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ABSTRACT In the military surveillance and security information systems, correct blind reconstruction of
signal parameters from unknown signals is very important. Especially, many blind reconstruction methods of
error-correcting codes have been proposed, and their theoretical performance analysis is essential for both the
defender whowants to prevent information leakage and the challenger whowants to extract information from
the intercepted signals. However, a proper performance analysis of most blind reconstruction methods has
not been performed yet. Among many blind reconstruction methods of BCH codes proposed so far, the blind
reconstructionmethod based on consecutive roots of generator polynomials proposed by Jo, Kwon, and Shin,
called the JKS method, shows the best performance under the unknown channel information. However,
the performance of the JKS method is only evaluated through simulation without performing theoretical
analysis. In this paper, the JKS method is asymptotically analyzed under the binary symmetric channel with
the cross-over probability p. Since the blind reconstruction performance heavily depends on how many and
which received codewords are used even for the same channel environment, sufficiently many codewords
are assumed to perform asymptotic analysis. More specifically, an asymptotic threshold on p, up to which
blind reconstruction is successful, is derived when the number of received codewords is sufficiently large,
which can be used as a new performance metric for blind reconstruction methods. Finally, the validity of the
asymptotic analysis is confirmed through simulation.

INDEX TERMS Asymptotic analysis, BCH codes, blind reconstruction, consecutive roots, generator
polynomial, military surveillance system, security information system.

I. INTRODUCTION
In the current digital communication systems, an error-
correcting code (ECC) is essential to achieve reliable infor-
mation communication [1]. By sharing the parameters of
ECC at both transmitter and receiver, a receiver can correct
channel errors. However, if the receiver does not know the
parameters of ECC used by the transmitter, it is very hard
for the receiver to communicate with the transmitter as well
as to correct the errors in the received signals. In such a
case, the receiver must blindly reconstruct the parameters of
ECC to correctly recover the information from the received
signals. Such blind reconstruction of ECCs is very important
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in various areas such as military surveillance and security
information systems [2]–[5]. For these reasons, blind recon-
struction of ECCs has been actively studied [2]–[15].

Especially, blind reconstruction of cyclic codes, one
of the most widely used ECCs, has been investigated
in many ways [2]–[9] and most of the proposed meth-
ods focus on recovering generator polynomials of cyclic
codes. In [2], a blind reconstruction method of Bose-
Chaudhuri-Hocquenghem (BCH) codes is proposed, which
uses the property that t-error correcting BCH codewords are
divisible by the generator polynomial having 2t consecutive
roots, but there is a problem that random data polynomials
can also be divisible by other minimal polynomial with
non-negligible probability. To resolve this problem, a prob-
ability compensation is used in [2] to improve the blind
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reconstruction performance. In [3], a generator polynomial
of binary cyclic code of length n is reconstructed by deriving
the syndrome distribution of the received codewords for all
possible factors of xn− 1. In more general situations, a code-
word synchronization scheme for the received bitstream,
in addition to a blind reconstruction of generator polynomial,
is proposed in [4]. Even if the above-mentioned blind recon-
struction methods show good performance, unfortunately,
clear performance analysis has not been performed.

In [5], a blind reconstruction method of BCH codes based
on Galois field Fourier transform (GFFT) is proposed for the
first time. All the codeword polynomials of BCH code share
the roots of generator polynomial and the roots of the received
codeword polynomials can be easily verified by perform-
ing GFFT to them. Therefore, by checking the roots of the
received codeword polynomials through GFFT, the method
in [5] estimates the roots of generator polynomial. In [6],
a blind reconstruction method of BCH codes is proposed,
which uses the property that all the codeword polynomials
of BCH code with the error-correcting capability t share the
same 2t consecutive roots which are roots of generator poly-
nomial. This blind reconstruction method in [6] is performed
as follows. Initially, find the maximum length of consecu-
tive roots (MLCR) and the corresponding starting value of
consecutive roots (SVCR) for each of the received codeword
polynomials. Then, the most frequent values of SVCR and
MLCR are used to reconstruct the generator polynomials
of BCH codes. Note that this blind reconstruction method
in [6] outperforms the other blind reconstruction methods
and does not even utilize channel information. However,
the blind reconstruction performance of this blind reconstruc-
tion method has been evaluated only by simulation, and since
theoretical performance analysis has not been performed, it is
hard to estimate the exact performance or the performance
limit for various cases. Therefore, such lack of analysis makes
it difficult to properly apply this method to various sys-
tems such as military surveillance and security information
systems.

It is clear that theoretical performance analysis of blind
reconstruction methods is required for both a defender and
a challenger. Specifically, a defender needs to guarantee
security in communication and a challenger wants to blindly
extract correct signal information with high probability.
Moreover, without general performance analysis, very exten-
sive simulation is required to confirm the performance of
the blind reconstruction methods even for a limited sit-
uation. However, most of the blind reconstruction meth-
ods have not been theoretically analyzed and only a lower
bound on the reconstruction performance was derived for the
method in [9].

In this paper, we analyze the performance of the blind
reconstruction method proposed by Jo, Kwon, and Shin [6],
called the JKS method, which shows the best performance
among the blind reconstruction methods of BCH codes. The
analysis of the JKS method is asymptotically performed
under the assumption that the number of received codewords

is sufficiently large because the blind reconstruction perfor-
mance heavily depends on how many and which received
codewords are used even for the same channel environment.
The blind reconstruction performance of the JKS method
is estimated by calculating the probability that the correct
generator polynomial of BCH code is reconstructed. Based
on this asymptotic analysis, an asymptotic threshold on the
cross-over probability of binary symmetric channel (BSC) is
derived, up to which correct reconstruction of the generator
polynomial of BCH code is guaranteed with probability 1.
Since various blind reconstruction methods have been pro-
posed without clear analysis [2], [3], [5], [6], [14], it is
expected that an asymptotic analysis proposed in this paper
can be applied to other methods for deriving their perfor-
mance limit. Moreover, this asymptotic analysis will provide
a new performance metric for blind reconstruction methods
andwill give intuition to the development of blind reconstruc-
tion method or the modification of existing methods.

The rest of the paper is organized as follows. In Section II,
BCH codes and the JKS method are briefly introduced. In
Section III, asymptotic analysis of the JKS method is per-
formed. The simulation results in Section IV confirm that
the asymptotic analysis of the JKS method is valid. Finally,
conclusions are given in Section V.

II. PRELIMINARIES
A. BCH CODES
A BCH code of code length n, dimension k , and
error-correcting capability t is denoted by BCH(n, k , t) and
the Galois field of q elements is denoted by GF(q). The
generator polynomial g(x) of BCH(n, k , t) over GF(q) is
defined as follows [1].

g(x) = LCM
{
φαb (x), φαb+1 (x), · · · , φαb+2t−1 (x)

}
, (1)

where LCM is the least common multiple, α is a primitive n-
th root of unity in GF(qm), and φαi (x), 0 < i ≤ n, is the
minimal polynomial of αi over GF(q). Note that m is the
smallest integer such that n divides qm − 1, b is a positive
integer, and g(x) has 2t consecutive roots αb, αb+1, · · · , and
αb+2t−1.

The BCH codeword polynomial c(x) = c0 + c1x + · · · +
cn−1xn−1 is generated by the product of m(x) = m0+m1x +
· · · + mk−1xk−1 and g(x), where ci, mi ∈ GF(q). The
received codeword polynomial r(x) = r0 + r1x + · · · +
rn−1xn−1 is the sum of the BCH codeword polynomial c(x)
and the error polynomial e(x) = e0 + e1x + · · · + en−1xn−1,
where ri, ei ∈ GF(q).

B. JKS METHOD FOR BLIND RECONSTRUCTION
OF BCH CODES
In the JKS method for blindly reconstructing the generator
polynomials of BCH codes [6], it is assumed that the receiver
knows the code length n andGF(q) over which the BCH code
is defined, and the receiver does not know the channel infor-
mation. Also, the transmitter sequentially transmits BCH
codewords, a perfect codeword synchronization is guaranteed
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at the receiver, and M codewords are received through BSC
with the cross-over probability p < 0.5.
A brief explanation of the JKS method in [6] is given

as follows. Let S denote the set of M received codeword
polynomials. First, the GFFT is carried out for each of the
received codeword polynomials in S to identify the SVCR
and MLCR of each received codeword polynomial. Note that
the roots of the received codeword polynomial are searched in
the order of {α1, α2, · · · , αn−1, αn} and when calculating the
MLCR of the received codeword polynomial, the cyclic shift
of the roots is not considered as explained in [6]. For example,
when f (αn−1) = f (αn) = f (α1) = f (α2) = f (α3) = 0,
the MLCR value of this polynomial f (x) is calculated as 3 by
only considering f (α1) = f (α2) = f (α3) = 0.
Moreover, the MLCR value should be larger than or equal

to 2 and if the MLCR value of a received codeword poly-
nomial is less than 2, this received codeword polynomial
is excluded from S. Then, the JKS method carries out two
majority votes on SVCR and MLCR, respectively. The first
majority vote is done for the SVCR values of the received
codeword polynomials in S to obtain themost frequent SVCR
which is called a reference SVCR sref . If a SVCR value of a
received codeword polynomial in S is different from sref , this
received codeword polynomial is excluded from S to form a
new set S ′. The second majority vote is done for the MLCR
values of the received codeword polynomials in S ′ to obtain
the most frequent MLCR which is called a reference MLCR
lref . Finally, the generator polynomial ĝ(x) is reconstructed
by using the sref and lref as follows:

ĝ(x) = LCM
{
φαsref (x), · · · , φαsref +lref −1 (x)

}
. (2)

In other words, the JKS method determines b and 2t in (1)
by deriving sref in the first majority vote and lref in the sec-
ond majority vote, respectively, and if both sref = b and
lref = 2t are satisfied, then the correct generator polynomial
is successfully reconstructed by using the JKS method. Since
the JKS method determines the most frequent SVCR and
then the most frequent MLCR from the received codeword
polynomials in this order, an asymptotic analysis will be
performed by calculating the probability that sref and lref are
equal to b and 2t of the generator polynomial, respectively,
in this order.

III. ASYMPTOTIC ANALYSIS OF THE JKS METHOD
Since a blind reconstruction performance heavily depends
on how many and which received codewords are used even
for the same channel environment, an asymptotic analy-
sis of the JKS method is performed under the assumption
that the number of received codewords is sufficiently large.
Under this assumption, the reconstruction performance of the
JKS method is analyzed to derive the maximum cross-over
probability, which is called an asymptotic threshold, up to
which the correct generator polynomial is successfully recon-
structed.
An asymptotic analysis of the JKSmethod is performed for

eachmajority vote since the first majority vote and the second

majority vote in the JKS method are done for the SVCR val-
ues andMLCR values of the received codeword polynomials,
respectively. To succeed in the blind reconstruction, the cor-
rect SVCR b should be selected as sref in the first majority
vote, and then the correct MLCR 2t must be selected as lref
in the second majority vote. As will be explained in detail
in the next section, in order to select correct MLCR, more
conditions must be satisfied compared with the case of select-
ing correct SVCR. Thus, the channel conditions for selecting
correct MLCR should be better than the channel conditions
for selecting correct SVCR. In this section, an asymptotic
threshold is obtained by deriving an asymptotic threshold in
the first majority vote and then by deriving an asymptotic
threshold in the second majority vote.

A. NOTATIONS
Let Ci be the conjugacy class including αi ∈ GF(qm)
and let R ⊂ GF(qm) be the set of the roots of generator
polynomial g(x). For example, if g(x) has consecutive roots
αb, αb+1, · · · , αb+2t−1 ∈ GF(qm), then R =

⋃b+2t−1
i=b Ci.

Let Sq,n(b,l) denote the set of all polynomials having the
SVCR b and the MLCR greater than or equal to l over
GF(q)[x]/(xn − 1) where n|qm − 1. For example, all the
narrow-sense binary BCH codes of length n are included in
S2,n(1,2) because they are generated by the generator polynomi-
als having the SVCR 1 and the MLCR 2t which is greater
than or equal to 2 over GF(2)[x]/(xn − 1). Additionally, let
Sq,n(b,l)∗ denote the set of polynomials having the SVCR b and
the MLCR l over GF(q)[x]/(xn − 1), i.e., the polynomials
in Sq,n(b,l)∗ do not have αb+l as their root. Note that since
all the polynomials in Sq,n(b,l) may have αb+l as their root,
Sq,n(b,l)∗ ⊂ Sq,n(b,l).
Let λq,n(b,l) denote the maximum length of consecutive ele-

ments starting from αb in a union of all conjugacy classes of
αb, αb+1, · · · , αb+l−1 with respect toGF(q), where n|qm−1.
For example, λ2,15(1,3) is 4 because a union of conjugacy classes
of α1, α2, and α3 with respect to GF(2) is {α1, α2, α4, α8} ∪
{α3, α6, α12, α9}and the maximum length of consecutive ele-
ments in this union is 4, i.e., α1, α2, α3, and α4. Additionally,
let λq,n,+(b,l) denote λq,n

(b,λq,n(b,l)+1)
. Note that the correct MLCR is

exactly λq,n(b,2t), not 2t .

B. ASYMPTOTIC ANALYSIS FOR THE FIRST
MAJORITY VOTE
Suppose that q-ary BCH(n, k , t) codeword polynomials,
which are included in Sq,n

(b,λq,n(b,2t))
, are transmitted over BSC

with the cross-over probability p. Let suppose that the correct
SVCR and MLCR of q-ary BCH(n, k , t) are b and λq,n(b,2t),
respectively. After performing GFFT to the received code-
word polynomials in S, the first majority vote is carried out
to the SVCR values of the received codeword polynomials
with at least MLCR value 2 in S to result in sref which is an
estimate of b. In order to succeed in the blind reconstruction,
the largest number of received codeword polynomials must
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have the correct SVCR b (i.e., sref = b), which is statistically
expressed as:

Pr
(
r(x) ∈ Sq,n(b,2)

) Success
≷

Failure
Pr
(
r(x) ∈ Sq,n(b′,2)

)
, (3)

where b′ 6= b and b′ is an incorrect SVCR. Note that to
simplify the expression we omit the given condition that the
codeword polynomials c(x) generated by a generator poly-
nomial g(x) having αb, αb+1, · · · , αb+2t−1 as its roots are
transmitted. We will derive the probabilities that the received
codeword polynomials show the correct SVCR b or an incor-
rect SVCR b′, respectively, and then calculate the asymptotic
threshold T1 of the first majority vote of JKS method.

1) DERIVATION OF THE OCCURRING PROBABILITY THAT
RECEIVED CODEWORD POLYNOMIALS SHOW THE
CORRECT SVCR b
In order for the received codeword polynomial r(x) to be
included in Sq,n(b,2), the two conditions r(αb−1) 6= 0 and
r(αb) = r(αb+1) = 0 should be satisfied. Note that, in this
case, αb−1 is not included in a union of Cb and Cb+1 because
if so, r(αb−1) = 0 and hence r(x) is not included in Sq,n(b,2).
In other words, Cb−1 and a union of Cb and Cb+1 must be
disjoint. Thus, the two conditions r(αb−1) 6= 0 and r(αb) =
r(αb+1) = 0 are independent, and hence Pr(r(x) ∈ Sq,n(b,2)) can
be calculated as follows:

Pr
(
r(x) ∈ Sq,n(b,2)

)
= Pr

(
r(αb−1) 6= 0

)
Pr
(
r(αb) = r(αb+1) = 0

)
. (4)

The derivation of Pr(r(x) ∈ Sq,n(b,2)) will be explained by
deriving Pr(r(αb) = r(αb+1) = 0) and Pr(r(αb−1) 6= 0)
separately.
In order for the received codeword polynomial r(x) to have

αb and αb+1 as its roots, since the codeword polynomials
c(x) already have αb and αb+1 as their roots, the error poly-
nomial e(x) must have αb and αb+1 as its roots. Therefore,
to calculate the probability Pr(r(αb) = r(αb+1) = 0) in (4),
the consecutive roots of error polynomials e(x) are analyzed
as follows.

The consecutive roots of error polynomial e(x) definitely
depend on the number of non-zero coefficients of e(x), which
is denoted as wt(e(x)). Then, the error polynomials can
be classified into three types according to the number of
non-zero coefficients. The first type is the error polynomial
e1(x) having wt(e1(x)) = 0, i.e., error-free case. Since the
first-type error polynomial e1(x) has all the elements αi as its
roots, i.e., e1(αi) = 0 for 0 ≤ i < n, the received codeword
polynomials r(x) with the first-type error polynomial e1(x)
have αb and αb+1 as their roots, i.e., r(αb) = 0 and r(αb+1) =
0. Therefore, we have Pr(r(αb) = r(αb+1) = 0|e1(x)) = 1
and if c(αb−1) 6= 0, the condition r(αb−1) = c(αb−1) +
e1(αb−1) 6= 0 is satisfied. Note that the number of distinct
values which c(αb−1) can take for αb−1 ∈ Rc is q|Cb−1|

because αb−1 is not included in R, and αb and αb+1 are

included in R [12]. Since messages are randomly generated,
Pr(c(αb−1) = uCb−1 ) = 1/q|Cb−1|, where uCb−1 ∈ UCb−1 for
the setUCb−1 of values which c(α

b−1) can take. Thus, we have
Pr(c(αb−1) 6= 0) = 1− 1/q|Cb−1|.
In conclusion, the probability that the received codeword

polynomial r(x) with the first-type error e1(x) shows the
correct SVCR b is derived as follows:

Pr
(
r(x) ∈ Sq,n(b,2)

∣∣∣e1(x))
= Pr

(
r(αb−1) 6= 0

∣∣∣e1(x))Pr (r(αb) = r(αb+1) = 0
∣∣∣e1(x))

= 1−
1

q|Cb−1|
= Q1(b− 1), (5)

where Q1(i) = 1 − 1
q|Ci|

for 0 < i < n. Since, in the JKS
method, the roots of the received codeword polynomial r(x)
are searched in the order of {α1, α2, · · · , αn−1, αn} without
considering the cyclic shift of the roots, the expression in (5)
is valid for 2 ≤ b ≤ n, i.e., Q1(i) is defined for 1 ≤ i < n
as given in (5). However, for the narrow-sense BCH codes,
b = 1 and hence the value of Q1(0) should be defined. Since,
in this case, the probability in (5) is definitely 1,Q1(0) should
be set as 1. Therefore, Q1(i) is defined as follows:

Q1(i) ,

1, i = 0

1−
1
q|Ci|

, 1 ≤ i < n.
(6)

The second type is the error polynomial e2(x) having
wt(e2(x)) = 1 or 2. It will be shown that the second-type error
polynomials do not have consecutive roots over GF∗(qm) =
GF(qm)/{0} by Lemma 1. Thus, the received codeword poly-
nomials r(x) with the second-type error polynomials e2(x)
do not have roots αb and αb+1, i.e., Pr(r(αb) = r(αb+1) =
0|e2(x)) = 0 Therefore, the received codeword polynomials
r(x) with the second-type error polynomials e2(x) do not
show the correct SVCR b, i.e., Pr

(
r(x) ∈ Sq,n(b,2)

∣∣e2(x)) = 0.
Note that the received codeword polynomials with the
second-type error polynomials may show an incorrect SVCR
b′ for b′ 6= b.
Lemma 1: Any polynomials f (x) having wt(f (x)) = 1 or

2 in GF(q)[x]/(xn − 1) do not have consecutive roots over
GF∗(qm), where n|qm − 1.

Proof: Let f1(x) = fix i be the polynomial having
wt(f1(x)) = 1, where fi 6= 0 and 0 ≤ i < n. Then f (x) 6= 0
for x ∈ GF∗(qm). Then, it is clear that f1(x) = fix i 6= 0 for
any x ∈ GF∗(qm).
Let f2(x) = fix i+fjx j be the polynomial havingwt(f2(x)) =

2, where fi, fj 6= 0 and 0 ≤ i < j < n. Suppose that f2(x)
has two consecutive roots αb, αb+1 ∈ GF∗(qm). The two
equations f2(αb) = 0 and f2(αb+1) = 0 can be expressed
in matrix form as follows:[

αbi αbj

α(b+1)i α(b+1)j

]
︸ ︷︷ ︸

A

[
fi
fj

]
=

[
0
0

]
. (7)
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Note that the determinant of matrix A is det(A) = αbi+bj

(αj − αi). Since αbi+bj 6= 0 and αj − αi 6= 0, det(A) 6= 0.
Therefore, in order to satisfy (7), both fi and fj must be zeros,
which is a contradiction.

In conclusion, any polynomials f (x) having wt(f (x)) = 1
or 2 in GF(q)[x]/(xn− 1) do not have consecutive roots over
GF∗(qm), where n|qm − 1. �

Lastly, the third type is the error polynomial e3(x) having
wt(e3(x)) ≥ 3. The received codeword polynomials r(x) with
the third-type error polynomials e3(x) may or may not have
consecutive roots. If the third-type error polynomial e3(x) has
αb and αb+1 as its roots, the received codeword polynomial
r(x) has αb and αb+1 as its roots. Therefore, the occurring
probability that the received codeword polynomial r(x) with
the third-type error polynomial e3(x) has the roots αb and
αb+1 is calculated as follows:

Pr
(
r(αb) = r(αb+1) = 0

∣∣∣wt(e3(x)) = i
)

= Pr
(
e(αb) = e(αb+1) = 0

∣∣∣wt(e3(x)) = i
)

=
wq,n(b,2)(i)(n

i

) , (8)

where 3 ≤ i ≤ n. Also, wq,n(b,2) = {w
q,n
(b,2)(0),w

q,n
(b,2)(1), · · · ,

wq,n(b,2)(n)} denotes the weight distribution of q-ary BCH code
of the code length n whose generator polynomial has con-
secutive roots αb and αb+1, i.e., wq,n(b,2)(i) denotes the number
of this BCH codewords having the Hamming weight i. At
the same time, the condition c(αb−1) 6= −e3(αb−1) should
be satisfied while the condition e3(αb) = e3(αb+1) = 0 is
satisfied. In fact, such third-type error polynomials e3(x) are
the codeword polynomials that do not have αb−1 as a root
among the codeword polynomials generated by a generator
polynomial g′(x) with consecutive roots αb and αb+1. Note
that this generator polynomial g′(x) does not have αb−1 as a
root. Thus, the number of distinct values which e3(αb−1) can
take for αb−1 ∈ Rc is q|Cb−1| [12]. Because an error occurs
uniformly at random, Pr(e3(αb−1) = uEb−1 ) = 1/q|Cb−1|,
where uEb−1 ∈ UEb−1 for the set UEb−1 of values which
e3(αb−1) can take. Therefore, since Pr(c(αb−1) = uCb−1 ) =
1/q|Cb−1|, we obtain the following probability: Pr(c(αb−1) 6=
−e3(αb−1)) = Q1(b − 1). In conclusion, the occurring
probability that the received codeword polynomial r(x) with
the third-type error polynomial e3(x) shows the correct SVCR
b is derived as follows:

Pr
(
r(x) ∈ Sq,n(b,2)

∣∣∣wt(e3(x)) = i
)
= Q1(b− 1)

wq,n(b,2)(i)(n
i

) ,

(9)

where 3 ≤ i ≤ n.
By using the results for three types of error polynomials,

the occurring probability Pr
(
r(x) ∈ Sq,n(b,2)

)
that the received

codeword polynomial r(x) shows the correct SVCR b is

derived as:

Pr
(
r(x) ∈ Sq,n(b,2)

)
= Pr

(
r(x) ∈ Sq,n(b,2)

∣∣∣e1(x))Pr (e1(x))
+

n∑
i=3

Pr
(
r(x) ∈ Sq,n(b,2)

∣∣∣wt(e3(x)) = i
)

· Pr
(
wt
(
e3(x)

)
= i
)

= Q1(b− 1)
n∑
i=0

wq,n(b,2)(i)p
i(1− p)n−i, (10)

where Pr(e1(x)) = (1 − p)n, Pr(wt(e3(x)) = i) =
(n
i

)
pi(1−p)n−i, and p is the cross-over probability of BSC. Note
that wq,n(b,2)(0) = 1 and wq,n(b,2)(1) = wq,n(b,2)(2) = 0 by the BCH
bound [1].

2) DERIVATION OF THE OCCURRING PROBABILITY THAT
THE RECEIVED CODEWORD POLYNOMIALS SHOW AN
INCORRECT SVCR b′

The received codeword polynomial with the second-type or
the third-type error polynomial can show an incorrect SVCR
b′, which may degrade the blind reconstruction performance
by increasing Pr(r(x) ∈ Sq,n(b′,2)). Specifically, in order for
the received codeword polynomial r(x) with the second-type
error polynomial e2(x) to be included in S

q,n
(b′,2), the conditions

r(αb
′
−1) 6= 0 and r(αb

′

) = r(αb
′
+1) = 0 should be

satisfied. Note that since αb
′
−1 is not included in a union of

Cb′ and Cb′+1, the conditions r(αb
′
−1) 6= 0 and r(αb

′

) =
r(αb

′
+1) = 0 must be independent. Thus, the probability

Pr(r(x) ∈ Sq,n(b′,2)) in (3) can be calculated as follows:

Pr
(
r(x) ∈ Sq,n(b′,2)

)
= Pr

(
r(αb

′
−1) 6= 0

)
Pr
(
r(αb

′

) = r(αb
′
+1) = 0

)
. (11)

The probability Pr(r(x) ∈ Sq,n(b′,2)) will be derived by calcu-

lating Pr(r(αb
′

) = r(αb
′
+1) = 0) and Pr(r(αb

′
−1) 6= 0)

separately.
In order for the received codeword polynomial r(x) with

the second-type error polynomial e2(x) to have consecutive
roots αb

′

and αb
′
+1, the conditions c(αb

′

) = −e2(αb
′

) and
c(αb

′
+1) = −e2(αb

′
+1) should be satisfied. Note that e2(x)

cannot have both αb
′

and αb
′
+1 as its roots by Lemma 1.

There are two cases which satisfy these conditions. The first
case is that αb

′

and αb
′
+1 are included in the same conjugacy

class. In this case, if the condition c(αb
′

) = −e2(αb
′

) is sat-
isfied, the condition c(αb

′
+1) = −e2(αb

′
+1) is automatically

satisfied. The second case is that αb
′

and αb
′
+1 are included

in the different conjugacy classes. In this case, in order for
the received codeword polynomial to have consecutive roots,
the conditions c(αb

′

) = −e2(αb
′

) and c(αb
′
+1) = −e2(αb

′
+1)

should be separately satisfied. Thus, the first case occurs
much more frequently than the second case. Since the JKS
method is based on the majority vote, the first case affects the
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blind reconstruction performance more than the second case.
Therefore, we will only derive the occurring probability of
the first case for analyzing the first majority vote of the JKS
method.

Consider the first case such that αb
′

and αb
′
+1 are included

in the same conjugacy class Cb′ . Note that the number of
distinct values which c(αb

′

) can take for αb
′

∈ Rc is q|Cb′ |.
Since it is assumed that messages are randomly generated,
Pr(c(αb

′

) = uCb′ ) = 1/q|Cb′ |, where uCb′ ∈ UCb′ for the set
UCb′ of values which c(α

b′ ) can take [12]. Moreover, it will
be confirmed that Pr(c(αb

′

) = uCb′ ) = 1/qm by Theorems 1
and 2.
Theorem 1: The size of the conjugacy class including con-

secutive elements in GF(qm) with respect to GF(q) is m.
Proof: Let Ci be the conjugacy class including the two

consecutive elements β i, β i+1 ∈ GF(qm). Suppose that the
size |Ci| of Ci is d which clearly divides m. Then, β iq

d
=

β i and β(i+1)q
d
= β i+1. Thus, iqd = i mod (qm − 1) and

(i+ 1)qd = i+ 1 mod (qm − 1), and these equations can be
expressed as:

A1(qm − 1)+ i = iqd (12)

A2(qm − 1)+ i+ 1 = (i+ 1)qd , (13)

where A1 and A2 are integers making i and i + 1 be in
[0, qm − 2], respectively. From (12) and (13), we obtain

A2 − A1 =
qd − 1
qm − 1

.

SinceA2−A1 is an integer, d should bem for (qd−1)/(qm−1)
to be an integer. Therefore, |Ci| is m. �
Theorem 2: The order of the elements in the conjugacy

class including consecutive elements in GF(qm) with respect
to GF(q) is qm − 1.

Proof: Suppose that the two consecutive elements
β i, β i+1 ∈ GF(qm) are included in the same conjugacy class.
Then, the orders of β i and β i+1 are the same, which is denoted
as swith s|qm−1. Because (β i)s = 1 and (β i+1)s = 1, is = 0
mod (qm − 1) and (i+ 1)s = 0 mod (qm − 1). Thus,

is = B1(qm − 1) (14)

(i+ 1)s = B2(qm − 1), (15)

where B1 and B2 are integers. From (14) and (15), we obtain

B1 − B2 =
s

qm − 1
.

Since B1 and B2 are integers, s should be qm−1 for s/(qm−1)
to be an integer. Therefore, the order s of β i and β i+1 is qm−1.
Moreover, since all the elements in the conjugacy class have
the same order, the order of all elements of the conjugacy
class including consecutive elements is qm − 1 in GF(qm)
with respect to GF(q). �
By Theorem 2, we know that the number of distinct values

which e2(αb
′

) can take for αb
′

∈ Cb′ is qm − 1, where b′ 6= b
and αb

′

, αb
′
+1
∈ Cb′ . Because an error occurs uniformly at

random, Pr(e2(αb
′

) = uEb′ ) = 1/(qm − 1), where uEb′ ∈

UEb′ for the set UEb′ of the values which e2(αb
′

) can have.
Since the numbers of distinct values which c(αb

′

) and e2(αb
′

)
can take are qm and qm − 1, respectively, in order for the
received codeword polynomial to show an incorrect SVCR b′,
the number of cases where the condition c(αb

′

) = −e2(αb
′

)
is satisfied is qm − 1. Thus, the occurring probability that
the received codeword polynomial r(x) with the second-type
error polynomial e2(x) shows consecutive roots αb

′

and αb
′
+1

is calculated as follows:

Pr
(
r(αb

′

) = r(αb
′
+1) = 0

∣∣∣wt(e2(x)) = i
)

= (qm − 1) Pr
(
c(αb

′

) = uCb′
∣∣∣wt(e2(x)) = i

)
·Pr

(
e2(αb

′

) = uEb′
∣∣∣wt(e2(x)) = i

)
= (qm − 1)

1
qm

1
qm − 1

=
1
qm
, (16)

where i = 1 or 2, and b′ 6= b.
In order for the received codeword polynomial r(x) with

the second-type polynomial e2(x) to show an incorrect SVCR
b′, the condition r(αb

′
−1) 6= 0, i.e., c(αb

′
−1) 6= −e2(αb

′
−1),

should be also satisfied. However, unlike αb and αb+1, αb
′
−1

may or may not be the root of the generator polynomial g(x)
because it is determined by q, n, b, and t of the transmitted
BCH code, i.e., we do not knowwhetherαb

′
−1
∈ R orαb

′
−1
∈

Rc. Note that in a case where αb
′
−1
∈ R, c(αb

′
−1) = 0 and

in a case where of distinct values which c(αb
′
−1) can take

is |Cb′−1| [12]. Thus, we explain separately a case where
αb
′
−1
∈ R and a case where αb

′
−1
∈ Rc.

The numbers of distinct values which both the single-error
polynomials and the double-error polynomials can take vary
depending on q andm. In case of the single-error polynomial,
since the single-error polynomials do not have a non-zero
root, if |Cb′−1| = m, the number of distinct values which the
single-error polynomial can take is qm − 1, otherwise, it is
q|Cb′−1|. In case of the double-error polynomial, if qm − 1 is
the prime and q = 2, the double-error polynomial does not
have a root, otherwise it has a root. Thus, when qm − 1 is the
prime and q = 2, the number of distinct values which the
double-error polynomial can take is qm − 1, otherwise it is
q|Cb′−1|. Note that when qm − 1 is the prime, the size of all
conjugacy classes is m [1].
In conclusion, when αb

′
−1
∈ Rc, the probability that

the received codeword polynomial r(x) with the second-type
polynomial e2(x) shows an incorrect SVCR b′ is calculated
as follows:

Pr
(
r(x) ∈ Sq,n(b′,2)

∣∣∣wt(e2(x)) = 1
)

= Pr
(
r(αb

′
−1) 6= 0

∣∣∣wt(e2(x)) = 1
)

·Pr
(
r(αb

′

) = r(αb
′
+1) = 0

∣∣∣wt(e2(x)) = 1
)

= Q2(b′ − 1)
1
qm
, (17)
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Pr
(
r(x) ∈ Sq,n(b′,2)

∣∣∣wt(e2(x)) = 2
)

= Pr
(
r(αb

′
−1) 6= 0

∣∣∣wt(e2(x)) = 2
)

·Pr
(
r(αb

′

) = r(αb
′
+1) = 0

∣∣∣wt(e2(x)) = 2
)

= Q3(b′ − 1)
1
qm
, (18)

where if |Cb′−1| = m, Q2(b′ − 1) = 1 − 1/(q|Cb′−1| − 1),
otherwise, Q2(b′ − 1) = Q1(b′ − 1). Also, if qm − 1 is the
prime and q = 2,Q3(b′−1) = 1−1/(q|Cb′−1|−1), otherwise,
Q3(b′− 1) = Q1(b′− 1). Note that it is defined as Q2(0) = 1
and Q3(0) = 1 for the same reason as Q1(0).
When αb

′
−1
∈ R, because c(αb

′
−1) = 0, the received

codeword polynomials r(x) with a single-error polynomial
always satisfies the condition r(αb

′
−1) 6= 0. Thus, we have

Pr(r(αb
′
−1) 6= 0|wt(e2(x)) = 1) = 1. When αb

′
−1
∈ R,

qm − 1 is the prime, and q = 2, the received codeword
polynomial r(x) with the double-errors polynomial always
satisfies the condition r(αb

′
−1) 6= 0. Also, when αb

′
−1
∈ R,

either qm − 1 is not the prime or q 6= 2, the number of
non-zero values which the double-error polynomial can take
is q|Cb′−1| − 1. Since the error occurs uniformly at random,
the occurring probability of such a case is Pr(r(αb

′
−1) 6=

0|wt(e2(x)) = 2) = Q1(b′ − 1).
In conclusion, when αb

′
−1
∈ R, the probability that the

received codeword polynomial r(x) with the second-type
polynomial e2(x) shows an incorrect SVCR b′ is calculated
as follows:

Pr
(
r(x) ∈ Sq,n(b′,2)

∣∣∣wt(e2(x)) = 1
)

= Pr
(
r(αb

′
−1) 6= 0

∣∣∣wt(e2(x)) = 1
)

·Pr
(
r(αb

′

) = r(αb
′
+1) = 0

∣∣∣wt(e2(x)) = 1
)

=
1
qm
, (19)

Pr
(
r(x) ∈ Sq,n(b′,2)

∣∣∣wt(e2(x)) = 2
)

= Pr
(
r(αb

′
−1) 6= 0

∣∣∣wt(e2(x)) = 2
)

·Pr
(
r(αb

′

) = r(αb
′
+1) = 0

∣∣∣wt(e2(x)) = 2
)

= Q4(b′ − 1)
1
qm
, (20)

where if qm − 1 is the prime and q = 2, Q4(b′ − 1) = 1,
otherwise, Q4(b′ − 1) = Q1(b′ − 1).
The occurring probability that the received codeword poly-

nomial r(x) with the third-type error polynomial e3(x) shows
an incorrect SVCR b′(6= b) is calculated similar to the
second-type error polynomial case, and the difference is
that the third-type error polynomial, unlike the second-type
error polynomial, can have consecutive roots. Therefore,
the number of distinct values which e3(αb

′

) can take for
αb
′

∈ GF(qm) and αb
′

∈ Cb′ is qm by Theorems 1 and 2,
and the occurring probability that the received codeword
polynomial r(x) with the third-type error polynomial e3(x)

having wt(e3(x)) = i for 3 ≤ i ≤ n is calculated as
Pr(r(αb

′

) = r(αb
′
+1) = 0|wt(e3(x)) = i) = 1/qm.

Also, the condition r(αb
′
−1) 6= 0 should be satisfied. When

αb
′
−1
∈ Rc, similar to the second-type error polynomial

case, the numbers of distinct values which each of c(αb
′
−1)

and e3(αb
′
−1) can take are q|Cb′−1|. Since the messages are

generated randomly and errors occur uniformly at random,
Pr(r(αb

′
−1) 6= 0|wt(e3(x)) = i) = Q1(b′ − 1).

In conclusion, when αb
′
−1
∈ Rc, the probability that

the received codeword polynomial r(x) with the third-type
polynomial e3(x) shows an incorrect SVCR b′ is calculated
as follows:

Pr
(
r(x) ∈ Sq,n(b′,2)

∣∣∣wt(e3(x)) = i
)

= Pr
(
r(αb

′
−1)
∣∣∣wt(e3(x)) = i

)
·Pr

(
r(αb

′

) = r(αb
′
+1) = 0

∣∣∣wt(e3(x)) = i
)

= Q1(b′ − 1)
1
qm
. (21)

When αb
′
−1
∈ R, c(αb

′
−1) = 0 and the number of distinct

values which e3(αb
′
−1) can take is q|Cb′−1|. Since the errors

occur uniformly at random, Pr(r(αb
′
−1) 6= 0|wt(e3(x)) =

i) = Q1(b′ − 1). Thus, when αb
′
−1
∈ R, the probability that

the received codeword polynomial r(x) with the third-type
polynomial e3(x) shows an incorrect SVCR b′ is calculated
as follows:

Pr
(
r(x) ∈ Sq,n(b′,2)

∣∣∣wt(e3(x)) = i
)

= Pr
(
r(αb

′
−1)
∣∣∣wt(e3(x)) = i

)
·Pr

(
r(αb

′

) = r(αb
′
+1) = 0

∣∣∣wt(e3(x)) = i
)

= Q1(b′ − 1)
1
qm
. (22)

In conclusion, when αb
′
−1
∈ Rc, the occurring probability

that the received codeword polynomial r(x) shows an incor-
rect SVCR b′ is calculated as follows:

Pr
(
r(x) ∈ Sq,n(b′,2)

)
=

2∑
i=1

Pr
(
r(x) ∈ Sq,n(b′,2)

∣∣∣wt(e2(x)) = i
)

·Pr
(
wt
(
e2(x)

)
= i
)

+

n∑
i=3

Pr
(
r(x) ∈ Sq,n(b′,2)

∣∣∣wt(e3(x)) = i
)

·Pr
(
wt
(
e3(x)

)
= i
)

=

n∑
i=0

wq,n,R
c
(i)pi(1− p)n−i, (23)

where Pr(wt(e2(x)) = i) =
(n
i

)
pi(1−p)n−i for i = 1 or 2, and

wq,n,R
c
(0) = 0, wq,n,R

c
(1) = Q2(b′−1)1/qm

(n
1

)
, wq,n,R

c
(2) =

Q3(b′ − 1)1/qm
(n
2

)
, and wq,n,R

c
(j) = Q1(b′ − 1)1/qm

(n
j

)
for
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3 ≤ j ≤ n. When αb
′
−1
∈ R, the occurring probability that

the received codeword polynomial r(x) shows an incorrect
SVCR b′ is calculated as follows:

Pr
(
r(x) ∈ Sq,n(b′,2)

)
=

2∑
i=1

Pr
(
r(x) ∈ Sq,n(b′,2)

∣∣∣wt(e2(x)) = i
)

·Pr
(
wt
(
e2(x)

)
= i
)

+

n∑
i=3

Pr
(
r(x) ∈ Sq,n(b′,2)

∣∣∣wt(e3(x)) = i
)

·Pr
(
wt
(
e3(x)

)
= i
)

=

n∑
i=0

wq,n,R(i)pi(1− p)n−i, (24)

where wq,n,R(0) = 0, wq,n,R(1) = 1/qm
(n
1

)
, wq,n,R(2) =

Q4(b′ − 1)1/qm
(n
2

)
, and wq,n,R(j) = Q1(b′ − 1)1/qm

(n
j

)
for

3 ≤ j ≤ n.

3) DERIVATION OF ASYMPTOTIC THRESHOLD OF THE FIRST
MAJORITY VOTE
Finally, when αb

′
−1
∈ Rc, by using (3), (10), and (23),

the decision criterion of the first majority vote in the JKS
method is derived as follows.

Pr
(
r(x) ∈ Sq,n(b,2)

) Success
≷
Fail

Pr
(
r(x) ∈ Sq,n(b′,2)

)
⇔ Pr

(
r(x) ∈ Sq,n(b,2)

)
− Pr

(
r(x) ∈ Sq,n(b′,2)

) Success
≷
Fail

0

⇔

n∑
i=0

(
w′q,n(b,2)(i)− w

q,n,Rc (i)
)
pi(1− p)n−i

Success
≷
Fail

0, (25)

where w′q,n(b,2)(i) = Q1(b − 1)wq,n(b,2)(i). When αb
′
−1
∈ R,

by using (3), (10), and (24), the decision criterion of the first
majority vote in the JKS method is derived as follows.

Pr
(
r(x) ∈ Sq,n(b,2)

) Success
≷
Fail

Pr
(
r(x) ∈ Sq,n(b′,2)

)
⇔

n∑
i=0

(
w′q,n(b,2)(i)− w

q,n,R(i)
)
pi(1− p)n−i

Success
≷
Fail

0. (26)

The asymptotic threshold T1 of the first majority vote is the
maximum p that leads (25) and (26) to the success. From (25)
and (26), it is confirmed that the asymptotic threshold T1 of
the first majority vote is affected by the code length n of BCH
codes but not the error-correcting capability t of BCH code.
For the various narrow-sense BCH codes, Table 1 shows the
asymptotic thresholds T1 of the first majority vote in the JKS
method, which is calculated by using the weight distribution
of narrow-sense BCH codes [1].When the narrow-sense BCH
code of the code length n = 31 is used, there exists the
case that αb

′
−1
∈ R unlike the narrow-sense BCH codes

of the code length n = 63 and n = 127. Thus, only for

TABLE 1. T1 for the various narrow-sense binary BCH codes.

the narrow-sense BCH code of the code length n = 31,
the asymptotic threshold T1 is derived by selecting a smaller
value between the asymptotic threshold which is calculated
by using (25) and (26) as shown in Table 1.

C. ASYMPTOTIC ANALYSIS FOR THE SECOND
MAJORITY VOTE
Through the first majority vote of the JKS method, all
received codeword polynomials in S ′ have the same SVCR.
Note that it is assumed that the correct SVCR b is selected
in the first majority vote, i.e., sref = b and all received code-
word polynomials in S ′ are included in Sq,n(b,2), To succeed in
the second majority vote, the correct MLCR λq,n(b,2t) should be
selected. Note that λq,n(b,2t) will be denoted by lt for simplicity.
From an asymptotic point of view, the occurring probability
of the received codeword polynomial showing the correct
MLCR lt in S ′ should be higher than that of the received
codeword polynomial showing an incorrect MLCR. Thus,
to derive an asymptotic threshold of the second majority
vote, it should be compared that the occurring probability
of the received codeword polynomial showing the correct
MLCR and the highest occurring probability of the received
codeword polynomial showing an incorrect MLCR. Note that
the codeword polynomial showing an incorrect MLCR with
the highest occurring probability changes according to the
error-correcting capability of BCH code. Thus, we analyze
the second majority vote of the JKS method by considering
two cases, the first case is when the error-correcting capa-
bility of BCH code is 1, and the other case is when the
error-correcting capability of BCH code is more than 1. The
difference in these two cases will be explained in the next
section. For the convenience of explanation, the casewhen the
error-correcting capability is more than 1 will be explained
first.

1) ASYMPTOTIC ANALYSIS FOR BCH CODES WITH
MULTIPLE-ERROR CORRECTING CAPABILITY
When BCH code with multiple-error-correcting capability
is used, it will be confirmed through Lemma 2 that the
received codeword polynomial with the smallest incorrect
MLCR value shows the highest occurring probability among
those with incorrect MLCR values.
Lemma 2: Let’s divide the polynomials showing the same

SVCR in GF(q)[x]/(xn− 1) into the sets based on the MLCR
value such that each set consists of the polynomials show-
ing the same MLCR value and different sets show different
MLCR value. Then, among these sets, a set of polynomials
having the smallest MLCR value shows the highest occurring
probability.
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Proof: Let Sq,n(b,l) be the set of polynomials showing
SVCR b and MLCR l in GF(q)[x]/(xn − 1), and let Sq,n(b,l′)
be the set of polynomials showing SVCR b and MLCR
l ′ > l in GF(q)[x]/(xn − 1). Since all polynomials in Sq,n(b,l′)

are included in Sq,n(b,l), i.e., S
q,n
(b,l) ⊃ Sq,n(b,l′), Pr

(
Sq,n(b,l)

)
≥

Pr
(
Sq,n(b,l′)

)
. Therefore, among the sets of polynomials show-

ing the same SVCR Sq,n(b,l), the set of polynomials with the
smallest MLCR l shows the highest occurring probability. �
Since lref is determined by the majority vote, in order

to succeed in the second majority vote, the largest number
of received codeword polynomials must show the correct
MLCR value lt (i.e., lref = lt ), which is statistically expressed
as:

Pr
(
r(x) ∈ Sq,n(b,lt )∗

) Success
≷

Failure
Pr
(
r(x) ∈ Sq,n(b,l1)∗

)
, (27)

where l1 = λ
q,n
(b,2). Note that to simplify the expression

we omit the given condition that the codeword polynomi-
als c(x) generated by a generator polynomial g(x) having
αb, αb+1, · · · , αb+lt−1 as its roots are transmitted.
In order for the received codeword polynomials r(x) to

show the correct MLCR lt , the conditions r(αb) = r(αb+1) =
· · · = r(αb+lt−1) = 0, r(αb−1) 6= 0, and r(αb+lt ) 6= 0 should
be satisfied. Note that because r(αb−1) 6= 0 and r(αb+lt ) 6= 0,
it can be seen that a union of Cb−1 and Cb+lt and a union of
Cb, Cb+1, · · · , Cb+lt−1 are disjoint, i.e., αb−1, αb+lt ∈ Rc.
Since αb, αb+1, · · · , αb+lt−1 ∈ R and αb−1, αb+lt ∈ Rc,
these conditions such that r(αb) = r(αb+1) = · · · =
r(αb+lt−1) = 0 and r(αb−1), r(αb+lt ) 6= 0 must be indepen-
dent. However, we do not exactly knowwhether the condition
r(αb−1) 6= 0 and the condition r(αb+lt ) 6= 0 are independent
or not because it is determined by the transmitted BCH
code. Specifically, we do not know whether αb−1 and αb+lt

are included in the different conjugacy classes or the same
conjugacy class. Note that if αb−1 and αb+lt are included in
the different conjugacy classes, Pr(r(αb−1) 6= 0, r(αb+lt ) 6=
0) = Pr(r(αb−1) 6= 0) Pr(r(αb+lt ) 6= 0), otherwise,
Pr(r(αb−1) 6= 0, r(αb+lt ) 6= 0) = Pr(r(αb+lt ) 6= 0). Hence,
we consider both cases where αb−1 and αb+lt are included
in the same conjugacy class and ones are included in the
different conjugacy classes. Note that when αb−1 and αb+lt

are included in the same conjugacy class, if the condition
r(αb−1) 6= 0 is satisfied, then the condition r(αb+lt ) 6= 0
is satisfied automatically. When αb−1 and αb+lt are included
in the different conjugacy classes, the conditions r(αb−1) 6= 0
and r(αb+lt ) 6= 0 must be independent. Thus, when αb−1

and αb+lt are included in the different conjugacy classes,
Pr(r(x) ∈ Sq,n(b,lt )∗

) can be calculated as follows:

Pr
(
r(x) ∈ Sq,n(b,lt )∗

)
= Pr

(
r(αb−1) 6= 0

)
Pr
(
r(αb) = · · · = r(αb+lt−1) = 0

)
· Pr

(
r(αb+lt ) 6= 0

)
, (28)

where Pr(r(αb−1) 6= 0) and Pr(r(αb+lt ) 6= 0) are calculated
asQ1(b−1) andQ1(b+lt ), respectively.When αb−1 and αb+lt

are included in the same conjugacy class, Pr(r(x) ∈ Sq,n(b,lt )∗
)

can be calculated as follows:

Pr
(
r(x) ∈ Sq,n(b,lt )∗

)
= Pr

(
r(αb) = · · · = r(αb+lt−1) = 0

)
Pr
(
r(αb+lt ) 6= 0

)
.

(29)

Since c(αb) = c(αb+1) = · · · = c(αb+lt−1) = 0,
Pr(r(αb) = r(αb+1) = · · · = r(αb+lt−1) = 0) is recalculated
as Pr(e(αb) = e(αb+1) = · · · = e(αb+lt−1) = 0), and then
Pr(e(αb) = · · · = e(αb+lt−1) = 0) is calculated by using (8)
as follows:

Pr
(
e(αb) = · · · = e(αb+lt−1) = 0

)
=

n∑
i=0

wq,n(b,lt )
(i)pi(1− p)n−i. (30)

In conclusion, when αb−1 and αb+lt are included in the
different conjugacy classes, the occurring probability that the
received codeword polynomial r(x) shows the correct MLCR
lt is calculated by using (28) and (30) as follows:

Pr
(
r(x) ∈ Sq,n(b,lt )∗

)
= Q1(b− 1)Q1(b+ lt )

n∑
i=0

wq,n(b,lt )
(i)pi(1− p)n−i. (31)

When αb−1 and αb+lt are included in the same conjugacy
class, the occurring probability that the received codeword
polynomial r(x) shows the correct MLCR lt is calculated by
using (29) and (30) as follows:

Pr
(
r(x) ∈ Sq,n(b,lt )∗

)
= Q1(b+ lt )

n∑
i=0

wq,n(b,lt )
(i)pi(1− p)n−i. (32)

In order for the received codeword polynomials r(x)
to show an incorrect MLCR l1, the conditions r(αb) =
r(αb+1) = · · · = r(αb+l1−1) = 0, r(αb−1) 6= 0, and
r(αb+l1 ) 6= 0 should be satisfied. Because a union of Cb−1
and Cb+l1 and a union of Cb,Cb+1, · · · ,Cb+l1−1 are dis-
joint, the conditions r(αb+1), r(αb+l1 ) 6= 0 and r(αb) =
r(αb+1) = · · · = r(αb+l1−1) = 0 must be independent.
Note that since whether αb−1 and αb+l1 are included in the
same conjugacy class or not is determined by the transmitted
BCH code, we do not exactly know. Hence, we consider
both cases where αb−1 and αb+l1 are included in the dif-
ferent conjugacy classes and ones are included in the same
conjugacy class.
Since c(αb) = · · · = c(αb+l1−1) = · · · =

c(αb+lt−1) = 0, Pr(r(x) ∈ Sq,n(b,l1)∗
) can be recalculated
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as follows:

Pr
(
r(x) ∈ Sq,n(b,l1)∗

)
= Pr

(
r(αb−1) 6= 0

)
Pr
(
e(αb) = · · · = e(αb+l1−1) = 0

)
·Pr

(
e(αb+l1 ) 6= 0

)
, (33)

where αb−1 and αb+l1 are included in the different conjugacy
classes. When αb−1 and αb+l1 are included in the same
conjugacy class, the occurring probability that the received
codeword polynomial r(x) shows an incorrect MLCR l1 is
calculated as follows:

Pr
(
r(x) ∈ Sq,n(b,l1)∗

)
= Pr

(
e(αb) = · · · = e(αb+l1−1) = 0

)
Pr
(
e(αb+l1 ) 6= 0

)
.

(34)

Because αb−1 ∈ Rc, Pr(r(αb−1) 6= 0) = Q1(b − 1). In
order to satisfy the two conditions e(αb) = e(αb+1) = · · · =
e(αb+l1−1) = 0 and e(αb+l1 ) 6= 0, the error polynomial e(x)
must have consecutive roots αb, · · · , αb+l1−1 and not αb+l1 .
Thus, the occurring probability of these two conditions is
calculated by using (30) andwq,n(b,l1)∗

(i) = wq,n(b,l1)
(i)−wq,n

(b,l+1 )
(i)

as follows:

Pr
(
e(αb) = · · · = e(αb+l1−1) = 0

)
Pr
(
e(αb+l1 ) 6= 0

)
=

n∑
i=0

wq,n(b,l1)∗
(i)pi(1− p)n−i. (35)

In conclusion, when αb−1 and αb+l1 are included in the
different conjugacy classes, the occurring probability that
the received codeword polynomial r(x) shows an incorrect
MLCR l1 is calculated as follows:

Pr
(
r(x) ∈ Sq,n(b,l1)∗

)
= Q1(b− 1)

n∑
i=0

wq,n(b,l1)∗
(i)pi(1− p)n−i. (36)

When αb−1 and αb+l1 are included in the same conjugacy
class, the occurring probability that the received codeword
polynomial r(x) shows an incorrect MLCR l1 is calculated as
follows:

Pr
(
r(x) ∈ Sq,n(b,l1)∗

)
=

n∑
i=0

wq,n(b,l1)∗
(i)pi(1− p)n−i. (37)

In conclusion, when αb−1, αb+l1 , and αb+lt are included in
the different conjugacy classes, for BCH code with multiple-
error-correcting capability, by using (27), (31), and (36),

the decision criterion of the second majority vote in the JKS
method is derived as follows:

Pr
(
r(x) ∈ Sq,n(b,lt )∗

) Success
≷

Failure
Pr
(
r(x) ∈ Sq,n(b,l1)∗

)
⇔ Pr

(
r(x) ∈ Sq,n(b,lt )∗

)
− Pr

(
r(x) ∈ Sq,n(b,l1)∗

) Success
≷
Fail

0

⇔ Q1(b− 1)
n∑
i=0

{
Q1(b+ lt )w

q,n
(b,lt )

(i)− wq,n(b,l1)∗
(i)
}

· pi(1− p)n−i
Success
≷

Failure
0. (38)

When αb−1, αb+l1 , and αb+lt are included in the same con-
jugacy class, for BCH code with multiple-error-correcting
capability, by using (27), (32), and (37), the decision criterion
of the second majority vote in the JKS method is derived as
follows:

Pr
(
r(x) ∈ Sq,n(b,lt )∗

) Success
≷

Failure
Pr
(
r(x) ∈ Sq,n(b,l1)∗

)
⇔ Pr

(
r(x) ∈ Sq,n(b,lt )∗

)
− Pr

(
r(x) ∈ Sq,n(b,l1)∗

) Success
≷
Fail

0

⇔

n∑
i=0

{
Q1(b+ lt )w

q,n
(b,lt )

(i)− wq,n(b,l1)∗
(i)
}

· pi(1− p)n−i
Success
≷

Failure
0. (39)

The asymptotic threshold T2 of the second majority vote in
the JKS method is the maximum p that leads the decision
by (39) to the success. For various narrow-sense BCH codes,
Table 2 shows the asymptotic threshold T2 of JKS method,
which is calculated by using the weight distributions of BCH
codes [1].

2) ASYMPTOTIC ANALYSIS FOR BCH CODES WITH
ONE-ERROR-CORRECTING CAPABILITY
When BCH code with multiple-error-correcting capability is
used, the error polynomial included in Sq,n(b,l1)∗

leads to the

TABLE 2. T2 and T for various narrow-sense binary BCH codes.
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failure of the JKS method, where l1 = λ
q,n
(b,2). However,

when BCH code with one-error-correcting capability is used,
the JKS method succeeds even with the error polynomial
included in Sq,n(b,l1)∗

. Hence, the error polynomial that leads the
blind reconstruction of the JKSmethod to fail should be rede-
fined. According to Lemma 2, among the sets of polynomials
showing the same SVCR, a set of polynomials having the
smaller MLCR value shows the higher occurring probability
than the other sets of polynomial having the larger MLCR
value. Thus, it is clear that the received codeword polynomial
showing the second smallest MLCR value leads the JKS
method to fail when BCH code with one-error-correcting
capability is used. Therefore, when BCH code with one-
error-correcting capability is used, in order to succeed in
the second majority vote, the largest number of received
codeword polynomials must show the correct MLCR value
l1 (i.e., lref = l1), which is statistically expressed as:

Pr
(
r(x) ∈ Sq,n(b,l1)∗

) Success
≷

Failure
Pr
(
r(x) ∈ Sq,n

(b,l+1 )∗

)
, (40)

where l+1 = λ
q,n,+
(b,2) . Note that to simplify the expression

we omit the given condition that the codeword polynomi-
als c(x) generated by a generator polynomial g(x) having
αb, αb+1, · · · , αb+lt−1 as its roots are transmitted.
In the left-hand side (LHS) of (40), in order for the received

codeword polynomial to be included in Sq,n(b,l1)∗
, it is needed

that the error polynomial e(x) is included in Sq,n(b,l1)∗
and the

conditions r(αb−1) 6= 0 and r(αb+l1 ) 6= 0 are satisfied. Note
that αb−1, αb+l1 ∈ Rc, but it is not known whether αb−1

and αb+l1 are included in the different conjugacy classes or
not, and hence we consider both cases where αb−1 and αb+l1
are included in the different conjugacy classes and ones are
included in the same conjugacy class. When αb−1 and αb+l1
are included in the different conjugacy classes, the probability
Pr(r(x) ∈ Sq,n(b,l1)∗

) in the LHS of (40) can be calculated as
follows:

Pr
(
r(x) ∈ Sq,n(b,l1)∗

)
= Pr

(
r(αb−1) 6= 0, r(αb) = · · · = r(αb+l1−1) = 0,

r(αb+l1 ) 6= 0
)

= Pr
(
r(αb−1) 6= 0

)
Pr
(
r(αb) = · · · = r(αb+l1−1) = 0

)
·Pr

(
r(αb+l1 ) 6= 0

)
= Q1(b− 1) Pr

(
e(αb) = · · · = e(αb+l1−1) = 0

)
·Q1(b+ l1)

= Q1(b− 1)Q1(b+ l1)
n∑
i=0

wq,n(b,l1)
(i)pi(1− p)n−i, (41)

where Pr(r(αb−1) 6= 0) = Q1(b − 1) and Pr(r(αb+l1 ) 6=
0) = Q1(b+ l1) because αb−1, αb+l1 ∈ Rc. Also, Pr(e(αb) =
· · · = e(αb+l1−1) = 0) =

∑n
i=0 w

q,n
(b,l1)

(i)pi(1 − p)n−i is
calculated as (8). When αb−1 and αb+l1 are included in the

same conjugacy class, the probability Pr(r(x) ∈ Sq,n(b,l1)∗
) in

the LHS of (40) can be calculated as follows:

Pr
(
r(x) ∈ Sq,n(b,l1)∗

)
= Pr

(
r(αb−1) 6= 0, r(αb) = · · · = r(αb+l1−1) = 0,

r(αb+l1 ) 6= 0
)

= Pr
(
r(αb) = · · · = r(αb+l1−1) = 0

)
Pr
(
r(αb+l1 ) 6= 0

)
= Pr

(
e(αb) = · · · = e(αb+l1−1) = 0

)
Q1(b+ l1)

= Q1(b+ l1)
n∑
i=0

wq,n(b,l1)
(i)pi(1− p)n−i. (42)

Note that because αb−1 and αb+l1 are included in the same
conjugacy class, if the condition r(αb+l1 ) 6= 0 is satisfied,
the condition r(αb−1) 6= 0 is satisfied automatically.
In the RHS of (40), in order for the received codeword

polynomials r(x) to be included in Sq,n
(b,l+1 )∗

, the conditions

r(αb) = r(αb+1) = · · · = r(αb+l
+

1 −1) = 0, r(αb−1) 6= 0, and
r(αb+l

+

1 ) 6= 0 should be satisfied. Because αb−1, αb+l
+

1 ∈ Rc,
the occurring probabilities of the conditions r(αb−1) 6= 0 and
r(αb+l

+

1 ) 6= 0 are calculated as Q1(b − 1) and Q1(b + l+1 ),
respectively. However, it is not known whether αb−1 and
αb+l

+

1 are included in the different conjugacy classes or not
since it is determined by the transmitted BCH code. Thus,
we consider both cases where αb−1 and αb+l

+

1 are included
in the different conjugacy classes and ones are included in the
same conjugacy class.
Since c(αb) = c(αb+1) = · · · = c(αb+l1−1) = 0,

the condition r(αb) = r(αb+1) = · · · = r(αb+l
+

1 −1) = 0
can be divided into the two conditions r(αb) = r(αb+1) =
· · · = r(αb+l1−1) = 0 and r(αb+l1 ) = 0. Note that since
a union of Cb,Cb+1, · · · ,Cb+l1 is the same as a union of
Cb,Cb+1, · · · ,Cb+l+1 −1

, the condition r(αb) = r(αb+1) =

· · · = r(αb+l
+

1 −1) = 0 is satisfied if the two condi-
tions divided are satisfied. Also, because Cb+l1 and a union
of Cb,Cb+1, · · · ,Cb+l1−1 are disjoint, the two conditions
divided must be independent. The first condition r(αb) =
r(αb+1) = · · · = r(αb+l1−1) = 0 can be calculated as
e(αb) = e(αb+1) = · · · = e(αb+l1−1) = 0 because
c(αb) = c(αb+1) = · · · = c(αb+l1−1) = 0. Thus,
the occurring probability of the first condition is calculated as∑n

i=0 w
q,n
(b,l1)

(i)pi(1− p)n−i by using (8). Because αb+l1 ∈ Rc,
the occurring probability of the second condition r(αb+l1 ) =
0 is calculated as 1 − Q1(b + l1), i.e., Pr(r(αb+l1 ) = 0) =
1− Pr(r(αb+l1 ) 6= 0).
In conclusion, when αb−1 and αb+l

+

1 are included in the
different conjugacy classes, the occurring probability that
the received codeword polynomial r(x) shows an incorrect
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MLCR l+1 is calculated as follows:

Pr
(
r(x) ∈ Sq,n

(b,l+1 )∗

)
= Q1(b− 1)Q1(b+ l1)Q1(b+ l

+

1 )

·

n∑
i=0

wq,n(b,l1)
(i)pi(1− p)n−i. (43)

When αb−1 and αb+l
+

1 are included in the same conjugacy
class, the occurring probability that the received codeword
polynomial r(x) shows an incorrect MLCR l+1 is calculated
as follows:

Pr
(
r(x) ∈ Sq,n

(b,l+1 )∗

)
= Q1(b+ l1)Q1(b+ l

+

1 )

·

n∑
i=0

wq,n(b,l1)
(i)pi(1− p)n−i. (44)

In conclusion, for BCH code with one-error-correcting
capability, like (39), when αb−1 and αb+l

+

1 are included in the
different conjugacy classes, the decision criterion of the sec-
ond majority vote in the JKS method is derived by using (40),
(41), and (43) as follows:

Q1(b− 1)Q1(b+ l1)
n∑
i=0

{
wq,n(b,l1)

(i)

−Q1(b+ l
+

1 )w
q,n
(b,l1)

(i)
}
pi(1− p)n−i

Success
≷

Failure
0. (45)

When αb−1 and αb+l
+

1 are included in the same conjugacy
class, the decision criterion of the second majority vote in
the JKS method is derived by using (40), (42), and (44) as
follows:

Q1(b+ l1)
n∑
i=0

{
wq,n(b,l1)

(i)

−Q1(b+ l
+

1 )w
q,n
(b,l1)

(i)
}
pi(1− p)n−i

Success
≷

Failure
0. (46)

The asymptotic threshold T2 of the second majority vote in
the JKS method is the maximum p that leads the decision
by (46) to the success. Because 0 < Q1(b + l+1 ) < 1,
the decision criterion of the second majority vote in the JKS
method in (46) always succeeds. This is because in order for
the received codeword polynomial r(x) to show larger than
the MLCR of the codeword polynomial c(x), it is necessary
to be satisfied with many conditions for the codeword poly-
nomial c(x) and the error polynomials e(x) as explained in
this section.

Moreover, since the one-error-correcting BCH codes have
a smaller MLCR than other BCH codes of the same code
length, when they are used, T2 is larger than T1, unlike when
multiple-error-correcting BCH codes of the same code length
are used. Note that a small MLCR value of the BCH code
means that the size of the null spectrum is small of the cor-
responding BCH code. Since the one-error-correcting BCH
codes have the smallest size of null spectrum, the number of

FIGURE 1. Comparison of correct reconstruction probability for
three-error-correcting narrow-sense BCH codes according to the number
of received codewords.

cases where the received codeword polynomial of the corre-
sponding BCH codes has an incorrect SVCR is the largest.

Finally, in order to succeed in the blind reconstruction
using the JKS method, it must be selected as both the cor-
rect SVCR in the first majority vote and correct MLCR in
the secondmajority vote. Therefore, we derive the asymptotic
threshold T of blind reconstruction of the JKS method by
T = min(T1,T2), and such results are shown in Table 2 for
various BCH codes.

IV. SIMULATION RESULTS
To verify the validity of the asymptotic threshold derived
in Section III, the JKS method is performed for various
narrow-sense BCH codes. Specifically, we obtain the cor-
rect reconstruction probability according to the number of
received codewords for various narrow-sense BCH codes
whose weight distributions are known [1]. Note that the
correct reconstruction means to correctly estimate the SVCR
andMLCR values of the generator polynomial of transmitted
BCH code. Also, because the decision criterion for the second
majority vote changes depending on whether the BCH code is
one-error-correcting or multiple-error correcting, simulations
are performed for BCH codes with the one-error-correcting
capability and with the three-error-correcting capability to
verify the asymptotic threshold, respectively.

Fig. 1 shows the correct reconstruction probability of the
JKSmethod for the three-error-correcting narrow-sense BCH
codes of the code lengths 31, 63, and 127 according to the
number of received codewords. Note that 1000 simulations
are performed to obtain each correct reconstruction prob-
ability of the JKS method. Even if the asymptotic thresh-
old T is derived under the assumption that the number of
received codewords is sufficiently large, Fig. 1 shows that
the cross-over probability for successful blind reconstruc-
tion approaches the asymptotic threshold T , as the number
of received codeword increases. Therefore, it is positively
expected that the cross-over probability for successful blind
reconstruction converges to the asymptotic threshold T as the
number of received codewords increases, which implies that
the analysis and the asymptotic threshold are valid. In other
words, it is shown that the transition region, which denotes the
region between the maximum cross-over probability for the
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FIGURE 2. Comparison of correct reconstruction probability for
one-error-correcting narrow-sense BCH codes according to the number of
received codewords.

100% successful reconstruction and the minimum cross-over
probability for the 100% failed reconstruction in the JKS
method, decreases as the number of received codewords
increases until there appears the asymptotic threshold. Thus,
it can be seen that as the number of received codewords
increases, the correct reconstruction probability of the JKS
method converges to the step function in the cross-over prob-
ability domain as shown in Fig. 1.

Fig. 2 compares the correct reconstruction probabil-
ity of the JKS method for various one-error-correcting
narrow-sense BCH codes of the code lengths 31, 63, and
127 according to the number of received codewords. Similar
to the case of three-error-correcting BCH codes, 1000 simu-
lations are performed to obtain each correct reconstruction
probability of the JKS method. Since one-error-correcting
narrow-sense binary BCH codes have the smallest null
spectrum, the received codeword polynomials showing an
incorrect SVCR occur the more frequently compared with
the multiple-error-correcting BCH codes. For this reason,
the simulation curves for one-error-correcting BCH codes
in Fig. 2 are not smooth and the error floor phenomenon
is incurred. Nevertheless, Fig. 2 shows a tendency that the
cross-over probability for successful blind reconstruction
approaches the asymptotic threshold T as the number of
received codewords increases. As a result, it is expected that
the cross-over probability of successful blind reconstruction
will asymptotically approach to the asymptotic threshold.
From Figs. 1 and 2, we can see that a defender should not use
more than a certain number of codewords of the same BCH
code to prevent information leakage and that the challenger
needs more than a certain number of codewords to succeed in
blind information extraction.

V. DISCUSSION AND CONCLUSION
In this paper, asymptotic analysis of the JKS method [6] is
performed, which shows the best blind reconstruction perfor-
mance of BCH codes, under the assumption that the num-
ber of received codewords is sufficiently large. The reason
for this assumption is that the blind reconstruction perfor-
mance heavily depends on how many and which received
codewords are used even for the same channel environment.
Through asymptotic analysis, an asymptotic threshold is

derived, which is the maximum cross-over probability p of
BSC for which the generator polynomials of BCH codes are
successfully reconstructed by the JKS method. Specifically,
asymptotic analysis of the JKS method is performed for each
of the two majority votes. Since the JKS method is based
on each majority vote on SVCR and MLCR, the occurring
probability of the received codeword polynomials showing
the correct SVCR and MLCR and the occurring probability
of the received codeword polynomials showing the incorrect
SVCR and MLCR are derived based on the analysis of con-
secutive roots of error polynomial according to the number
of errors. In other words, the occurring probability of the
received codeword polynomial showing the correct SVCR
and MLCR is derived, and they are compared with the occur-
ring probability of the received codeword polynomial show-
ing the incorrect SVCR and MLCR. For each majority vote,
statistical decision criteria of the JKS method are derived and
then used to obtain an asymptotic threshold. Finally, the valid-
ity of the derived asymptotic threshold is verified through
simulation.

This asymptotic analysis will provide a new performance
metric for blind reconstruction methods and give an intu-
ition to the development of blind reconstruction method
and the modification of the existing methods. Also, to the
defender who wants to prevent information leakage and
to the challenger who wants to blindly extract information
from the intercepted signals, this asymptotic analysis pro-
vides a baseline of the cross-over probability of BSC and
the number of received codewords for the successful blind
reconstruction. Furthermore, it is expected that the asymp-
totic analysis proposed in this paper can be applied to other
methods for deriving their performance limit. Also, it may
be a good future work to derive an asymptotic threshold of
the existing or future blind reconstruction methods of various
cyclic codes.
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