity of the GALRU is incurred

185364 VOLUME 8, 2020



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

Algorithm 2 Victim Selection
CR; common region; VR: victim region; CL: clean list of VR;
DL: dirty list of VR; EPR: eviction policy register; CO: clean-
only eviction policy; DO: dirty-only eviction policy; MA:
mix-available eviction policy; E(X): buffer entry of X; RID:
ID of I/O request; victim: victim entry
Input: RID
Output: Reference of victim
1: if PID of EPR == reset then
2: if Size of the SR group of RID ≤ size of CL then
3: Set PID of EPR to CO;
4: else if Size of the SR group of RID≤ size of DL then
5: Set PID of EPR to DO;
6: else
7: Set PID of EPR to MA;
8: end if
9: end if

10: if PID of EPR == CO then
11: victim← E(LRU of CL);
12: else if PID of EPR == DO then
13: victim← E(LRU of DL);
14: else
15: if E(LRU of CL) are older than E(LRU of DL) then
16: victim← E(LRU of CL);
17: else
18: victim← E(LRU of DL);
19: end if
20: end if
21: return victim;

by the eviction process. Compared with the LRU algorithm,
the GALRU requires additional operations for checking the
EPR and selecting the victim entry. Because the size of
the metadata for the EPR and the number of candidates for
the victim entry (LRU buffer entry of the clean or dirty list)
are constant, the additional time complexity is O(1).

V. CASE STUDY
This section presents case studies based on the ideas of the
GALRU to improve prevalent buffer management schemes.
The eviction policy applied in units of the SR group can be
used to overcome the limitation of current buffer management
schemes. The subsections below present case studies that
apply the victim selection algorithm of the GALRU to the
DPW-LRU [28] and PT-LRU [22]. The impact of each case
on the performance of the flash storage system is described
in Section 6.

A. DPWGA-LRU
The DPWGA-LRU is a buffer management scheme that
applies the victim selection algorithm of the GALRU to the
eviction process of the DPW-LRU. The DPW-LRU divides
the buffer into two regions: a working region and an exchange
region. The working region plays a role similar to that of

the common region in the GALRU, and the exchange region
acts similarly to the victim region in the GALRU. The page
weight, which is used to select the target entry for region
migration, reflects the characteristics of the data, such as the
interval of temporal locality, cost of eviction, and recency.
Therefore, the DPW-LRU can improve the buffer hit ratio
and reduce the number of flash write operations. However,
the DPW-LRU has a limitation whereby non-critical sub-
requests lead to a waste of clean entries because it selects
the victim entry by using the LRU algorithm. To improve
the eviction process of the DPW-LRU, the DPWGA-LRU
divides the exchange region into a clean list and a dirty list,
and replaces the LRU algorithm with the victim selection
algorithm of the GALRU. Algorithm 3 is the eviction algo-
rithm of the DPWGA-LRU. Except for the second and third
lines, Algorithm 3 is identical to the eviction algorithm of the
DPW-LRU.

Algorithm 3 Eviction Process of DPWGA-LRU
WR: working region; VR: exchange region; R: selected
region; Pweight : weight of a page; Mapweight : weight map of
pages;
Input: R
Output: reference of victim;
1: if R ∈ ER then
2: victim← Victim_Selection_of_GALRU();
3: return victim
4: else
5: Run the DPW-LRU strategy in WR
6: for pages ∈ [0, w] of WR do
7: Pweight ← DPW(page);
8: Mapweight .put(page, Pweight );
9: end for
10: for page ∈ Mapweight do
11: if page < Wmin then
12: victim← page;
13: Wmin← Mapweight .get(page);
14: end if
15: end for
16: return victim;
17: end if

B. PTGA-LRU
The PTGA-LRU is a buffer management scheme that applies
the victim selection algorithm of the GALRU to the eviction
process of the PT-LRU. The PT-LRU manages the buffer by
dividing it into three lists: a cold clean linked list (LC), a cold
dirty linked list (LD), and a mixed LRU linked list (LH).
The LC, LD, and LH lists play roles similar to those of the
clean, dirty, and common lists in the GALRU, respectively.
The PT-LRU can reduce the number of flash write operations
because it can create a situation in which the victim entries
are selected from the LH list, even if the LD list is not
empty, by using a probability-based algorithm. However, the

VOLUME 8, 2020 185365



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

Algorithm 4 Eviction Process of PTGA-LRU
LC; cold clean queue; LD: cold dirty queue; LH: mixed
region; E(X): buffer entry of X; RID: ID of I/O request;
victim: victim entry
Input: RID
Output: Reference victim;
1: if PID of EPR == reset then
2: if Size of the SR group of RID ≤ size of LC then
3: Set PID of EPR to CO;
4: else if Size of the SR group of RID≤ size of LD then
5: Set PID of EPR to DO;
6: else
7: Set PID of EPR to MA;
8: end if
9: end if

10: if PID of EPR == CO then
11: victim← E(LRU of LC);
12: else if PID of EPR == DO then
13: victim← E(LRU of LD);
14: else
15: if LC is not NULL then
16: victim← E(LRU of LC);
17: else
18: Calculate Replace-Flag by pro; //(0.5<pro<1)
19: if Replace-Flag == 1 and LD is not NULL then
20: victim← E(LRU of LD);
21: else
22: victim← PT-LRU_EvictHot();
23: end if
24: end if
25: end if
26: return victim;

PT-LRU cannot prevent the problem whereby non-critical
sub-requests waste clean entries because it prefers to use the
LC list over other lists for selecting the victim entry when it
is not empty. To apply the victim selection algorithm of the
GALRU to the eviction process of the PT-LRU, the PTGA-
LRU modifies the eviction policies of the GALRU. The CO
policy selects the LRU buffer entry of the LC list as victim
entry, the DO policy selects the LRU buffer entry of the
LD list as the victim entry, and the MA policy selects the
victim entry using the eviction algorithm of the PT-LRU.
Algorithm 4 shows the eviction process of the PTGA-LRU.
Notably, the PTGA-LRU replaces the eviction algorithm of
the PT-LRU, that is, lines 8–15 of the page management
algorithm of the PT-LRU, with Algorithm 4. Furthermore,
lines 15–24 of Algorithm 4 are the same as the eviction
algorithm of the PT-LRU.

VI. PERFORMANCE EVALUATION
In this section, the impact of the GALRU on the performance
of a flash storage system is analyzed using a trace-driven
simulator. The GALRU is compared with the LRU, CFLRU,

PT-LRU, and DPW-LRU by conducting several experiments.
The PTGA-LRU and the DPWGA-LRU, mentioned in the
above case studies, were compared with the PT-LRU and
the DPW-LRU, respectively. To analyze the impact of buffer
management schemes on the performance of a flash storage
system that uses internal parallelism, the allocation pattern of
buffer entries was measured in addition to the buffer hit ratio
and the number of flash write operations.

A. EXPERIMENTAL SETUP
An in-house simulator that supports the simulation of multi-
channel, multi-way architectures was used for the experi-
ments. Even though Flash-DBsim [44] has been used for
experiments on many buffer management schemes, it is
not suitable for experiments with the GALRU because it
does not support internal parallelism. To investigate the
impact of the buffer management schemes on I/O latency
when sub-requests are processed in parallel, we implemented
a trace-driven in-house simulator based on Flash-DBsim
to simulate various multi-channel, multi-way architectures.
Real I/O traces generated by different types of applications
were used for the experiments. Table 1 shows information on
the I/O traces. Financial1 and Websearch1 were collected by
the Storage Performance Council (SPC) [45]. The other trace
files were collected through research [46] related to the I/O
characteristics of smartphones.

TABLE 1. I/O trace specifications.

TABLE 2. Simulation settings.

Table 2 shows the settings used by the in-house simulator.
Settings related to latency and size were the same as those
used in the PT-LRU [22] and the DPW-LRU [28]. The other
settings were added to simulate the multi-channel, multi-way
architecture. The transfer speed of the channel data bus was
800 MT/s, which is the maximum speed of the data interface
supported by ONFI 4.0 [12]. The round-robin method was
used as an arbitration policy in case of competition between
ways of using the channel data bus. The simulator did not
support multi-plane operation.

185366 VOLUME 8, 2020



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

Themain settings used by each buffer management scheme
are as follows: The LRU was implemented to manage all
data belonging to the buffer using the LRU algorithm. The
CFLRU used half of the buffer as a clean-first window, and
the PT-LRU and PTGA-LRU set the default value of pro to
0.8, which was the most suitable for reducing the number of
write operations in experiments on the PT-LRU [22]. Here,
pro is the factor that determines the probability of evicting
cold and dirty data. The DPW-LRU and DPWGA-LRU used
half of the buffer as the working region and the other half as
the exchange region. The GALRU used half of the buffer as
the common region and the other half as the victim region.

B. I/O LATENCY
1) IMPACT OF INTERNAL PARALLELISM ON I/O LATENCY
This section analyzes the impact of the GALRU on I/O
latency depending on whether internal parallelism is used.
The GALRU was designed based on the assumption that a
sub-request using a dirty entry is likely to become a criti-
cal sub-request. This assumption was established when sub-
requests were processed in parallel. When a flash storage
system did not utilize internal parallelism, the sub-request
that was processed last became a critical sub-request because
they were processed sequentially.

FIGURE 5. Normalized I/O latency: (a) one-channel, one-way
configuration; (b) eight-channel, eight-way configuration.

Figure 5 shows the normalized I/O latency. The I/O latency
of each scheme was normalized by the I/O latency of the
LRU, and the size of the buffer was 4 MB. Because the
simulator did not support plane-level parallelism, the one-
channel, one-way configuration did not utilize internal par-
allelism. In this configuration, because improving the buffer
hit ratio or reducing the number of flash write operations

was important for reducing I/O latency, the GALRU was
not effective in reducing the I/O latency compared with the
other schemes considered. The results of measurement of
the buffer hit ratio and number of flash write operations are
described in Sections 6-D and 6-E, respectively. In the eight-
channel, eight-way configuration that could adequately use
internal parallelism, the I/O latency of the GALRUwas lower
than that of the other schemes in most cases. Compared with
those of the LRU, CFLRU, PT-LRU, and DPW-LRU, the I/O
latencies of the GALRU were 15.5%, 13.7%, 24.0%, and
11.2% lower, respectively. Because theGALRU improved the
likelihood that clean entries, which were wasted by the other
schemes, would be used to reduce I/O latency, it yielded better
performance than the other schemes. To analyze changes
in the allocation pattern of clean entries, we classified I/O
requests depending on the dirtiness of the allocated buffer
entries. The results are described in Section 6-C.

Moreover, the basic idea of GALRU was effective in
improving the schemes considered above. In the eight-
channel, eight-way configuration, the I/O latencies of
GALRU-based schemes introduced in Section 5 was lower
than those of the PT-LRU and the DPW-LRU. The I/O
latency of the PTGA-LRU was 20.1% lower than that of
the PT-LRU, and the I/O latency of the DPWGA-LRU was
9.5% lower than that of the DPW-LRU. The application of
GALRU does not significantly affect the eviction policy of
these schemes because it can be applied to them without
major modifications, as explained in Section 5. Therefore,
clean entries were managed efficiently without significant
changes to the buffer hit ratio or the number of flash write
operations. As a result, the PTGA-LRU and DPWGA-LRU
were able to further reduce I/O latency over the PT-LRU and
DPW-LRU, respectively.

2) IMPACT OF BUFFER SIZE ON I/O LATENCY
Figure 6 shows the normalized I/O latency of the eight-
channel, eight-way configuration using buffers of various
sizes. Regardless of the size of the buffer, the I/O latencies
of the GALRU and GALRU-based schemes were lower than
those of the other schemes. The GALRU reduced I/O latency
compared with the average I/O latency of the four schemes
considered: 16.0% for a 1 MB buffer, 16.1% for a 2 MB
buffer, 16.1% for a 4 MB buffer, and 15.0% for an 8 MB
buffer. The PTGA-LRU reduced I/O latency compared with
the average I/O latency of the PT-LRU as well: 18.2% for
a 1 MB buffer, 20.0% for a 2 MB buffer, 18.1% for a
4 MB buffer, and 17.8% for an 8 MB buffer. The DPWGA-
LRU reduced the I/O latency compared with the average I/O
latency of DPW-LRU by 14.0% for a 1 MB buffer, 12.0% for
a 2 MB buffer, 9.7% for a 4 MB buffer, and 9.8% for an 8MB
buffer.

3) IMPACT OF WORKLOAD INTENSITY ON I/O LATENCY
This section analyzes the impact of the GALRU on I/O
latency according to the intensity of the workload. When
the intensity of the workload was high, many sub-requests

VOLUME 8, 2020 185367



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

FIGURE 6. Normalized I/O latency of eight-channel, eight-way configuration: (a) 1 MB buffer; (b) 2 MB buffer; (c) 4 MB buffer; (d) 8 MB buffer.

were accumulated in request queues inside the flash storage
system owing to the slow operation of the flash device. In this
case, because the impact of the preceding sub-request on
the processing time of the subsequent sub-request increased,
it was difficult to predict the sub-request that was critical. The
impact of the GALRU on I/O latency decreased as the inten-
sity of the workload increased because the possibility that a
sub-request using a dirty entry became a critical sub-request
decreased. To analyze the impact of the GALRU in such
cases, we measured I/O latency by ignoring the timestamp
of the I/O trace files and adjusting the number of outstanding
I/O requests.

FIGURE 7. Normalized I/O latency of eight-channel, eight-way
configuration.

Figure 7 shows the normalized I/O latency depending on
the number of outstanding I/O requests. The I/O latency of
the GALRU was normalized by that of the LRU, and the
size of the buffer was 4 MB. As the number of outstanding
I/O requests increased, the impact of the GALRU in terms
of reducing I/O latency decreased. The I/O latencies of the

GALRU were 9.8%, 5.3%, 2.7%, and 2.1% lower than those
of the LRU when the numbers of outstanding I/O requests
were 4, 8, 16, and 32, respectively. Considering that the
intensity of the workload on systems [47], [48] is kept low
in practice for a considerable amount of time, the GALRU is
sufficiently effective in improving performance.

C. ALLOCATION PATTERN OF BUFFER ENTRIES
To analyze changes in the allocation pattern of buffer entries,
we classified I/O requests depending on the type of allocated
buffer entries. Table 3 shows features of each type of I/O
request. The number of each was measured by processing all
I/O requests generated by the workloads and classifying the
results.

TABLE 3. Types of I/O request.

Figure 8 shows the ratio of each type of I/O request to
total I/O requests when the flash storage system used a
4 MB buffer. The GALRU reduced the number of MD-type
I/O requests by 5.64% on average compared with the four

185368 VOLUME 8, 2020



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

FIGURE 8. I/O request type for various workloads: (a) Financial1;
(b) Websearch1; (c) Messaging; (d) Music; (e) Booting; (f) Amazon;
(g) RadioWebBrowse.

schemes considered. The PTGA-LRU reduced the number of
MD-type I/O requests by 7.36% on average compared with
the PT-LRU, and the DPWGA-LRU reduced the number of
MD-type I/O requests by 4.12% on average compared with
the DPW-LRU. Because the eviction process for writing dirty
data to the flash device delayed the I/O operations for the
requested data, the I/O latency of the MD-type I/O request
was likely to be higher than those of the FH-type and the
MC-type I/O requests. If the number of the MD-type I/O
requests decreased, that of the FH-type or the MC-type I/O
requests increased. As a result, as the number of the MD-type
I/O requests decreases, the average I/O latency decreases
because the FH-type or MC-type I/O requests have a lower
latency than the MD-type I/O request.

Because of the difference in size between the types of
I/O requests, the GALRU was able to reduce the number of
MD-type I/O requests to a greater extent than expected. Even
though it is designed to reduce the number of the MDC-type
I/O requests, the number of MDD-type I/O requests was

FIGURE 9. I/O request size for various workloads: (a) Financial1;
(b) Websearch1; (c) Messaging; (d) Music; (e) Booting; (f) Amazon;
(g) RadioWebBrowse.

also reduced as shown in Figure 8. This result is related to
the difference in size between I/O request types. The size
of the I/O request refers to the size of data requested by
the given I/O request. Figure 9 shows the size of each type
of I/O request. The size of the MDC-type I/O request was
larger than that of the other types considered. This means
that more MC-type I/O requests could be generated than
the reduced number of MDC-type I/O requests. Most of
the increased MC-type I/O requests underwent conversion
from MDD-type I/O requests. Except for the read-dominant
Websearch1workload, the size of theMDD-type I/O requests
of the GALRU was greater than that of the four schemes con-
sidered. Furthermore, the size of the MC-type I/O requests of
the GALRU was smaller than those of these schemes. This
result means that the GALRU tended to convert large MDC-
type I/O requests into MDD-type I/O requests and small
MDD-type I/O requests into MC-type I/O requests.

Figure 10 shows the ratio of each type of I/O
request to total I/O requests for buffers of various sizes.

VOLUME 8, 2020 185369



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

FIGURE 10. I/O request type for Financial1 workload: (a) 1 MB buffer;
(b) 2 MB buffer; (c) 4 MB buffer; (d) 8 MB buffer.

FIGURE 11. Buffer hit ratio: (a) 1 MB buffer; (b) 2 MB buffer; (c) 4 MB
buffer; (d) 8 MB buffer.

Regardless of buffer size, the GALRU and GALRU-based
schemes reduced the number of MD-type I/O requests. The
GALRU reduced them by 5.23% for a 1 MB buffer, 4.67%
for a 2 MB buffer, 4.20% for a 4 MB buffer, and 3.59% for an
8 MB buffer, compared with the other schemes on average.
As the size of the buffer increased, the number of FH-type
I/O requests increased because the buffer hit ratio increased.
Conversely, as the size of the buffer increased, the number of
MD-type I/O requests that could be reduced by the GALRU
decreased. The PTGA-LRU reduced the number of MD-type
I/O requests of the PT-LRU: 8.02% for the 1 MB buffer,

7.59% for the 2 MB buffer, 7.30% for the 4 MB buffer, and
7.03% for the 8 MB buffer. The DPWGA-LRU reduced the
number of MD-type I/O requests of the DPW-LRU: 7.88%
for the 1 MB buffer, 6.97% for the 2 MB buffer, 6.22% for
the 4 MB buffer, and 5.37% for the 8 MB buffer.

D. BUFFER HIT RATIO
Figure 11 shows the buffer hit ratio for buffers of various
sizes. As the size of the buffer increased, the buffer hit
ratio increased because data with a high temporal locality
remained in the buffer for a long time. The buffer hit ratio of
the GALRU was lower than that of other schemes in several
cases because the GALRU could evict hot data to leave clean
data in the buffer. However, it did not significantly reduce the
buffer hit ratio because the situation wherein dirty data were
evicted instead of clean data did not occur often. For example,
in the 4 MB buffer, the buffer hit ratio of the GALRU was
0.79% lower on average than that of the DPW-LRU, which
had the highest buffer hit ratio. However, as confirmed in
Sections 6-B and 6-C, the GALRU was more effective in
reducing the I/O latency of a flash storage system that utilized
internal parallelism than other schemes with higher buffer hit
ratios because the allocation pattern of buffer entries had a
significant effect on I/O latency.

FIGURE 12. Number of flash write operations: (a) 1 MB buffer; (b) 2 MB
buffer; (c) 4 MB buffer; (d) 8 MB buffer.

E. NUMBER OF FLASH WRITE OPERATIONS
Figure 12 shows the normalized number of flash write oper-
ations based on the number of flash write operations of the
LRU for buffers of various sizes. As the size of the buffer

185370 VOLUME 8, 2020



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

increased, the number of flash write operations decreased
because dirty data remained in the buffer for a longer time.
Even though all schemes, except for the LRU, employed
the clean-first method, the scheme with the lowest number
of flash write operations differed depending on the work-
load because of differences in the eviction algorithms used.
Because the GALRU did not use the clean-first method when
the amount of clean data in the buffer was insufficient, its
number of flash write operations was higher than those of
other schemes in several cases. However, as confirmed in
Sections 6-B and 6-C, the GALRU was more effective in
reducing the I/O latency of a flash storage system that utilizes
internal parallelism than other schemes with a smaller num-
ber of flash write operations because the allocation pattern of
buffer entries had a large effect on I/O latency.

VII. CONCLUSION
To improve the I/O performance of flash storage systems that
utilize internal parallelism,we proposed a buffermanagement
scheme called the GALRU. It applies an eviction policy in
units of sub-request groups. The GALRU avoids allocating
buffer space that contains both clean data and dirty data to
an I/O request to efficiently use the space that contains clean
data, where this helps reduce I/O latency. The GALRU can
unify the dirtiness of data contained in the buffer space such
that it is allocated to an I/O request, because it groups sub-
requests derived from the same I/O request and applies the
same eviction policy to sub-requests belonging to the same
group. To analyze the impact of the GALRU on I/O latency,
we classified I/O requests into several types according to the
results of the eviction process. The results of experiments
showed that the GALRU increases the number of I/O requests
with low latency by reducing the number of requests that evict
both clean and dirty data from the buffer.

REFERENCES

[1] NVMExpress. (2019).NvmExpress Specification 1.4. [Online]. Available:
http://nvmexpress.org/resources/specifications/

[2] SATA-IO. (2018). Serial Ata Revision 3.4 Specification. [Online]. Avail-
able: https://sata-io.org/developers/purchase-specification

[3] JEDEC. (2020). Universal Flash Storage (Ufs), Version 3.1. [Online].
Available: https://www.jedec.org/standards-documents/focus/flash/
universal-flash-s%torage-ufs

[4] S.-y. Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee, ‘‘Exploiting internal
parallelism of flash-based SSDs,’’ IEEE Comput. Archit. Lett., vol. 9, no. 1,
pp. 9–12, Jan. 2010.

[5] F. Chen, R. Lee, and X. Zhang, ‘‘Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data
processing,’’ in Proc. IEEE 17th Int. Symp. High Perform. Comput. Archit.,
Feb. 2011, pp. 266–277.

[6] F. Chen, B. Hou, and R. Lee, ‘‘Internal parallelism of flash memory-based
solid-state drives,’’ACMTrans. Storage, vol. 12, no. 3, pp. 1–39, Jun. 2016.

[7] N. Elyasi, M. Arjomand, A. Sivasubramaniam,M. T. Kandemir, C. R. Das,
and M. Jung, ‘‘Exploiting intra-request slack to improve SSD perfor-
mance,’’ in Proc. 32nd Int. Conf. Architectural Support Program. Lang.
Operating Syst., Apr. 2017, pp. 375–388.

[8] J. Cui, Y. Zhang,W.Wu, J. Yang, Y.Wang, and J. Huang, ‘‘DLV: Exploiting
device level latency variations for performance improvement on flash
memory storage systems,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 37, no. 8, pp. 1546–1559, Aug. 2018.

[9] W. Zhang, Q. Cao, H. Jiang, and J. Yao, ‘‘Improving overall performance of
TLC SSD by exploiting dissimilarity of flash pages,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 2, pp. 332–346, Feb. 2020.

[10] S. Nie, Y. Zhang, W. Wu, C. Zhang, and J. Yang, ‘‘DIR: Dynamic
request interleaving for improving the read performance of aged SSDs,’’ in
Proc. IEEE Non-Volatile Memory Syst. Appl. Symp. (NVMSA), Aug. 2019,
pp. 1–6.

[11] W. Zhang, Q. Cao, H. Jiang, and J. Yao, ‘‘PA-SSD: A page-type aware
TLC SSD for improved Write/Read performance and storage efficiency,’’
in Proc. Int. Conf. Supercomputing, Jun. 2018, pp. 22–32.

[12] Open NAND Flash Interface Working Group. (2014). Onfi 4.0 Specifica-
tion. [Online]. Available: http://www.onfi.org/specifications

[13] M. Abraham, ‘‘Nand flash architecture and specification trends,’’ Flash
Memory Summit, vol. 4, pp. 1–18, Aug. 2012.

[14] Y. Li and K. N. Quader, ‘‘NAND flash memory: Challenges and opportu-
nities,’’ Computer, vol. 46, no. 8, pp. 23–29, Aug. 2013.

[15] S.-Y. Park, D. Jung, J.-U. Kang, J.-S. Kim, and J. Lee, ‘‘CFLRU: A
replacement algorithm for flash memory,’’ in Proc. Int. Conf. Compil.,
Archit. Synth. Embedded Syst. CASES, 2006, pp. 234–241.

[16] Y.-S. Yoo, H. Lee, Y. Ryu, and H. Bahn, ‘‘Page replacement algorithms for
NAND flash memory storages,’’ in Proc. Int. Conf. Comput. Sci. Its Appl.
Berlin, Germany: Springer, 2007, pp. 201–212.

[17] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha, ‘‘LRU-WSR: Integration
of LRU and writes sequence reordering for flash memory,’’ IEEE Trans.
Consum. Electron., vol. 54, no. 3, pp. 1215–1223, Aug. 2008.

[18] Z. Li, P. Jin, X. Su, K. Cui, and L. Yue, ‘‘CCF-LRU: A new buffer
replacement algorithm for flashmemory,’’ IEEE Trans. Consum. Electron.,
vol. 55, no. 3, pp. 1351–1359, Aug. 2009.

[19] P. Jin, Y. Ou, T. Härder, and Z. Li, ‘‘AD-LRU: An efficient buffer replace-
ment algorithm for flash-based databases,’’ Data Knowl. Eng., vol. 72,
pp. 83–102, Feb. 2012.

[20] M. Lin, S. Chen, and Z. Zhou, ‘‘An efficient page replacement algorithm
for NAND flash memory,’’ IEEE Trans. Consum. Electron., vol. 59, no. 4,
pp. 779–785, Nov. 2013.

[21] M. Lin, S. Chen, G. Wang, and T. Wu, ‘‘HDC: An adaptive buffer
replacement algorithm for NAND flash memory-based databases,’’ Optik,
vol. 125, no. 3, pp. 1167–1173, Feb. 2014.

[22] J. Cui, W. Wu, Y. Wang, and Z. Duan, ‘‘PT-LRU: A probabilistic page
replacement algorithm for NAND flash-based consumer electronics,’’
IEEE Trans. Consum. Electron., vol. 60, no. 4, pp. 614–622, Nov. 2014.

[23] C. Li, D. Feng, Y. Hua, W. Xia, and F. Wang, ‘‘Gasa: A new page
replacement algorithm for NAND flash memory,’’ in Proc. IEEE Int. Conf.
Netw., Archit. Storage (NAS), Aug. 2016, pp. 1–9.

[24] M. Lin, Z. Yao, and T. Huang, ‘‘F-LRU: An efficient buffer replace-
ment algorithm for NAND flash-based databases,’’ Optik, vol. 127, no. 2,
pp. 663–667, Jan. 2016.

[25] J. He, G. Jia, G. Han, H. Wang, and X. Yang, ‘‘Locality-aware replacement
algorithm in flash memory to optimize cloud computing for smart factory
of industry 4.0,’’ IEEE Access, vol. 5, pp. 16252–16262, 2017.

[26] Y. Yuan, Y. Shen, W. Li, D. Yu, L. Yan, and Y. Wang, ‘‘PR-LRU: A novel
buffer replacement algorithm based on the probability of reference for flash
memory,’’ IEEE Access, vol. 5, pp. 12626–12634, 2017.

[27] X. Wu, D. Cai, and S. Guan, ‘‘A multiple LRU list buffer manage-
ment algorithm,’’ IOP Conf. Ser., Mater. Sci. Eng., vol. 569, Aug. 2019,
Art. no. 052002.

[28] Y. Yuan, J. Zhang, G. Han, G. Jia, L. Yan, and W. Li, ‘‘DPW-LRU:
An efficient buffer management policy based on dynamic page weight
for flash memory in cyber-physical systems,’’ IEEE Access, vol. 7,
pp. 58810–58821, 2019.

[29] J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, ‘‘A multi-channel
architecture for high-performance NAND flash-based storage system,’’
J. Syst. Archit., vol. 53, no. 9, pp. 644–658, Sep. 2007.

[30] E. H. Nam, B. S. J. Kim, H. Eom, and S. L. Min, ‘‘Ozone (O3): An out-of-
order flashmemory controller architecture,’’ IEEE Trans. Comput., vol. 60,
no. 5, pp. 653–666, May 2011.

[31] Y. Deng and J. Zhou, ‘‘Architectures and optimization methods of
flash memory based storage systems,’’ J. Syst. Archit., vol. 57, no. 2,
pp. 214–227, Feb. 2011.

[32] D. Wei, Y. Gong, L. Qiao, and L. Deng, ‘‘A hardware-software co-design
experiments platform for NAND flash based on zynq,’’ in Proc. IEEE 20th
Int. Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2014, pp. 1–7.

[33] J. Kwak, S. Lee, K. Park, J. Jeong, and Y. H. Song, ‘‘Cosmos+ OpenSSD:
Rapid prototype for flash storage systems,’’ ACM Trans. Storage, vol. 16,
no. 3, pp. 1–35, Aug. 2020.

VOLUME 8, 2020 185371



J. Kwak et al.: GALRU: A Group-Aware Buffer Management Scheme for Flash Storage Systems

[34] S.-H. Park, S.-H. Ha, K. Bang, and E.-Y. Chung, ‘‘Design and analysis
of flash translation layers for multi-channel NAND flash-based storage
devices,’’ IEEE Trans. Consum. Electron., vol. 55, no. 3, pp. 1392–1400,
Aug. 2009.

[35] H. Jung, S. Jung, and Y. Song, ‘‘Architecture exploration of flash memory
storage controller through a cycle accurate profiling,’’ IEEE Trans. Con-
sum. Electron., vol. 57, no. 4, pp. 1756–1764, Nov. 2011.

[36] H. Kim and S. Ahn, ‘‘Bplru: A buffer management scheme for improving
random writes in flash storage,’’ in Proc. FAST, vol. 8, 2008, pp. 1–14.

[37] S.-H. Park, J.-W. Park, S.-D. Kim, and C. C. Weems, ‘‘A pattern adaptive
NAND flash memory storage structure,’’ IEEE Trans. Comput., vol. 61,
no. 1, pp. 134–138, Jan. 2012.

[38] S. K. Park, Y. Park, G. Shim, and K. H. Park, ‘‘CAVE: Channel-aware
buffer management scheme for solid state disk,’’ in Proc. ACM Symp. Appl.
Comput. SAC, 2011, pp. 346–353.

[39] H. Sun, G. Chen, J. Huang, X. Qin, and W. Shi, ‘‘CalmWPC: A buffer
management to calm down write performance cliff for NAND flash-based
storage systems,’’ Future Gener. Comput. Syst., vol. 90, pp. 461–476,
Jan. 2019.

[40] S. T. On, S. Gao, B. He, M. Wu, Q. Luo, and J. Xu, ‘‘FD-buffer: A cost-
based adaptive buffer replacement algorithm for FlashMemory devices,’’
IEEE Trans. Comput., vol. 63, no. 9, pp. 2288–2301, Sep. 2014.

[41] Q. Wei, C. Chen, and J. Yang, ‘‘CBM: A cooperative buffer management
for SSD,’’ in Proc. 30th Symp. Mass Storage Syst. Technol. (MSST),
Jun. 2014, pp. 1–12.

[42] Y. Yao, X. Kong, J. Zhou, X. Xu, W. Feng, and Z. Liu, ‘‘An advanced
adaptive least recently used buffer management algorithm for SSD,’’ IEEE
Access, vol. 7, pp. 33494–33505, 2019.

[43] D. Kim, K. H. Park, and C.-H. Youn, ‘‘SUPA: A single unified read-write
buffer and Pattern-Change-Aware FTL for the high performance of multi-
channel SSD,’’ ACM Trans. Storage, vol. 13, no. 4, pp. 1–30, Dec. 2017.

[44] X. Su, P. Jin, X. Xiang, K. Cui, and L. Yue, ‘‘Flash-DBSim: A simulation
tool for evaluating flash-based database algorithms,’’ in Proc. 2nd IEEE
Int. Conf. Comput. Sci. Inf. Technol., 2009, pp. 185–189.

[45] Storage Performance Council. (2002). SPC Trace File Format Specifi-
cation. [Online]. Available: http://traces.cs.umass.edu/index.php/Storage/
Storage

[46] D. Zhou, W. Pan, W. Wang, and T. Xie, ‘‘I/O characteristics of smartphone
applications and their implications for eMMC design,’’ in Proc. IEEE Int.
Symp. Workload Characterization, Oct. 2015, pp. 12–21.

[47] S. Sankar and K. Vaid, ‘‘Storage characterization for unstructured data in
online services applications,’’ in Proc. IEEE Int. Symp. Workload Charac-
terization (IISWC), Oct. 2009, pp. 148–157.

[48] K. Han and D. Shin, ‘‘Command queue-aware host I/O stack for mobile
flash storage,’’ J. Syst. Archit., vol. 109, Oct. 2020, Art. no. 101758.

JAEWOOK KWAK received the B.S. degree
from the Department of Electronic Engineer-
ing, Hanyang University, South Korea, in 2015.
He is currently pursuing the Ph.D. degree with
the Department of Electronics and Computer
Engineering, Hanyang University. His research
interests include computer architecture, embedded
systems, and NAND flash-based storage systems.

JUNGKEOL LEE received the B.S. degree from the
Department of Electronic Engineering, Hanyang
University, South Korea, in 2014. He is currently
pursuing the Ph.D. degree with the Department of
Electronics and Computer Engineering, Hanyang
University. His research interests include embed-
ded computing and the IoT device.

DAEYONG LEE received the B.S. degree from
the School of Electronic Engineering, Soongsil
University, Seoul, South Korea, in 2014, and the
M.S. degree from the Department of Electronics
and Computer Engineering, Hanyang University,
Seoul, in 2017, where he is currently pursuing
the Ph.D. degree. His research interests include
embedded systems and NAND flash memories.

JOONYONG JEONG received the B.S. degree
from the Department of Information System,
Hanyang University, Seoul, South Korea, in 2015.
He is currently pursuing the Ph.D. degree with
theDepartment of Electronics andComputer Engi-
neering, Hanyang University. His research inter-
ests include NAND flash-based storage systems,
databases, and key-value stores.

GYEONGYONG LEE received the B.S. degree
from the Department of Electronic Engineering,
Hanyang University, South Korea, in 2014. He is
currently pursuing the Ph.D. degree with the
Department of Electronics and Computer Engi-
neering, Hanyang University. His research inter-
ests include embedded computing and NAND
flash memories.

JUNGWOOK CHOI (Member, IEEE) received
the B.S. and M.S. degrees in electrical and com-
puter engineering from Seoul National University,
South Korea, in 2008 and 2010, respectively, and
the Ph.D. degree in electrical and computer engi-
neering from the University of Illinois at Urbana–
Champaign, USA, in 2015. He has worked as a
Research Staff Member at the IBM T. J. Watson
Research Center, from 2015 to 2019. He is
currently an Assistant Professor with Hanyang

University, South Korea. His main research interest includes efficient imple-
mentation of deep learning algorithms. He has received several research
awards such as the DAC 2018 Best Paper Award and has actively contributed
to the academic activities, such as the Technical Program Committee of
DATE 2018–2020 (Co-Chair) and DAC 2018–2020, and the Technical Com-
mittee (DiSPS) in the IEEE Signal Processing Society.

YONG HO SONG (Member, IEEE) received
the B.S. and M.S. degrees in computer engi-
neering from Seoul National University, Seoul,
South Korea, in 1989 and 1991, respectively, and
the Ph.D. degree in computer engineering from the
University of Southern California, Los Angeles,
CA, USA, in 2002.

He is currently a Professor with the Department
of Electronic Engineering, Hanyang University,
Seoul, and the Senior Vice President of Samsung

Electronics Company Ltd. His current research interests include system
architecture and software systems of mobile embedded systems that further
include SoC, NoC,multimedia onmulticore parallel architecture, andNAND
flash-based storage systems.

Dr. Song has served as a Program Committee Member for several presti-
gious conferences, including the IEEE International Parallel and Distributed
Processing Symposium, IEEE International Conference on Parallel and
Distributed Systems, and IEEE International Conference on Computing,
Communication, and Networks.

185372 VOLUME 8, 2020


