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Abstract
The role of coronary arteries is to supply sufficient blood to myocardium. Obstruction of coronary arteries limits blood
supply and causes myocardial ischemia or acute myocardial infarction, a major cause of human death. Hence, the
quantification of the regional amount of heart muscle subtended by obstructed coronary arteries is of critical value in
clinical medicine. However, conventional methods are inaccurate and frequently disagree with clinical practice.
This study proposes a novel medial-axis-based correspondence (Medial-ABC) algorithm to find the correspondence
between myocardium and coronary artery in order to segment regional myocardium at risk subtended by any potentially
obstructed coronary artery. Given the triangular mesh models of coronary artery and myocardium, the proposed algorithm
(i) computes the medial axis of coronary artery, (ii) finds the correspondence using the medial axis of coronary artery,
and (iii) segments the coronary artery and myocardium. The proposed algorithm provides a robust mathematical linkage
between myocardium at risk and supplying coronary arteries so that ischemic myocardial regions can be accurately
identified. Hence, both the extent and severity of myocardial ischemia can be quantified effectively, efficiently, and
accurately. Furthermore, the constructed mesh model of segmented coronary artery and myocardium can be
post-processed for applications such as building optimization models of cardiac systems. The CardiacVis program,
which implements the Medial-ABC algorithm, is freely available at Voronoi Diagram Research Center
(http://voronoi.hanyang.ac.kr/software/cardiacvis) and will be an invaluable tool for quantitative patient-specific risk
stratification in clinical practice.

Keywords: segmentation; cardiac computed tomography; Voronoi diagram; constrained Delaunay
triangulation; computational geometry; obstruction of blood; myocardial ischemia and heart disease

1. Introduction

Coronary artery (CA) disease is the number one cause of death
worldwide and entrusts a huge socioeconomic burden. Statis-
tics reported the deaths of 7.4 million people from coronary

artery disease every year (World Health Organization, 2012).
Atherosclerotic obstruction of CA blocks oxygenated blood sup-
ply to regional left ventricular myocardium (heart muscle),
which causes severe myocardial ischemia or acute myocardial
infarction, i.e. a heart attack. Note that left ventricle (LV) is
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the major muscle responsible for the most mechanical func-
tion of heart. Localizing and assessing the extent of regional my-
ocardium at risk subtended by obstructed CA is of critical impor-
tance in the diagnosis and decision of treatment (Bruyne et al.,
2014). A 17-piece LV model based on 2D images is currently used
by clinical guidelines as recommended by the American Heart
Association (Cerqueira et al., 2002).

However, the model does not reflect an individual structural
variation of both CA and LV and frequently produces inaccurate
assignments or disagreements between supplying CA and re-
gional LV receiving blood (Ortiz-Pérez et al., 2008; Javadi et al.,
2010). The establishment of an accurate and robust linkage be-
tween LV territory and supplying CA is required for the optimal
diagnosis and treatment of CA disease (Bruyne et al., 2012; Kim
et al., 2016, 2017; Bae et al., 2018; Han et al., 2018). The clinical
outcome of patients with heart disease is mostly determined by
the amount of functioning myocardium. Loss of myocardium re-
sults in decreased heart function, which is known as heart fail-
ure. Physicians can open/dilate the occluded/narrowed artery,
which is known as percutaneous coronary intervention using
stent implantation. Millions of these procedures are being per-
formed annually worldwide.

There is an important and yet unsolved clinical issue in this
procedure: How to determine the treatment target? Currently,
most physicians determine the treatment target based on their
experience and clinical expertise, which inevitably leads to non-
negligible interoperator difference. Here, we attempt geometri-
cal and mathematical interpretation of coronary artery disease.

In this study, we present a medial-axis-based correspon-
dence (Medial-ABC) algorithm to find the correspondence be-
tween myocardium and coronary artery using the medial axis of
coronary artery. Given the triangular mesh models of coronary
artery and myocardium, the Medial-ABC algorithm first com-
putes the medial axis of coronary artery and then finds the cor-
respondence using the medial axis of coronary artery. Then, it
is easy to segment a myocardial geometric model of triangular
mesh so that ischemic LV region can be accurately identified for
each individual patient. The geometric cardiac models are use-
ful for the visualization (Cai, Ye, Chui, & Anderson, 2003; Meyer-
Spradow, Stegger, Döring, Ropinski, & Hinrichs, 2008; Borkin
et al., 2011; Glaber, Lawonn, Hoffmann, Skalej, & Preim, 2014),
analysis (Oeltze, Doleisch, Hauser, Muigg, & Preim, 2007; Ter-
meer et al., 2008), and simulation of diverse features of car-
diac systems (Termeer, Bescós, and Breeuwer, 2007; Xiong et al.,
2017). The Medial-ABC algorithm segments the mesh model of
LV into subregions where each corresponds to a piece of CA
and/or a concatenation of consecutive downstream subregions
of CA. The motivations of the proposed research are 4-fold as
follows:

� M1. Precision medicine: In current clinical practice, physi-
cians mostly depend on binary or visually determined sever-
ity of CA disease for decision-making and risk stratification.
Patient-specific highly reproducible quantitative measure-
ment would enable providing a better therapy for patients
in terms of efficiency, safety, and cost reduction (Leopold &
Loscalzo, 2018; Mangion, Gao, Husmeier, Luo, & Berry, 2018).

� M2. Decision based on quantitative measures: Geometric
model is convenient to quantify important measures in clin-
ical medicine such as volume and boundary surface area
of significant features in human body (Frangi, Niessen, &
Viergever, 2001; Saito et al., 2005; Kurata et al., 2015; Sumitsuji
et al., 2016). For example, the extent and severity of myocar-
dial ischemia can be quantified effectively and efficiently.

� M3. Construction of optimization models: Given quanti-
fied measures, optimization models can be formulated for
decision-making in clinical practice. For example, determi-
nation of target for cardiac stem cell therapy (Oettgen, 2006;
Segers & Lee, 2008; Shafiq, Jung, & Kim, 2016).

� M4. Extension to other organs: The algorithm and the devel-
oped CardiacVis program can be applied to other organs in
which the hierarchy of vascular network governs the func-
tion of organs, such as brain, lung, liver, kidney, and skeletal
muscle (West, Brown, & Enquist, 1997; Dawson, 2005; Razavi,
Shirani, & Kassab, 2018).

The contributions of this study are 3-fold as follows:

� C1: An algorithm to construct the medial axis of coronary
artery.

� C2: An algorithm to correspond coronary artery and my-
ocardium.

� C3: A program CardiacVis implementing the Medial-ABC al-
gorithm.

Figure 1 shows the overview of the scenario where the pro-
posed study may play a critical role. Given a cardiac computed
tomography (CT) (I), the mesh models of both CA (II) and my-
ocardium (III) are derived (Lorenz & von Berg, 2006; de Putter,
van de Vosse, Gerritsen, Laffargue, & Breeuwer, 2006; Kim, Sohn,
& Im, 2019) from the segmentation of CT images. Note that the
construction of surface mesh from real-world data is challeng-
ing and there were many studies to construct the surface mesh
with desired quality or features (Imai, Hiraoka, & Kawaharada,
2014; Moon & Ko, 2018). Given the mesh model of CA, we con-
struct its medial axis (IV) and segment CA using the medial axis
(V). We also segment the myocardium corresponding to the seg-
mented CA (VI). The Medial-ABC algorithm includes the research
results of the issues IV, V, and VI in the red box of Fig. 1. The
CardiacVis program, which implemented the Medial-ABC algo-
rithm, is freely available at Voronoi Diagram Research Center
(http://voronoi.hanyang.ac.kr/software/CardiacVis).

Figure 2a–f shows a 3D mesh model of heart structure that
corresponds to the cardiac CT image in Fig. 1. Human heart
consists of four chambers (i.e. two atriums and two ventri-
cles), valves, CA, and proximal ascending aorta. Figure 2a shows
pericardial fat surrounding the entire heart structure. Figure 2b
shows CA, ascending aorta, LV, right ventricle, and left atrium af-
ter the removal of pericardial fat, right atrium, and pulmonary
artery from the heart structure. Figure 2c shows LV, aorta, and
CA that consists of left CA (LCA) and right CA (RCA), both con-
nected to the aorta. Figure 2d shows LCA, RCA, and LV. Figure 2e
shows LV from a different view. We observe that the mesh model
of LV is correct in that it is 2-manifold without a boundary and
watertight. However, it has topological handles in the location
indicated by the red circle. Figure 2f shows the mesh model of LV.
The mesh model(s) was created and prepared at Samsung Med-
ical Center, Korea. Hereafter, we refer to it as (Samsung) Model-
13 (there are 20 models prepared for experiments; see Section 6
for details). We note here that in order to get a good analysis re-
sult, it is desirable to begin the process with a good mesh model
that can be obtained by a good meshing algorithm such as Kim
et al. (2019). In this paper, italicized fonts denote mesh models
of objects, e.g. CA denotes the mesh model of coronary artery
CA.

In this paper, it is assumed that a mesh model consists of
a single connected component, i.e. each of LV, LCA, and LCA
is a connected mesh model. In addition, a mesh is assumed
to be watertight, 2-manifold, and free from a self-intersection.
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738 Medial-ABC for correspondence between Myocardium and Coronary Artery

Figure 1: The proposed Medial-ABC algorithm (in the red box) for medicinal diagnosis and treatment. The individual cardiac CT (I) is used to build a 3D triangular
mesh model for coronary arteries CA (II) and myocardium (III). Then, the Medial-ABC algorithm constructs the medial axis of the coronary arteries (IV) and computes
the segmentations of both coronary artery (V) and myocardium (VI).

Figure 2: Heart structure (Model-13). (a) Entire heart surrounded by pericardial fat. (b) CA with proximal ascending aorta (sky blue), LV (orange), right ventricle (purple),
and left atrium (green). (c) LV, CA with ascending aorta. (d) RCA, LV, and LCA, which play a key role for cardiac function (from left to right). (e) LV viewed from a different

orientation (note the holes in the red circle). (f) The mesh model of LV.

The watertightness and 2-manifoldness are tested by the Euler–
Poincare formula.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related studies. Section 3 presents an algorithm
for extracting an adjacency tree from an adjacency graph among
the tetrahedral cells of the constrained Delaunay triangulation
(CDT) of CA. Section 4 presents an algorithm to construct the
medial axis by refining the adjacency tree. Section 5 presents the
segmentation of the medial axis, LV, and CA. Section 6 presents
experimental result. Section 7 describes the features of the pro-
gram CardiacVis that implemented the Medial-ABC algorithm.
Section 8 concludes the paper. Time complexities are worst
cases unless otherwise stated.

2. Literature Review

Two technical issues are key to this study: (i) the construc-
tion of the medial axis of CA and (ii) the segmentation of LV

and CA using the medial axis that establishes their correspon-
dence. The medial axis (transformation), also called the sym-
metric axis or skeleton (Kirkpatrick, 1979), was first introduced
by Blum in 1967 in order to describe 2D biological shapes (Blum,
1967) and was extensively used for diverse applications such as
shape description/matching (Blum & Nagel, 1978; Nackman &
Pizer, 1985; Pizer, Oliver, & Bloomberg, 1987), surface reconstruc-
tion (Amenta, Bern, & Kamvysselis, 1998; Jalba, Kustra, & Telea,
2013), animation (Wade & Parent, 2002), smoothing or sharpen-
ing of shape (beng Ho & Dyer, 1986), motion planning (Holleman
& Kavraki, 2000), and mesh generation (Tam & Armstrong, 1991;
Linardakis & Chrisochoides, 2008). In 2D, it is known that the
medial axis of planar polygons can be correctly and efficiently
constructed using a Voronoi diagram of the polygon (Kirkpatrick,
1979; Lee, 1982) and can be used to compute the offset of the
polygon (Kim, Hwang, & Park, 1995; Kim, 1998), packing disks
and ellipses (Lee et al., 2018), etc. In 3D, a medial axis can be
even used for 3D printing (Wei et al., 2018).
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Figure 3: Steps of the Medial-ABC algorithm.

In 3D, however, the construction of a medial surface, the 3D
counterpart of the 2D medial axis, remains a challenge due to
the following facts: I. (Theory) Medial surface may be composed
of both surface patches and degenerate curves (Gong & Bertrand,
1990; Jalba et al., 2013); II. (Computation) Exact computation of
medial surface requires heavy computational resources (Culver,
Keyser, & Manocha, 2004); and III. (Application) Medial surface
is highly sensitive to the noise of input geometry (Shaked &
Brucksteiny, 1998; Choi & Seidel, 2004). The technical issues
raised by the three viewpoints are all critical. Fact I suggests that
a medial surface cannot be conveniently represented in a single
mathematical representation. Fact II explains the difficulty of
maintaining a correct topology structure of a medial surface
during computation due to the algebraic complexity of a medial
surface. Note that a correct maintenance of topological struc-
ture is the most critical issue in the construction of both medial
axis and the Voronoi diagram (Sugihara & Iri, 1989, 1992, 1994;
Sugihara, 1992; Yap, 1997; Kim, Cho, Kim, & Kim, 2014). Culver
et al. indeed presented a medial axis algorithm for 3D polyhedra
using exact arithmetic (together with its implementation) (Cul-
ver et al., 2004). However, the algorithm turned out impractical
due to the enormous computational requirement of the medial
surface even for a small-sized polyhedron with hundreds of
faces. Fact III is particularly meaningful for the present study in
that our mesh models are derived from CT images that almost
always contain measurement error. In addition, 3D medial
surfaces usually have many trivial or insignificant parts related
with tiny disturbances of polyhedral geometry. Hence, the
computation of theoretically correct medial surface is neither
feasible nor required nor desirable for the present study and
a sufficiently good approximation of medial surface or medial
axis is well justified. Hereafter, we will use “medial axis (trans-
formation) MAT ” to refer to both 2D and 3D unless otherwise
necessary.

A common approach to the approximation of a medial axis
might be first to compute the Voronoi diagram of points on a
model boundary and then to trim off or remove the insignifi-
cant parts of the Voronoi diagram (Attali & Montanvert, 1997;
Amenta, Choi, & Kolluri, 2001; Dey & Zhao, 2004). This approach
seems reasonable as Brandt showed in 2D that the Voronoi ver-
tices inside the shape boundary converges to its medial axis as
the sampling rate increases (Brandt, 1994). However, practical
consideration of the trade-off between the computational re-
quirement and solution quality due to the number of sampling
points on the model boundary becomes a major bottleneck of
this approach. Attali and Montanvert proposed an approxima-
tion algorithm of a 3D medial axis using the Voronoi diagram
of intersection points of 3D spherical balls, which approximates
the shape (Attali & Montanvert, 1997).

The segmentation of myocardium and blood vessel was
intensively studied. Several image-based studies (Suri, 2000;
Mitchell et al., 2001; Paragios, 2003; Lesage, Angelini, Bloch, &
Funka-Lea, 2009; Kurata et al., 2015) were reported. In Computer-
Aided Design, segmentation were reported based on the features
of surface mesh (Xu, Zhou, Wu, Shui, & Ali, 2015; Park, Lee, Chae,
& Kwon, 2019). One noteworthy work was to segment the CT im-
age of LV using that of CA: In this work, a user manually picks
some voxel points belonging to CA so that each voxel of LV can
be assigned to its closest picked point (Debarba, Zanchet, Frac-
aro, Maciel, & Kalil, 2010; Kurata et al., 2015). Image-based ap-
proach was also used for analyzing the morphometry of CA, e.g.
the diameter, branching pattern, etc. (Wischgoll, Choy, Ritman,
& Kassab, 2008). A notable improvement was made by fusing
both image and mesh representations (Termeer et al., 2010): The
centerline of CA was computed by CT image with the identifi-
cation of branch points (Lorenz, Renisch, Schlathölter, & Bülow,
2003) and the centerline was projected to the boundary surface
of LV. Then, the Voronoi diagram of the projected points on the
boundary of LV was computed with the geodesic distance.

3. Adjacency Tree of Coronary Artery

We want to construct the medial axis (transformation) MAT
of CA as an 1D curve-skeleton (Cornea, Silver, & Min, 2007; Liu,
Chambers, Letscher, & Ju, 2010) so that the segmentation of CA
and LV can be done by referring to MAT . We decompose Step IV
in Fig. 1 into four substeps as shown in Fig. 3. Section 3 discusses
the steps necessary to get an adjacency tree (i.e. Steps IV-1, IV-2,
and IV-3) and Section 4 discusses Step IV-4.

3.1. Adjacency graph derived from constrained
Delaunay triangulation: Steps IV-1 and IV-2

First, we construct the tetrahedral mesh of CA and use the adja-
cency information among the tetrahedra. Among many possible
triangulations, we found the CDT was most appropriate for the
proposed study in that its dual structure contains the desired
MAT while the triangulation is constrained inside of the mesh
boundary (Chew, 1989; Aurenhammer, 1991; Okabe, Boots, Sug-
ihara, & Chiu, 1999; Amenta et al., 2001).

Let us look at a 2D example. Consider a simple polygon P in
the plane in Fig. 4. Figure 4a and b shows the medial axis of P
and the (interior) Voronoi diagram VD(P), respectively. Note that
the medial axis is a subset of VD(P) (Kirkpatrick, 1979; Lee, 1982).

This idea, however, cannot be directly applied to the 3D coun-
terpart. The construction of a correct medial axis remains a chal-
lenge as was stated by the facts I, II, and III in the previous sec-
tion. Hence, we instead develop a heuristic algorithm based on
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Figure 4: A polygon and its medial axis. (a) The medial axis. (b) The interior Voronoi diagram of the polygon. (c) CDT of points on the polygon boundary. (d) CDT and

the corresponding adjacency graph. The tiny white circle denotes the Voronoi vertex and the dashed circle denotes the empty circle of the corresponding Delaunay
cell. (e) Both adjacency graph and medial axis.

Figure 5: The CDTs of CA and LV of the Model-13. CDTs computed by TetGen Si (2008, 2013, 2015). (a) LCA with some removed CDTs beyond a section plane through the

red rectangular window. (b) A close-up of LCA showing the tetrahedral CDT cells around the section plane. (c) RCA with some removed CDTs beyond a section plane
through the red rectangular window. (d) A close-up of RCA showing the tetrahedral CDT cells around the section plane. (e) LV with removed CDTs beyond a section
plane. (f) A close-up of LV showing the details around the section plane.

CDT. Figure 4c shows the CDT of a set P̃ of points on the model
boundary, where P̃ contains both mesh vertices (i.e. filled cir-
cles) and sampled points (i.e. the filled rectangles). Hence, the
segment of polygon boundary ∂P becomes one (or more) of the
edges in the triangulation. Figure 4d shows a graph that rep-
resents the adjacency among the CDT triangles (thus, we call
it an adjacency graph; see Definition 1): The tiny white circle
denotes a Voronoi vertex, while the dashed circle denotes the
empty circle of the corresponding Delaunay cell. The vertices of
the graph correspond to the centers of the circumcircles of the
triangles. The circumcircles (e.g. those shown as the dotted cir-
cles) do not contain any other point generators in the region that
is constrained by the polygon boundary, thus leading to the De-
launay property. Note that some circumcircle centers are located
outside the model boundary. Figure 4e shows both the adjacency
graph and the medial axis. Observe that the adjacency graph rel-
atively well approximates the medial axis. The main idea of this
study for the 3D medial axis is based on this simple yet impor-
tant observation.

We apply the heuristic approach based on the CDT to 3D
problems. To construct the 3D mesh model using the CDT
structure of the 2-manifold mesh CA, we used the TetGen pro-
gram (Si, 2008, 2013, 2015) which implemented the algorithm in
(Shewchuk, 2003; Si & Gartner, 2011; Si & Shewchuk, 2014). It is

important to check the quality of boundary mesh and repair it if
necessary using algorithms such as (Updegrove, Wilson, & Shad-
den, 2016; Oh, 2019) before constructing the CDT structure. Fig-
ure 5 shows the CDTs of CA and LV of Model-13. Figure 5a and b
shows LCA and its close-up of one of the sections indicated by
the red rectangle, while Fig. 5c and d shows those of RCA. Fig-
ure 5e and f shows a section view of LV. The tetrahedral cells
with edges are those cut by the section planes.

Definition 1. (Adjacency graph) Consider a triangulation (V, E, F, C)
in the 3D space where V, E, F, and C denote the set of vertices, edges,
faces, and cells of triangulation, respectively. Let N be the set of nodes
where each node ni ∈ N one-to-one corresponds to a tetrahedral cell ci ∈
C of the triangulation. Let L be the set of links between pair of nodes in
N. A link lk(ni, nj) ∈ L is defined if, and only if, ci and cj are adjacent to
each other in the triangulation. A graph G(N, L) is called the adjacency
graph of the triangulation.

The position of n ∈ N is the center of the circumsphere of the
corresponding tetrahedron. We observe the following problems
that need to be appropriately handled.

� G may have cycles.
� A node of G may be positioned outside of CA.
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Figure 6: A premature split in the LCA by the forward Dijkstra pass and its removal by the backward Dijkstra pass. (a) LCA mesh model with TFWD. (b) The close-up of a
segment: see the two premature splits. (c) The tetrahedral CDT cells corresponding to TFWD. (d) The comparison between TFWD (faded) and TBWD. (e) After the premature
split is corrected in TBWD. (f) LCA mesh model with TBWD.

Coronary artery is cycle-free in human body and so should be
its medial axis. Cycle-free in mesh model means the model has
no handle, i.e. g = 0 where g represents the genus of the model.
Getting a mesh model CA of genus zero from a CT image may
not be easy (see Fig. C1). Obviously a medial axis should exist
within the corresponding CA.

Lemma 1. Given a constrained Delaunay triangulation CDT(V, E, F,
C), an adjacency graph G(N, L) can be constructed in O(|F|) time from
CDT.

Proof: Suppose that CDT is stored in the simplicial complex data
structure (Kim, Kim, Cho, & Sugihara, 2006). Then, a traversal
from a cell to its adjacent cell takes O(1) time. As there are O(|F|)
adjacency relationships for CDT with |F| triangular faces, the
construction of the adjacency graph can be done in O(|F|) time.
Note that |F| = O(|C|) where |C| represents the number of tetra-
hedral cells in CDT. �

We store G(N, L) in the data structure consisting of two lists
for N and L. Each link l ∈ L has two pointers to its nodes n1, n2 ∈
N and each node ni has four pointers to up to four incident links
in L, which represent the adjacency relationship in CDT.

3.2. Adjacency tree from adjacency graph: Step IV-3

The topology of CA in human body is a tree (i.e. CA has no cycle)
and so should be its medial axis. Suppose that the mesh model
CA has no handle. An adjacency graph of CA, however, usually
has cycles that need to be removed.

Definition 2. (Adjacency tree) A graph G
′
(N, L

′
) ⊆ G(N, L), L

′ ⊆ L, is
an adjacency tree if it has no cycle.

Adjacency tree is not unique in general because there are
usually multiple ways to remove a cycle from a graph. We use the
Dijkstra algorithm (Dijkstra 1959) to reduce an adjacency graph

to an adjacency tree with a manually selected root node. We call
it the forward Dijkstra pass.

3.2.1. Premature splits and phantom splits by a forward Dijkstra
pass

A forward Dijkstra pass alone may not be able to solve the prob-
lem completely. The constructed adjacency tree may be different
from the ideal medial axis in that the branch nodes of the adja-
cency tree tend to be placed closer to the root node than it is
in the ideal medial axis. We call this phenomenon a premature
split of branches.

Figure 6a shows an example of premature split that occurred
in the LCA of Model-13 by the forward Dijkstra pass. Note in the
close-up in Fig. 6b that the adjacency tree branches at a node
much closer to the root node than at the node where the me-
dial axis of CA actually branches. Figure 6c shows the tetrahe-
dral cells corresponding to the two branches. A premature split
in this example causes two branches of the adjacency tree run
in parallel for some length, which can be very long depending
on the arrangement of tetrahedral cells of CDT. Hence, a prema-
ture split exists, the correspondence between CA and LV can be
less accurate, and this could cause a serious miscalculation of
correspondence. Figure 6d–f shows the adjacency tree after the
premature split is fixed (using the backward Dijkstra pass that
is explained below).

An even more critical problem that can be caused by a for-
ward Dijkstra pass is a nonsense phantom split constructed in
CA, which should not exist. Figure 7a shows RCA and the cor-
responding adjacency tree after the forward Dijkstra pass. Note
the region of RCA within the black rectangle. Obviously, we ex-
pect one branch of medial axis because the artery is a tube-like
shape around the region. However, its close-up in Fig. 7b clearly
shows two branches: one from the main stream of the artery
(in blue) and an additional relatively short branch (in red) from
a consecutive trivial tetrahedra in the same mesh model. The
second is nonsense and should be removed. Figure 7c shows the
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742 Medial-ABC for correspondence between Myocardium and Coronary Artery

Figure 7: A nonsense phantom split/branch in RCA by the forward Dijkstra pass and its removal by the backward Dijkstra pass. (a) RCA and the adjacency tree produced
by the forward Dijkstra pass. (b) A close-up showing the nonsense phantom branch (in red) split from the main branch (in blue). (c) The CDT cells corresponding to
the nodes on the branches. (d) The phantom branch trimmed off to a hairy node (in green) by the backward Dijkstra pass. (e) Both hairy node and phantom branch

shown together. (f) RCA and the adjacency tree after all phantom branches are removed.

tetrahedral cells corresponding to the two branches of the adja-
cency tree.

3.2.2. Remedy of both premature splits and phantom splits
In order to detect and remedy these abnormal splits, we employ
another pass of the Dijkstra algorithm called the backward Di-
jkstra pass. The idea is to modify the information produced by
the forward Dijkstra pass with the information obtained by the
backward pass.

Definition 3. (Forward shortest path tree) Let π F WD
i (NF WD

i , L F WD
i ) be

the forward shortest path from the root node to the node ni in G. Let
TFWD(NFWD, LFWD) ⊆ G(N, L) be the forward shortest path tree where
NFWD ≡ N and L F WD = ⋃

L F WD
i .

Lemma 2. TFWD can be constructed in O(|N|log |N|) time by applying
the forward Dijkstra pass to G.

Hereafter, we refer to a forward shortest path as a forward
path. We define the length of a path as the sum of the lengths
of all links in the path. We use TFWD to construct TBWD, the back-
ward shortest path tree, by the backward Dijkstra pass as fol-
lows.

Definition 4. (Backward shortest path) Let T(NT, LT) ⊆ G(N, L) be a
tree. Let ni be a leaf node of TFWD. A connected path from ni to a node
nj ∈ NT is called a backward candidate path of ni to T. The backward
shortest path from ni to T is the backward candidate path whose length
is minimal. Hereafter, we refer backward shortest path as backward
path.

Definition 5. (Concatenation) Let T(NT, LT) ⊆ G be a tree and π (Nπ ,
Lπ ) ⊆ G a path. Concatenation π

⊕
T is defined as T

′
(N

′
, L

′
) where N

′

= NT ∪ Nπ and L
′ = LT ∪ Lπ .

Suppose that T BWD
i−1 ⊆ G(N, L ) is available. Let π BWD

i be the
backward path from the leaf node ni of TFWD to T BWD

i−1 . Then, we
get T BWD

i by concatenating π BWD
i to T BWD

i−1 . The backward shortest
path tree TBWD is defined as follows.

Definition 6. (The backward shortest path tree) The backward shortest
path tree T BWD

n with n nodes is

T BWD
n = π BWD

n

⊕
T BWD

n−1 = π BWD
n

⊕
π BWD

n−1

⊕
T BWD

n−2

. . . = π BWD
n

⊕
. . .

⊕
π BWD

2

⊕
π BWD

1 . (1)

We represent both TFWD and TBWD in the same data struc-
ture used for G(N, L) but, at each node, with a refined inter-
pretation to distinguish the parent from siblings. Note that we
keep these three constructs as distinct objects in distinct stor-
age. We additionally maintain an ordered queue QFWD, which
stores all forward paths in TFWD in the non-increasing order of
path length. Hence, the first element of QFWD corresponds to the
longest path in TFWD. Each element of QFWD has the informa-
tion about the corresponding leaf node in TFWD at which the path
ends.

Figure 8 shows a schematic diagram of an example of a back-
ward shortest path tree construction process through the back-
ward Dijkstra pass (i.e. concatenating the backward paths gen-
erated by the Dijkstra algorithm). The blue polygons denote ∂CA
and the solid chains denote forward paths. Suppose that Fig. 8a
shows TFWD with seven nodes: one root node (shown as the filled
black circle) and six leaf nodes (shown as unfilled white circles).
Note the premature splits (e.g. n3 and n4), phantom splits (e.g.
n2 and n6), and the node positioned outside of ∂CA (e.g. n5). In
the figure, the node indices correspond to their locations of the
forward path πFWD in QFWD. For example, π F WD

1 and π F WD
2 are the

first and second longest in TFWD and thus are the first and second
elements in QFWD.
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Figure 8: The backward Dijkstra pass to remedy both premature and phantom splits caused by the forward Dijkstra pass. (a) TFWD. (b) T BWD
1 that consists of a single

longest forward path π BWD
1 (i.e. the red path from n1 to the root node; the initial TBWD). (c) T BWD

2 by concatenating π BWD
2 to T BWD

1 . (d) T BWD
3 by concatenating π BWD

3 to
T BWD

2 . (e) T BWD
4 by concatenating π BWD

4 to T BWD
3 . (f) The final backward tree T BWD

5 obtained by concatenating π BWD
6 .

The backward Dijkstra pass is as follows. We remove the first
element of QFWD, which is π F WD

1 . Note that this is the longest
forward path of TFWD (the red chain in Fig. 8b). This forward path
is identical to the backward path from n1 to the root node nroot

of TFWD. Hence, π BWD
1 ≡ π F WD

1 . Let T BWD
1 = π BWD

1 . Figure 8b shows
T BWD

1 .
We remove the next element of QFWD: It corresponds to π F WD

2 ,
which is the second longest forward path of TFWD. Here, we apply
the backward Dijkstra algorithm to compute the backward path
π BWD

2 from n2 to T1. The red chain from n2 to T1 in Fig. 8c denotes
π BWD

2 . We concatenate π BWD
2 to T BWD

1 to construct T BWD
2 as shown

in Fig. 8c.
We remove the next element of QFWD and compute the back-

ward path π BWD
3 from n3 to T BWD

2 to produce T BWD
3 (the red chain

in Fig. 8d). We repeat this process (as shown in Fig. 8e and f) until
QFWD is empty.

Note that it is possible that a node of distinct forward path
gets included in another backward path. For example, n6 is one
of the internal nodes of π BWD

4 as shown in Fig. 8e. Therefore,
π BWD

6 = ∅ and n6 is not a leaf node of TBWD anymore. Hence, TBWD

may have fewer nodes than TFWD has. Figure 8f shows the final
TBWD constructed by the backward Dijkstra pass that remedies
both problems of TFWD.

Observation 1. T BWD
n has neither premature split nor phantom split.

Algorithm 1 computes an adjacency tree with neither pre-
mature nor phantom split by the forward and backward Dijkstra
passes. Lines 1 through 6 compute TFWD and store all paths in

the ordered queue QFWD. Line 7 constructs the initial adjacency
tree T BWD

1 . Lines 8 through 14 iteratively update the subtree by
concatenating a backward path from a leaf node to the interme-
diate backward tree. Note that line 11 implies that the length of
a backward path πBWD can be zero when the leaf node is already
included in the intermediate backward tree (as shown in Fig. 8e).
The premature splits in Fig. 6 and the phantom splits in Fig. 7 are
fixed by Algorithm 1.

The Dijkstra algorithm takes O(|L| + |N|log |N|) time for |N|
nodes and |L| links in G(N, L) (Fredman & Tarjan, 1984). Algorithm
1 has two passes of Dijkstra: forward and backward. Forward Di-
jkstra pass computes the shortest paths of all nodes from the
root and backward pass consists of the runs of Dijkstra algo-
rithms for all leaf nodes. We note that a backward tree construc-
tion is most time consuming in the proposed algorithm as stated
by the following lemma.

Lemma 3. TBWD can be constructed from G(N, L) in O(|N|2) time.

Proof: Construction of TFWD from G takes O(|N|log |N|) time. Sup-
pose that TFWD has m leaf nodes. Let π BWD

i = π BWD
i (Ni , L i ) be the

i-th backward path. Computing π BWD
i takes O(|Ni|log |Ni|) time.

Hence, computing π BWD
1 through π BWD

m takes O(
∑|Ni|log |Ni|). Be-

cause log |Ni| ≤ |Ni|, O(
∑|Ni|log |Ni|) ≤ O(

∑|Ni|2). Because
∑|Ni|2

≤ (
∑|Ni|)2 and

∑|Ni| = O(|N|), O(
∑|Ni|2) ≤ O(|N|2). Therefore, con-

struction of TBWD from G takes O(|N|2) time. We believe a tighter
bound exists. �
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Algorithm 1: Adjacency Tree from Adjacency Graph

input : Adjacency graph G, root node nroot of G
output: Adjacency tree T BWD

1 Construct the forward shortest path tree T F WD of G with
nroot.

2 for a leaf node ni in T F WD do
3 Compute each forward path π F WD

i from nroot to ni .
4 Compute the path length of π F WD

i .
5 Insert ni and π F WD

i into the ordered queue QF WD

according to the non-increasing order of path length.
6 end
7 Construct the initial adjacency tree T BWD

1 .
8 while QF WD is not empty do
9 Remove the first element nQ

i of QF WD .
10 Compute the backward path π BWD

i from a leaf node ni

to T BWD
i−1 (ni corresponds to nQ

i ).
11 if the path length |π BWD

i | > 0 then
12 Concatenate (i.e. T BWD

i = π BWD
i

⊕
T BWD

i−1 ).
13 end

14 end

4. Medial Axis from Adjacency Tree: Step IV-4

TBWD after the backward Dijkstra pass is an initial solution for
constructing medial axis. TBWD is cycle-free but it may still pos-
sess three issues that need to be handled: outrageous nodes,
hairy nodes, and bumpy nodes. In Fig. 8f, n5 is outrageous and n2

is hairy. Figure 9 shows the process to construct the MAT from
the adjacency tree. Figure 9a and b shows TFWD and TBWD, re-
spectively. Figure 9c shows TBWD after removing the nodes out-

side of CA. Figure 9d shows the adjacency tree after removing
the nodes with relatively insignificant contribution to MAT . Fig-
ure 9e shows the remaining paths after straightening: We con-
sider TBWD in Fig. 9e the MAT . These steps are referred to as
“outrageous node removal,” “hairy node shaving,” and “bumpy
node straightening,” respectively. This section presents the pro-
cess to construct MAT by improving the initial solution TBWD by
appropriately handling these issues.

4.1. Outrageous node removal

Medial axis should be contained within the boundary of mesh
model. However, TBWD may have nodes that are placed outside
of CA. Recall that the position of a node is the center of a circum-
sphere of a tetrahedral cell and thus it can be positioned outside
of model boundary. We call such a node outrageous. Figure 10a
shows the outrageous nodes of TBWD. Figure 10b and c is close-
ups.

Definition 7. (Outrageous node) A node of TBWD is outrageous if it is
located outside of CA.

Hence, the removal of outrageous nodes improves the quality
of TBWD. It turns out that an outrageous cell tends to be relatively
flat and located near ∂CA (Amenta et al., 2001). Figure 10b shows
some (blue) outrageous nodes and the corresponding (red) CDT
cells near ∂CA. An outrageous node can be easily identified by
testing the existence of an intersection between its incident
links and ∂CA. An outrageous node can be either a leaf node or
non-leaf node in TBWD.

Lemma 4. Outrageous nodes of TBWD(N, L) can be removed in O(|N|)
time on average.

Figure 9: MAT from TBWD in LCA. (a) TFWD. (b) TBWD. (c) After outrageous node removal. (d) After hairy node shaving. (e) After bumpy nodes straightening.
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Figure 10: Example of the outrageous nodes in TBWD of LCA. (a) All outrageous nodes shown with the mesh model. (b) Close-up of an artery tip showing a few outrageous
nodes. (c) Circumspheres of the outrageous cells.

Proof: Given CA(V, E, F), we need to perform the intersection test
between the line segment corresponding to l ∈ L and a triangular
face f ∈ F. If we do not use any acceleration, it would take O(|L||F|)
time. With a spatial bucket that has O(|F|) elements for acceler-
ation, it takes O(1) time on average for detecting an intersection
and removing the outrageous node. Hence, it takes O(|L|) time
on average for removing all outrageous nodes. Recall that |L| =
O(|N|).

�

4.2. Hairy node shaving

Even after outrageous nodes are removed, TBWD usually contains
tiny subtrees that are meaningless for being a part of medial
axes. Figure 11a shows TBWD of LCA after the outrageous nodes
are removed. Figure 11b is a close-up of the region in the red
box that shows several tiny subtrees after removing outrageous
nodes. We call such a subtree a hair because of its tiny and noisy
contribution to medial axis and the operation to remove hair is
called shaving. Figure 11c and d shows the hair and the (orange)
CDT cells corresponding to the hair. In Fig. 11e, the blue color
represents TBWD, together with their corresponding CDT cells,
after shaving the hairy nodes. Compare the blue cells with the
orange cells.

The idea of shaving is straightforward. Let π i ⊂ TBWD be the
path from a leaf node ni to the root node of TBWD. We measure
the contribution of each path π i to TBWD and shave (or ignore) it
off from TBWD if its contribution is relatively trivial. The specific
shaving process can be found in Appendix A.

Lemma 5. Hairy node shaving of TBWD(N, L) takes O(|N|) time.

Proof: Suppose that TBWD has m leaf nodes. First, we compute
the distance from the root to each node of TBWD in O(|N|) time.
When π i(Ni, Li) is concatenated to Ti−1, the length λ of other re-
maining paths in TBWD needs to be updated. We can update λ in
O(1) time by referring to the distance attribute. As there can be
O(|N|) paths, this process can be done in O(|N|) time. �

4.3. Bumpy node straightening

TShaved usually represents the topology of CA pretty well. How-
ever, it may contain some bumpy nodes that are eccentric from

the medial axis of CA. The bumpy nodes can lower the quality
of the mapping between LV and CA. In this section, we present
how to straighten bumpy nodes so that TShaved fits better for a
medial axis.

Consider three consecutive nodes ni−1, ni, ni+1 of a shaved
adjacency tree. Let �vi be the vector from ni−1 to ni. Let θ i < 180◦

be the angle between �vi and �vi+1 at ni (this is called the nodal
angle of ni). We consider θ i the measure of the turn of the path
at ni and measure it at every node with degree two in TShaved. If
the nodal angle of ni is greater than a threshold, say θmax, we
consider it a bumpy node and remove. More specific discussion
to determine θmax can be found in Appendix B.

To find bumpy nodes, we need to check the nodal angle of all
nodes in TShaved, thus leading to the following time complexity.

Lemma 6. Bumpy node straightening of TShaved(N, L) can be done in
O(|N|) time.

Theorem 7. MAT can be constructed for CA(V, E, F) in O(|V|2) time.

Proof: From the lemmas above, the most time-consuming pro-
cess for computing MAT is the backward Dijkstra pass that
takes O(|N|2) time where |N| = O(|V|) for G(N, V). �

5. Segmentations of Medial Axis, Arteries,
and Ventricles

For the diagnosis and decision-making of treatment, the local-
ization and evaluation of the extent of regional myocardium at
risk subtended by obstructed CA is critical. For this purpose, we
segment the geometric models of MAT , coronary artery CA, and
left ventricle LV (i.e. Steps V and VI in Fig. 1).

5.1. Segmentation of medial axis

First of all, it is necessary to segment a medial axis according
to a physician’s need. The basic segmentation method is an au-
tomatic mode to split a medial axis into pieces at branch nodes
with the degree three. A physician may want to find the relation-
ship between a smaller segment of artery and heart muscle. In
this case, a medial axis can be segmented by a manual mode.
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746 Medial-ABC for correspondence between Myocardium and Coronary Artery

Figure 11: Hairy node shaving in LCA. (a) TBWD with hairy nodes (outrageous nodes are removed). (b) Close-up of a CA segment (CDT cells and TBWD). (c) TBWD (orange)

and TShaved (blue). (d) CDT cells of the hairy nodes. (e) TShaved and the corresponding CDT cells. (f) Overall structure of TBWD and TShaved.

Figure 12: Segmentation of the MAT of CA. (a) MAT of the LCA. (b) MAT of the RCA. In both figures, hollow red and blue circles denote the root node.

We consider MAT as a set of segments, i.e. MAT =
{Mat1, Mat2, . . .}. Mati ∈ MAT consists of an ordered set of one
or more node. Figure 12a and b shows the segmentations of me-
dial axes of LCA and RCA, respectively. The branch nodes can be
found to segment MAT by scanning the nodes, thus leading to
the following lemma.

Lemma 8. Given MAT = MAT (N, L ), segmentations of MAT takes
O(|N|) time.

5.2. Segmentation of coronary artery

We want to segment CA according to the segmentation of MAT
by finding the portion of CA corresponding to each segment of
MAT . Let CDTCA be the constrained Delaunay triangulation CDT
of CA. Then, we formulate the segmentation of CA as an opti-
mization problem called an assignment problem: Assign each
CDT cell of C to one, and only one, node of N in MAT . The mea-
sure of the optimization problem is the total distance between
each pair of cell and node. We use the Euclidean distance be-
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Figure 13: Segmentation of the coronary artery CA using the segmented medial axis. (a) The segmentation of the LCA. (b) The segmentation of the RCA.

tween the mass center of tetrahedral CDT cell and the position
of the node on MAT . Recall that a node position is the center of
the circumsphere of a tetrahedral cell and the center of mass is
located within tetrahedron.

The segmentation problem, referred to as CA-SEG-OPT, is
therefore a many-to-one assignment problem and can be for-
mulated as an integer linear program as follows:

Minimize
∑

i∈I

∑

j∈J

d(ci , nj )xi j , (2)

s.t.
∑

j∈J

xi j = 1, i ∈ I, (3)

xi j ∈ {0, 1}, (4)

where I and J are the indices of the sets for C and N, respectively,
and d(ci, nj) is the Euclidean distance, between the position of nj

∈ N and the center of ci ∈ C. Equation (3) enforces each cell to be
assigned to one and only one node. The formulation above can
be solved by assigning each CDT cell to its closest node on MAT .
Solving the formulation above in a naive way takes O(|C||N|) time
in both worst and average case because the assignment of each
cell to the nearest node on the medial axis can be done by scan-
ning the distance from the cell to all nodes in N. This compu-
tational requirement can be prohibitive for physician to use in
practice because both |C| and |N| are usually big numbers. For the
example of Model-13, LCA has 2,787 nodes on MAT and 37,999
CDT cells, and RCA has 1,773 nodes on MAT and 24,210 CDT
cells. Hence, we have devised a heuristic algorithm that runs fast
yet produces an excellent solution.

The heuristic algorithm for the assignment problem above
runs as follows. First, we make an initial assignment of cells to
the nodes on MAT . Recall that each node on MAT already has
a corresponding CDT cell. We use this correspondence directly
for the initial assignment taking O(1) time for each assignment
of a cell and O(|N|) time for all nodes in N.

Second, we propagate to the neighbor not-yet-assigned cells
in CDT. There are many unassigned CDT cells corresponding to
outrageous nodes, hairy nodes, and bumpy nodes as shown in
Fig. 11.

The propagation is done node by node on MAT in parallel.
Suppose that a node ni is associated with a CDT cell ci. Be aware
that ni is associated with only one cell after the initial assign-
ment and becomes associated with more cells as the propaga-
tion proceeds. Let cj be one of the CDT cells adjacent to ci that
is not associated with any node yet. Then, we blindly associate

it to ni. We repeat this process of one new assignment at a time
for all nodes until all cells are assigned. We will eventually get a
segmentation of CA where two segments encounter each other
at a segment boundary.

Third, we resolve conflicts in the topological assignment. We
do not use any measure of distance in the assignment above
and therefore the assignment does not necessarily reflect the
Euclidean distance. This property may introduce a conflict be-
tween the assignment of the cells for two segments in the neigh-
bor. In other words, one cell, say ck, of the segment Mati at the
boundary with the segment Matj may be closer to the segment
Matj from Euclidean distance point of view. In this case, we re-
assign ck from Mati to Matj. Both assignment and reassignment
of cells to segments take O(|C|) time for all cells in C.

Note the following properties: (i) Segmentation is dependent
on propagation sequence and (ii) Segment can be disconnected.
Figure 13a and b shows the segmentation of the LCA from two
different views.

Lemma 9. Given MAT , CA(V, E, F) can be segmented in O(|V|) time.

Proof: An initial assignment can be done in O(1) using the cor-
respondence between the nodes in MAT and the cells in CDT.
With an initial assignment, both assignment and reassignment
of cells can be done in O(|C|) time, where |C| denotes the num-
ber of cells in CDT. As |C| = O(|V|), CA can be segmented in O(|V|)
time. �

5.3. Segmentation of left ventricle

Left ventricle LV is most critical for the mechanical function of
heart and functions with the blood supply by coronary artery CA.
As CA supplies blood to LV muscles through perfusion process,
we assume the Euclidean distance between the boundaries of
CA and LV is fundamental for understanding the properties of
the system. In this regard, we want to segment LV into a set of
subregions so that each subregion could be assigned to one seg-
ment of MAT in proximity.

We treat the segmentation of LV in a similar way to the seg-
mentation of CA in that we use the same formulation of an as-
signment between the nodes on MAT and the CDT cells within
LV. This formulation, referred to as LV-SEG-OPT, is based on the
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748 Medial-ABC for correspondence between Myocardium and Coronary Artery

Figure 14: Segmentation of the mesh models of the left ventricle LV and coronary artery CA using the medial axis of CA. (a) The segmentation of LV and CA in LCA
side. (b) LV only. (c) LV view from inside. (d) The segmentation of LV and CA view from RCA side. (e) LV only. (f) LV view from inside.

rationale that the closer the CA and LV are, the easier would be
the blood supply through microvascular network from CA to LV.

There is, however, an important difference between the two
optimization problems. Let CDTLV be the CDT of LV and CDTCA

be the CDT of CA, respectively. Recall that in CA-SEG-OPT, there
exists an association between the nodes on MAT and the cells
in CDTCA so that the initial assignment for the segmentation can
be easily done. In LV-SEG-OPT, however, no such an association
exists between the nodes on MAT and the cells in CDTLV. Hence,
it is necessary to establish an association between each node on
MAT and one of the cells in CDTLV. Once the initialization is
done, the rest of the process for LV-SEG-OPT is exactly identical
to that of CA-SEG-OPT.

A naive approach for solving LV-SEG-OPT also takes O(|C||N|)
time, where |C| denotes the number of CDT cells in CDTLV. Note
that the number of cells in CDTLV is even bigger than in CDTCA.
For the example of Model-13, CDTLV has 202,183 cells. Hence,
computational requirement is even more prohibitive than be-
fore. We have devised an efficient heuristic for the initial assign-
ment.

Let PLV be the set of the vertices of ∂LV and PMAT the set of
the nodes on MAT . Let P = P L V ∪ PMAT . Let DT(P) be the De-
launay triangulation of P. Then, DT(P) has the proximity infor-
mation among the vertices of ∂LV and the nodes on MAT in
a compact representation of the ordinary Voronoi diagram. We
use DT(P) to quickly locate the CDT cell that is the closest to each
node on MAT . Note that DT(P) can be computed in O(|P|log |P|) in
the worst case and in most cases, experiments show a strongly
linear time behavior to |P|.

The traversal in DT(P) to find an initial assignment between
a node and a cell is done as follows. Consider a node p ∈ PMAT .
We locate a DT cell cDT incident to p and check if there exist any
vertex v ∈ PLV on ∂cDT. If there exists such a vertex v, we check
the other DT cells in the neighbor that has another vertex closer
than v from p. If such a vertex is not found in the first shell of
cells incident to p, we go farther to the second shell of cells. We
can eventually find a DT cell c incident to p where c has at least
one DT vertex, say q, belonging to PLV. In this way, we can find
the association for the initial assignment. Iteration of this pro-
cess for all nodes on M completes the initialization of the LV
segmentation. Note that the initialization is 1-to-1 mapping.

Figure 14a shows the segmentation result of both CA and LV:
The parts corresponding to the branches of LCA are red-colored
while those of RCA are blue-colored. Figure 14b and c shows the
segmentations of LV in LCA side, and view outside and inside,
respectively. Figure 14d–f shows the corresponding segmenta-
tions in RCA side, respectively. Recall that we model LV with a
wall thickness: Be aware that LV inside is also segmented and
thus the volume of LV region corresponding to a supplying CA
piece can be measured.

Lemma 10. Given MAT , LV(V, E, F) can be segmented in O(|V|log |V|)
time.

Proof: Computing DT(P) takes O(Plog P) time. With DT, an initial
assignment can be found in O(|P|) time. The segmentation can be
done in O(|C|) time, where |C| denotes the number of cells in CDT.
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Note that |N|  |V| and |C| = O(|V|). Therefore, the segmentation
of LV takes O(|V|log |V|) time. �

5.4. Summary of algorithm CardiacVis

The proposed algorithm is summarized in Algorithm 2. It first
constructs the constrained Delaunay triangulation CDTCA of CA
(Step 1), which is used for the construction of an adjacency graph
(Step 2). Step 3 extracts an adjacency tree by removing the cy-
cles of the adjacency graph. The adjacency tree is transformed
to the medial axis by removing outrageous nodes, shaving hair,
and straightening bumpy nodes in Steps 4, 5, and 6, respectively.
Step 7 computes CDTLV for the segmentation of LV. Then, the al-
gorithm segments LV and CA into subregions by assigning each
tetrahedral cell in both CDTLV and CDTCA to each node in the me-
dial axis in Steps 8 and 9, respectively.

Algorithm 2: Segmenting C A and L V

input : The mesh models of coronary artery C A and left
ventricle L V

output: Medial axis MAT and the segmentation of C A and
L V

1 Step 1) Construct the constrained Delaunay triangulation
C DTC A of C A;

2 Step 2) Compute the adjacency graph G from C DTC A;
3 Step 3) Extract the adjacency tree T BWD from G (Algorithm

1);
4 Step 4) Remove the outrageous nodes;
5 Step 5) Shave hairs of T BWD (Algorithm 3);
6 Step 6) Straighten the bumpy nodes of T BWD ;
7 Step 7) Segment C A;
8 Step 8) Compute constrained Delaunay triangulation

C DT L V of L V;
9 Step 9) Segment L V;

Theorem 11. Given CA(VCA, ECA, FCA) and LV(VLV, ELV, FLV), the
Medial-ABC algorithm takes O(V2

C A + VL V log VL V ).

6. Experiment and Discussion

This section presents experimental results using a set of 20 clin-
ical cases of anonymous patients from Samsung Medical Cen-
ter, Seoul, Korea. The cardiac CT images of LCA, RCA, and LV of
each case were obtained using a dual source CT scanner, SO-
MATOM Definition Flash (Siemens Healthineers, Germany) (Sie,
2016), with a slice thickness of 0.6 mm and nonionic contrast
medium (Iomeron) in DICOM (Digital Imaging and Communica-
tions in Medicine) format (Digital Imaging and Communications
in Medicine, 2015). The mesh models were extracted from the CT
images and stored in the STL format using the Vitrea Worksta-
tion program (Vitrea workstation, 2015). Refer to the accompa-
nying STL files of the 20 test cases. The computational environ-
ment is as follows: Intel Core2 Duo E7500 2.93 Ghz, 4GB RAM,
Windows 7, and Microsoft Visual C++.

6.1. Preview of the 20 test cases

The mesh models of the 20 test cases are referred to as (Sam-
sung) Model-i, i = 1, 2, . . . , 20, where i corresponds to the size of
left ventricle LV (i.e. #vertices): The more vertices an LV has, the
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Figure 15: The statistics profile of 20 Samsung models.

higher its i is. This is because LV is the major muscle responsible
for the most mechanical function of heart. Each model has three
components: LV, CA1, and CA2, where CA1 or CA2 may be either
the left or right coronary artery. Figure 15 shows the statistics
profile of the 20 models.

Let |V|, |E|, and |F| denote the number of vertices, edges, and
faces in each model.

We first checked to confirm that the models are all 2-
manifold and watertight. Next, we checked the Euler character-
istic that is |V| − |E| + |F| = 2(1 − g). The specific statistics of
the 20 models are represented on Appendix D (Model-13 is the
example we used throughout this paper). As coronary arteries
are cycle-free in human body, it is expected to find g = 0 in both
CA1 and CA2 for all models. However, the coronary arteries of
some models have nonzero gs, implying the existence of topo-
logical handles. Appendix C shows some example of the topo-
logical handles from the test cases.

6.2. Center of circumsphere vs. center of mass

We used the center of the circumsphere of each CDT cell in the
generation of the nodes of the adjacency graph, say Gcircum. One
may wonder what if we use the center of mass of each cell in-
stead of the center of the circumsphere to get the adjacency
graph, say Gmass. Obviously the topologies of both graphs are
identical. It might seem that Gmass might be advantageous in
that its nodes are guaranteed to lie inside of CA. However, it turns
out that Gmass is not appropriate for the proposed algorithm but
Gcircum is as illustrated by the example below.

Figure 16a and c shows the shaved adjacency trees, say T Shaved
circum

and T Shaved
mass , corresponding to Gcircum and Gmass, respectively. Fig-

ure 16b and d shows the zoom-ups of an arbitrary segment. Ob-
serve that the quality of T Shaved

mass is significantly inferior to that of
T Shaved

circum for two important view points. First, the path of T Shaved
mass

is very much wiggling. Second and more critically, the path of
T Shaved

mass is quite significantly off-the-center of the artery to the
mesh boundary because CDT frequently contains many flat-
shaped cells that lie near boundary.

6.3. Properties of the Medial-ABC method

Figure 17a shows the size of the adjacency graph and adjacency
tree of CA: Different colors denote the entity sizes after differ-
ent steps are applied. Note that the data size decreases as the
algorithm proceeds its steps. The adjacency tree extraction and
shaving steps significantly reduce the number of nodes: The out-
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Figure 16: Generated MAT from two different adjacency graphs. (a) MAT when center of circumsphere is used (proposed method). (b) Close-up of (a) in red box. (c)
MAT when center of mass is used. (d) Close-up of (c) in red box.

Figure 17: Size of the adjacency graph and adjacency tree: The data size decreases as the algorithm proceeds in its steps for computing the medial axis. (a) Different

colors denote the entity size after different steps of the algorithm are applied and (b) only two curves corresponding to both shaving and straightening are shown.

rageous node removing and the straightening steps do not re-
duce much. Figure 17b shows two curves corresponding to the
shaving and straightening steps.

Figure 18 shows the computation time of both the medial axis
and the entire segmentation for the test data set of the 20 clin-
ical cases. We group the steps of Algorithm 2 into three phases:
Phase I (extraction of adjacency tree) consisting of Steps 1, 2,
and 3; Phase II (transformation of adjacency tree to medial axis)
consisting of Steps 4, 5, and 6; and Phase III (segmentation of
ventricles and coronary arteries) consisting of Steps 7, 8, and
9. Figure 18a decomposes the computation time for the medial
axis into three parts: the time for loading each CA model file,
the time for Phase I, and the time for Phase II. Note that the to-
tal time shows a quadratic increase with respect to the model
size because the most expensive operation is Step 3 with the
time complexity O(|N|2) with respect to G(N, L) (see Section 3.2)
and |N| linearly increases regarding the model size. For the clar-
ity of the other computation times, the times for Phase I and II
are shown in Fig. 18b and c, respectively. The time for loading
the CA triangular mesh model is excluded. Among the times for
Phase I, the time for adjacency tree extraction is mostly domi-
nant while times for both CDT and the adjacency graph are rel-
atively negligible. For the steps of Phase II, the outrageous node
removing takes more time than other steps. The bumpy-node-
straightening step is relatively negligible. Figure 18d shows the
times for the LV model file loading and Phase III, which consists
of the computation of CDTLV, CA segmentation, and LV segmen-
tation. The time for CDTCA is not shown because that is already

included in Phase I. The time for LV segmentation shows a su-
per linear increase with model size because its time complexity
is O(|V|log |V|) with respect to LV(V, E, F) (refer lemma 10).

7. Developed Program: CardiacVis

We have developed the CardiacVis program, which imple-
mented the proposed algorithm on Microsoft Windows. Fig-
ure 19 shows the segmentation of CA and LV in the main graphics
window. After segmenting LV and CA using MAT , CardiacVis
visualizes the recognized branches of CA in the main pane with
the synchronized colors for the corresponding LV and CA seg-
ments. The right pane displays the tree hierarchy of CA branches
and the lower pane shows the parent–child relationship be-
tween CA branches with a color encoding. The lower pane also
shows the mass properties of each segmented subregion of LV
and its supplying CA branch. The mass properties include the
volume/surface area of the segmented LV subregion, the length,
thickness, surface area, and volume of CA branch, of which the
importance for medical diagnosis and treatment to the cardiac
function was verified (Frangi et al., 2001; Kurata et al., 2015; Sum-
itsuji et al., 2016). Hence, the CardiacVis program, which imple-
mented the proposed algorithm, will be useful for the assess-
ment of the severity of heart attack by quantifying the volume
and area of the myocardium at risk.

Figure 20 shows an application using the segmentation of LV.
Suppose that we pick a point, as marked by the yellow arrow,
which actually corresponds to a node of MAT . Consider that CA
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Figure 18: Computation time for test data set. (a) Decomposition of the medial axis computation time into CA model file loading, Phase I, and Phase II, (b) decomposition

of times for Phase I into CDT/adjacency graph and adjacency tree, (c) decomposition of times for Phase II into outrageous node removing, hair shaving, and bumpy
node straightening, and (d) computation time for LV model file loading, Phase III, which is decomposed into CDTLV of LV, LV segmentation, and CA segmentation.

Figure 19: The CardiacVis program to segment the mesh models LV and CA of the left ventricle and coronary artery, respectively. After segmenting LV and CA using
MAT , the CardiacVis program displays the recognized CA branches and the corresponding segmented LV subregions with the colors synchronized in the main pane.
The right pane shows the tree hierarchy of CA branches. The lower pane shows the mass properties of each segmented subregion of LV and its supplying CA branch.
The mass properties include the volume/surface area of the segmented LV subregion, the length, thickness, surface area, and volume of the CA branch.
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Figure 20: Linkage between the mesh model LV of left ventricle and the mesh model CA of a supplying coronary artery. Given the segmentation of LV and CA, my-
ocardium at risk can be precisely localized and quantified by designating the location of obstruction (yellow arrows). (a) Obstruction in proximal CA results in larger
amounts of myocardium at risk compared to (b) obstruction in distal CA. The extent and border of myocardium at risk can also be clearly identified. The obstructive
CA pieces are shown in light gray and the subtended LV pieces in dark green.

Figure 21: Section view of a left ventricle. After the upper lump of the left ventricle above a trimming plane is removed, the remaining part of the left ventricle and

the entire coronary arteries are shown in (a). The trimming plane is created through a user interaction with CardiacVis via screen (The trimming plane is not shown).
The figure in the red box of (a) is the ventricle from a different view: Be aware that the muscle in the ventricle wall is also properly assigned to a corresponding CA

branch. (b) similarly shows a section view for a different trimming plane.

is obstructed at the picked point. Figure 20a shows (i) the subset
of the coronary artery from the pick point down to the leaves
(shown in light gray), and (ii) the subset of LV corresponding to
CA subset (shown in dark gray). Figure 20b shows the case that
the picking point is located further down to a leaf. Observe that
the corresponding LV region shrinks.

Figure 21 shows a section view of the left ventricle and the
entire coronary arteries. Figure 21a shows the remaining part of
the left ventricle after the upper ventricular lump above a trim-
ming plane is removed where the trimming plane (not shown in
the figure) is created through a user interaction with CardiacVis

via the screen. The figure in the red box of Fig. 21a is the ven-
tricle from a different view. Be aware that the muscle in the
ventricle wall is also properly assigned to a corresponding CA
branch. Figure 21b similarly shows a section view for a differ-
ent trimming plane. Thus, we can investigate the morphome-
try of myocardium such as the wall thickness from the section
view and can easily compute the thickness if necessary. Note
that the wall thickness of the left ventricle is an important mea-
sure for analyzing cardiac function and diagnosing cardiovascu-
lar disease (Sasayama, Franklin, Ross, Kemper, & McKown, 1976;
Gaasch, 1979; Olivotto et al., 2003).

Thus, the proposed mesh model-based approach can facil-
itate various clinical studies where model quantification is an
important measure (Frangi et al., 2001; Prakash & Ethier, 2001;
Saito et al., 2005; Kurata et al., 2015; Sumitsuji et al., 2016). Fur-
thermore, the proposed research could be exploited for appli-
cations related to model optimization. For example, one of the
promising therapies for cardiac disease is to transplant stem
cells into either the myocardium at the site of injury or the sup-
plying CA branch (Segers & Lee, 2008; Shafiq et al., 2016). One
important issue for this approach is to optimize the delivery of
stem cells to the appropriate site so that cardiac regeneration is
maximized (Oettgen, 2006). In this case, the segmentation result
of this study would be more importantly used for the delivery
optimization.

8. Conclusion

This study presents an algorithm and its implementation to seg-
ment regional myocardium at risk subtended by any potentially
obstructed CA based on the geometric models of a triangular
mesh for the CA and LV obtained from an individual cardiac CT
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image. The key idea of the Medial-ABC algorithm is (i) computa-
tion of MAT of CA and (ii) segmentation of CA and LV into a set
of regions where each corresponds to a node of the medial axis.
The MAT is transformed from an adjacency tree, which is ex-
tracted by removing cycles of an adjacency graph. The adjacency
graph is constructed from the constrained Delaunay triangula-
tion of the triangular mesh model of the coronary artery. The al-
gorithmic accuracy and efficiency are theoretically asserted and
experimentally verified.

Obstruction of the CA results in acute myocardial infarction.
Hence, quantification of the regional amount of myocardium
subtended by the obstructed CA is of critical value in clinical
medicine. However, conventional methods such as the 17-piece
model are inaccurate and frequently disagree with clinical prac-
tice. The proposed algorithm provides a robust mathematical
linkage between myocardium at risk and supplying CA so that is-
chemic myocardial region can be accurately identified, and both
the extent and severity of myocardial ischemia can be quantified
effectively and efficiently. Furthermore, the computed result of
segmented CA and LV can be more importantly used for build-
ing optimization models of cardiac systems for various applica-
tions. We believe that the algorithm and developed CardiacVis

program will be an invaluable tool for patient-specific risk pre-
dictions and the treatment of obstructed CA disease in clinical
medicine.

The clinical benefit of the proposed research can be summa-
rized into the following two aspects:

� Medial-ABC enables mathematical interpretation of coro-
nary artery disease, which would enhance physician’s un-
derstanding of coronary artery disease and support machine-
based automatic diagnosis and decision of treatment.

� Medial-ABC enables myocardial tessellation, which is re-
quired for computational modeling of coronary circulation.
Now, several commercial products including FFR-CT have
been developed and are being used in clinical practice.

Even though we do not mention in this paper, the accuracy
evaluation of the proposed research is important. Hence, the
concept is not so simple; we reasoned that the whole study pro-
cess needs to be separated into stepwise processes. As a proof
of concept, here we presented our methodology and representa-
tive cases. Validation of accuracy needs large amount of clinical
data, which would require extensive workload and data acquisi-
tion cost. Considering the amount of data to be presented with
validation, it might be appropriate to present it in a separate pa-
per.
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Piroth, Z., Jagic, N., Möbius-Winkler, S., Rioufol, G., Witt, N.,
Kala, P., MacCarthy, P., Engström, T., Oldroyd, K. G., Mavro-
matis, K., Manoharan, G., Verlee, P., Frobert, O., Curzen, N.,
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F., Gröller, M., & Nagel, E. (2010). Patient-specific mappings
between myocardial and coronary anatomy). In Scientific vi-
sualization: Advanced concepts (Vol. 1). Germany: Dagstuhl Pub-
lishing.

Updegrove, A., Wilson, N. M., & Shadden, S. C. (2016). Boolean
and smoothing of discrete polygonal surfaces. Advances in En-
gineering Software, 95, 16–27.

Vitrea workstation (2015). https://www.vitalimages.com/vitrea/.
Accessed 14 July 2020.

Wade, L., & Parent, R. E. (2002). Automated generation of control
skeletons for use in animation. The Visual Computer, 18(2), 97–
110.

Wei, X., Qiu, S., Zhu, L., Feng, R., Tian, Y., Xi, J., & Zheng, Y. (2018).
Toward support-free 3D printing: A skeletal approach for par-
titioning models. IEEE Transactions on Visualization and Com-
puter Graphics, 24(10), 2799–2812.

West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model
for the origin of allometric scaling laws in biology. Science,
276(5309), 122–126.

Wischgoll, T., Choy, J. S., Ritman, E. L., & Kassab, G. S. (2008).
Validation of image-based method for extraction of coronary
morphometry. Annals of Biomedical Engineering, 36(3), 356–368.

World Health Organization (2012). World health statistics 2012
(world health statistics annual). Technical report. World
Health Organization.

Xiong, G., Sun, P., Zhou, H., Ha, S., Hartaigh, B. O., Truong, Q.

A., & Min, J. K. (2017). Comprehensive modeling and visual-
ization of cardiac anatomy and physiology from CT imaging
and computer simulations. IEEE Transactions on Visualization
and Computer Graphics, 23(2), 1014–1028.

Xu, J., Zhou, M., Wu, Z., Shui, W., & Ali, S. (2015). Robust surface
segmentation and edge feature lines extraction from frac-
tured fragments of relics. Journal of Computational Design and
Engineering, 2(2), 79–87.

Yap, C.-K. (1997). Towards exact geometric computation. Compu-
tational Geometry: Theory and Applications, 7(1–2), 3–23.

Appendix A: Shaving Algorithm

The shaving process is done as follows. Suppose that ni is or-
dered by the non-increasing length of π i (i.e. π1 is the longest).
Let T0 ⊆ TBWD be the tree consisting of the root node of TBWD. We
grow T0 by concatenating every path π i until the last one as fol-
lows: Ti = πi

⊕
Ti−1 (refer to Definition 5). Let λij = λ(π j, Ti) be the

length of the subset of π j from a leaf node nj to the nearest node
of Ti. Then, we define the distance Disti between the subtree Ti

and TBWD as follows.

Definition 8. (Distance between trees) Consider the subtree Ti ⊆
TBWD.

Disti = Dist(Ti , T BWD ) =
∑

λi j , nj ∈ NLeaf , (A.1)

where NLeaf denotes the set of leaf nodes in TBWD.

Lemma 12. Disti = 0 if, and only if, Ti ≡ TBWD; else, Disti > 0.

Figure A1: The profile of Disti and δi for shaving hairy nodes in LCA. (a) Disti. (b) δi . (c) Close-up with a threshold value δmin.
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Figure A2: The computation of distance between trees for hairy node shaving. The number in a parenthesis denotes the path length from the leaf node to a subtree.
(a) The initial tree T0 only consists of a root node (red filled circle). Dist0 is 80. (b) π1 is concatenated (i.e. the red edge bounded by the red empty circle). Dist1 is 21. (c)

π2 is concatenated. Dist2 is 20. (d) π3 is concatenated. Dist3 is 10. (e) π4 is concatenated. Dist4 is 9. (f) π5 is concatenated and no other paths remain. Dist5 is 0.

Disti is a descriptor for the difference (or similarity) between
two trees. If Disti decreases rapidly by concatenating π i to Ti−1,
we consider that π i significantly contributes to TBWD.

Definition 9. (Difference between distances) Let δi = Disti−1 − Disti

be the contribution of π i to TBWD.

Disti can be computed as follows. We create a ordered queue
QShave that stores all paths π i in the non-increasing order of path
length. Given Ti−1, we remove the first element π i of QShave and
find its maximal subset that has null intersection with Ti−1. Each
element removed from QShave takes O(k) where k represents the
number of links in the path that do not belong to Ti−1. Hence, all
elements in QShave take O(|N|) for |N| nodes in TBWD. We mark the
nodes and links of TBWD corresponding to π i when it is concate-
nated.

Lemma 13. Disti−1 > Disti.

Proof: Suppose TBWD has m leaf nodes. Disti−1 > Disti because
Disti−1 = ∑m

j=i λi−1, j >
∑m

j=i+1 λi−1, j >
∑m

j=i+1 λi j = Disti . �

The strong monotonicity stated by Lemma 13 implies that,
as more paths are concatenated, the being-concatenated tree is
closer to the entire TBWD. Hence, δi is always positive. The proper-
ties of Disti and δi are of interest. Figure A1a shows the profile of
Disti for the paths in TBWD (thus the entries in QShave). The hor-
izontal axis denotes the sequence of each path removed from

QShave and the vertical axis denotes the distance of the interme-
diate tree. Recall that this distance is a measure of the difference
between the two trees. The sudden decrease at a certain hori-
zontal location corresponds to a significant branch in CA and is
clearly detected by the sharp peaks in Fig. A1b. Figure A1c shows
the close-up of Fig. A1b with a cutoff threshold value δmin indi-
cated. The peaks higher than δmin produce recognized branches:
Those under δmin are ignored.

Figure A1 is useful in that it can be used to choose the thresh-
old δmin that determines the structure of medial axis MAT by
the decision whether a path π i is concatenated or not. The
choice of δmin is critical for the success of the algorithm. In
Model-13, we used δmin = ∑n

i=1
δi
n (the green horizontal line in

Fig. A1c).
Figure A2 shows an example of the hairy node shaving pro-

cess. Figure A2a shows TBWD that was produced by the backward
Dijkstra pass and T0, the root node of TBWD (shown as filled red
circle). There are five leaf nodes (shown as unfilled white cir-
cles). Note that λ0,j is given in the parenthesis. For example, λ0,1

is given as 18 (= 5+5+6+2) and λ0,2 is 17 (= 5+5+6+1).
T0 consists of the root node of TBWD. Hence, Dist0 = 80 (=

18+17+16+15+14). Then, π1 is removed from QShave and con-
catenated to T0 to make T1, i.e. T1 = π1

⊕
T0 as shown in the red

subtree in Fig. A2b. Note the updated statistics, i.e. λ1,2 = 1, λ1,3

= 6 (= 4+2), etc. and Dist1 is 21 (= 1+6+5+9).
In the next step, π2 is removed to be concatenated to T1

to make T2, i.e. T2 = π2
⊕

T1 as shown in the red subtree in
Fig. A2c. Note that all statistics remain identical except λ2,2
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that is changed to zero from one. Dist2 = 20 (= 6+5+9). In the
next step, π 3 is removed to be concatenated to T2 to make
T3, i.e. T3 = π3

⊕
T2 as shown in the red subtree in Fig. A2d.

Note that λ3,3 and λ3,4 are changed to zero and one, respectively,
while λ3,5 remains unchanged. Dist3 = 10 (= 1+9). Figure A2e
and f shows the following steps similarly constructing T4 and
T5, respectively. Observe that Dist4 = 9 but Dist5 = 0 because
T5 ≡ TBWD.

We observe δ1 through δ5 (see Definition 9): δ1 = 59, δ2 = 1,
δ3 = 10, δ4 = 1, and δ5 = 9. Given these values, if we decide to
remove the subtrees with contribution less than 5 (i.e. δ < 5), we
get the shaved tree TShaved that consists of three paths π1, π3,
and π5 because δ1 = 59, δ3 = 10, and δ5 = 9, respectively.

Algorithm 3 summarizes the algorithm to shave hairy nodes.
Lines 1 through 5 compute the path from the root node to each
leaf node and store each path with its corresponding leaf node in
the ordered queue QShaved. After the backward Dijkstra pass for
the outrageous node removal, the paths of the remaining nodes
(i.e. hairy nodes) are modified with its length changed. Hence,
Steps 2 and 3 are necessary: Step 2 is done by simply follow-
ing the traversal from a leaf node to the root node by following
the parent of each node. Lines 6 through 9 compute Disti, to-
gether with δi, of Ti which is constructed by concatenating each
path. Lines 11 through 15 construct the shaved adjacency tree.
As stated earlier, Algorithm 3 takes O(|N|) time in the worst case
where |N| is the number of nodes in TBWD.

Algorithm 3: Shaving Hairy Nodes

input : Unshaved adjacency tree T BWD

output: Shaved adjacency tree T Shaved

1 for each leaf node ni in T BWD do
2 Get a path πi from the root node to ni ;
3 Calculate the path length for πi ;
4 Push πi into the ordered queue QShave using a path

length as a key;

5 end
6 while QShave is not empty do
7 Remove the first element πi from QShaved;
8 Ti = Ti−1

⊕
πi ;

9 Compute Disti and δi ;

10 end
11 Initialize T Shaved ≡ ∅. for each path πi do
12 if δi ≥ δmin then
13 Concatenate πi to T Shaved;
14 end

15 end

Steps 2 and 3 can be performed by simply following the path
in the tree. Remember this is a tree. So, simply traversal to the
parent from each node will do the job.

Appendix B: Determination of θmax

In Fig. B1, the red bars denote the frequency distribution of nodal
angles in LCA. We observe that the distribution is right-skewed
in the non-negative space and found that the log-normal distri-
bution, shown as the black curve, fits it fairly well. We estimated
its two parameters μ̂ and σ̂ as 2.86 and 0.78 through the maxi-
mum likelihood estimation, respectively. Note that the blue bars
correspond to the nodal angles of RCA.

We tested three values for θmax, 99, 95, and 90th percentiles
from the log-normal distribution, which correspond to 107.5,
47.5, and 63.1 degrees of nodal angles, respectively. Note that
if we choose ξ-th percentile, (100-ξ )% of the statistics over ξ is
removed. Figure B2 shows a straightening example of RCA. Fig-
ure B2a and b shows TShaved before and after the straighten-
ing operation with θmax = 90%, respectively. We observe major
changes in several locations. For example, see the black box. Fig-
ure B2c shows the close-up of the black box in Fig. B2a. Com-
pare it with Fig. B2f that shows the straightened result with
θmax = 90%: The seemingly self-intersection structure disappears
after the straightening operation. In addition, we can easily no-
tice several small improvements. Figure B2d and e shows the
straightening results for 99th and 95th percentile, respectively.
See the improvements with different thresholds. We use the
straightened TShaved as MAT . In the case of RCA, the 2,252 nodes
in the TShaved before straightening decreased to 2,241, 2,158, and
2,066 nodes for the 99, 95, and 90th percentile thresholds, re-
spectively.

Figure B1: The frequency distribution of nodal angles in TShaved. The red bars

denote the frequency distribution of LCA. The blue bars correspond to the nodal
angles of RCA. The black curve shows the estimated log-normal distribution.
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Figure B2: The straightening result for different threshold values. (a) Tshaved. (b) MAT with 90th percentile (47.5 degree). (c) A close-up of (a) in the black box. (d) Straight-

ening result with 99th percentile (107.5 degree). (e) Straightening result with 95th percentile (63.1 degree). (f) Straightening result with 90th percentile (47.5 degree).

Appendix C: Topological Handles in Test
Cases

Figure C1a–c shows the topological handles in the CA. We
believe that these artifacts were created by the measurement
error during the CT scanning in conjunction with an inappro-
priate decision-making in the mesh extraction algorithm of the
program used. Most left ventricles have nonzero gs. See Fig. C1d

and e for tiny artifacts that might be caused by measurement
error. Figure C1e is Model-13, which is used throughout this
paper: See the tiny holes in the red circle in Fig. 2e. It is inter-
esting that LV of Model-15 has g = 333 (see Fig. C1f). The low
resolution of the CT-scanning techniques and possible bugs
in mesh generation program might be responsible for such
errors.

Figure C1: The example of holes among the models. Visualization is done via MeshLab (Cignoni et al. 2008). (a) CA in Model-1. (b) CA in Model-2. (c) CA in Model-9. (d)
LV in Model-12. (e) LV in Model-13. (f) LV in Model-15.
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Appendix D: Summary of 20 Test Cases

Table D1: Statistics for the 20 Samsung models. Each model consists of three components: LV, CA1, and CA2. The row EC shows the Euler
characteristic |V| − |E| + |F| − 2. g is the genus.

Model ID 1 2 3 4 5 6 7 8 9 10

LV |V| 17,929 19,215 23,278 27,568 29,849 30,754 30,970 31,509 31,749 33,032
|E| 53,781 57,639 69,834 82,698 89,541 92,268 92,910 94,533 95,241 99,102
|F| 35,854 38,426 46,556 55,132 59,694 61,512 61,940 63,022 63,494 66,068
EC 0 0 −2 0 0 −4 −2 −4 0 −4
g 0 0 1 0 0 2 1 2 0 2

CA1 |V| 4,633 4,604 3,646 2,938 6,760 4,027 3,618 5,288 6,071 6,231
|E| 13,899 13,806 10,932 8,808 20,274 12,075 10,848 15,858 18,213 18,687
|F| 9,266 9,204 7,288 5,872 13,516 8,050 7,232 10,572 12,142 12,458
EC −2 0 0 0 0 0 0 0 −2 0
g 1 0 0 0 0 0 0 0 1 0

CA2 |V| 6,863 4,089 4,038 4,593 7,181 5,875 5,107 4,933 5,925 9,358
|E| 20,583 12,273 12,108 13,773 21,537 17,619 15,315 14,793 17,769 28,068
|F| 13,722 8,182 8,072 9,182 14,358 11,746 10,210 9,862 11,846 18,712
EC 0 −4 0 0 0 0 0 0 0 0
g 0 2 0 0 0 0 0 0 0 0

Model ID 11 12 13 14 15 16 17 18 19 20
LV |V| 33,745 33,943 34,642 36,407 39,773 41,694 41,783 41,907 46,090 48,720

|E| 101,235 101,841 103,950 109,215 121,311 125,082 125,349 125,727 138,318 146,154
|F| 67,490 67,894 69,300 72,810 80,874 83,388 83,566 83,818 92,212 97,436
EC −2 −6 −10 0 −666 −2 −2 −4 −18 0
g 1 3 5 0 333 1 1 2 9 0

CA1 |V| 5,280 5,063 5,928 4,891 4,393 3,665 4,141 4,410 4,653 5,932
|E| 15,834 15,183 17,778 14,667 13,173 10,989 12,417 13,224 13,953 17,790
|F| 10,556 10,122 11,852 9,778 8,782 7,326 8,278 8,816 9,302 11,860
EC 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0

CA2 |V| 4,436 6,975 8,964 6,461 8,300 6,805 7,309 7,728 7,570 8,099
|E| 13,302 20,925 26,886 19,377 24,894 20,409 21,921 23,178 22,704 24,291
|F| 8,868 13,950 17,924 12,918 16,596 13,606 14,614 15,452 15,136 16,194
EC 0 −2 0 0 0 0 0 0 0 0
g 0 1 0 0 0 0 0 0 0 0

Appendix E: Summary of Acronyms

Table E1: Summary of the acronyms in the manuscript.

Acronym Meaning

LV Left ventricle
CA Coronary artery
LCA Left CA
RCA Right CA
CT Computed tomography
MAT Medial axis transformation
CDT Constrained Delaunay triangulation
VD Voronoi diagram
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