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Abstract: In this paper, the theoretical lower-bound on the success probability of blind reconstruction
of Bose–Chaudhuri–Hocquenghem (BCH) codes is derived. In particular, the blind reconstruction
method of BCH codes based on the consecutive roots of generator polynomials is mainly analyzed
because this method shows the best blind reconstruction performance. In order to derive a
performance lower-bound, the theoretical analysis of BCH codes on the aspects of blind reconstruction
is performed. Furthermore, the analysis results can be applied not only to the binary BCH codes but
also to the non-binary BCH codes including Reed–Solomon (RS) codes. By comparing the derived
lower-bound with the simulation results, it is confirmed that the success probability of the blind
reconstruction of BCH codes based on the consecutive roots of generator polynomials is well bounded
by the proposed lower-bound.

Keywords: blind reconstruction; BCH codes; galois field; galois field fourier transform; lower-bound;
RS codes

1. Introduction

In order to achieve reliable information transmission through noisy communication channels,
the use of error-correcting codes (ECCs) in data-stream is indispensable [1]. By sharing the parameters
of ECCs between the transmitter and the receiver, the errors occurred by communication channels
can be detected or corrected at the receiver in a cooperative way. However, in a non-cooperative
context, it is necessary to decode received (or intercepted) data without the knowledge of parameters
of the used ECC. In other words, a blind reconstruction of the parameters of the used ECC should be
performed by the receiver.

A blind reconstruction of ECCs has been studied in various ways [2–19]. The blind
reconstruction schemes of linear block codes are studied in [2–9], the blind reconstruction schemes
of Bose–Chaudhuri–Hocquenghem (BCH) codes are studied in [10–15], and the blind reconstruction
schemes of convolutional codes are studied in [16–19]. Most of the blind reconstruction schemes
of ECCs take the dual code approach to reconstruct the dual code space of the used code by using
the received codewords. Valembois [2] proposed a detection and recognition algorithm for binary
linear codes by using the dual code property and Cluzeau [3] proposed a blind reconstruction method
based on iterative decoding techniques by using the dual code property. Moreover, most of the blind
detection methods of BCH codes are also based on the dual code approach. By using the properties
of BCH codes, their parity-check matrices can be constructed through applying Galois field Fourier
transform (GFFT) on the received codewords and many of the blind reconstruction methods of BCH
codes are based on GFFT [10–15]. In the same manner, most of the blind reconstruction methods of
convolutional codes are also based on the dual code approach [16–19]. To reconstruct the generator
polynomial or generator matrix of convolutional code, its dual code is recognized preferentially.

An analysis of the blind reconstruction of cyclic codes over binary erasure channel (BEC) is
performed in [20]. Note that for BEC, the number and the locations of error bits in the received
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data-stream are known to the receiver. By using this property of BEC, a blind reconstruction scheme
of binary cyclic codes is proposed and a lower-bound on the detection probability of this scheme is
analyzed in [20]. However, many blind reconstruction schemes consider the binary symmetric channel
(BSC) where the number and the locations of error bits in the received data-stream are not unavailable.
Therefore, the analysis in [20] is not directly applicable to the blind reconstruction schemes considering
the BSC.

In this paper, the blind reconstruction of BCH codes over q-ary symmetric channel is
mainly considered because BCH codes are a most widely used class of cyclic codes, especially
in communication and storage systems and q-ary symmetric channel is a general form of BSC.
Especially, the method in [15] shows the best blind reconstruction performance among the existing
blind reconstruction methods of BCH codes, but the theoretical analysis of this method has not
been performed yet. Therefore, by analyzing the properties of BCH codes on the aspects of blind
reconstruction, a lower-bound on the success probability of the blind reconstruction method in [15]
is derived. More specifically, the distribution of GFFT values of the received codewords is analyzed
and the blind reconstruction method is formulated by using the conjugacy classes. By comparing the
derived lower-bound with the simulation results, it is confirmed that the success probability of the
blind reconstruction is well lower-bounded. Furthermore, the analysis of BCH codes on the aspects of
blind reconstruction may lay a foundation for an analysis of other blind reconstruction methods of
BCH codes based on GFFT.

In Section 2, definitions and properties of BCH codes and GFFT are briefly explained. In Section 3,
the theoretic analysis of the properties of BCH codes on the aspects of blind reconstruction is performed.
In Section 4, the blind reconstruction method in [15] is explained, and a lower-bound on the success
probability of this blind reconstruction method is derived. The simulation results confirm that the
success probability of the blind reconstruction method is well-bounded by the derived lower-bound.
In Section 5, conclusions are provided.

2. BCH Codes and Galois Field Fourier Transform

In this section, the BCH codes and the Galois field Fourier transform (GFFT) are briefly described.

2.1. BCH Codes

BCH codes is a class of linear block codes for forward error correction. Let GF(q) denote the Galois
field (or finite field) of q elements and let BCHq(n, k) denote the BCH code with length n and dimension
k over GF(q). Note that the dimension k is the same as the length of random message which also implies
the number of codewords. Then, the generator polynomial of BCHq(n, k) is defined as follows:

g(x) = LCM[Mαb(x), Mαb+1(x), · · · , Mαb+d−2(x)] (1)

where LCM denotes the least common multiple function, α is a primitive n-th root of unity in GF(qm),
Mαi (x) is a minimal polynomial of αi over GF(q), b is an arbitrary positive integer smaller than n, and d
is a designed distance. Note that m is the smallest integer such that n divides qm − 1. By the definition
of generator polynomial g(x), αb, αb+1, · · · , αb+d−2 are the roots of g(x), i.e., g(αb) = g(αb+1) = · · · =
g(αb+d−2) = 0. Let Sr be the set of the exponents of all roots of g(x) as follows:

Sr =
{

i | g(αi) = 0, i ∈ {0, 1, · · · , n− 1}
}

. (2)

A message can be expressed in polynomial form as m(x) = m0 + m1x + · · ·+ mk−1xk−1 and in
vector form as m = (m0, m1, · · · , mk−1), where mi ∈ GF(q) for i ∈ {0, 1, · · · , k− 1}. A codeword of
BCHq(n, k) can be expressed in polynomial form as c(x) = c0 + c1x + · · ·+ cn−1xn−1 and in vector
form as c = (c0, c1, · · · , cn−1), where ci ∈ GF(q) for i ∈ {0, 1, · · · , n− 1}. Then, c(x) can be obtained
as follows:

c(x) = m(x)g(x). (3)
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Since a codeword c(x) has g(x) as a factor, all roots of g(x) are also roots of c(x), i.e., c(αi) = 0 for all
i ∈ Sr. In this paper, the q-ary symmetric channel with error probability ε is considered. Channel error
can be expressed in polynomial form as e(x) = e0 + e1x + · · · + en−1xn−1 and in vector form as
e = (e0, e1, · · · , en−1), where ei ∈ GF(q) for i ∈ {0, 1, · · · , n− 1}. Note that by the definition of q-ary
symmetric channel, Pr(ei = 0) = 1− ε and Pr(ei = x) = ε/(q − 1) for i ∈ {0, 1, · · · , n − 1} and
x ∈ GF∗(q) where GF∗(q) = GF(q) \ {0}. Then, a received codeword at the receiver is expressed in
polynomial form as

r(x) = c(x) + e(x), (4)

or in vector form as follows:
r = c + e. (5)

Throughout the paper, the polynomial form and the vector form will be used interchangeably.
If there is no error (i.e., e(x) = 0), r(αi) = 0 for all i ∈ Sr because r(x) = c(x). However, if e(x) 6= 0,

we may have r(αi) 6= 0 for some i ∈ Sr because it can be e(αi) 6= 0 for some i ∈ Sr.

2.2. Conjugacy Classes and Cyclotomic Cosets

Let Uβ denote a conjugacy class of β ∈ GF(qm). Then, Uβ consists of β and its conjugates βq, βq2
,

βq3
, · · · . Note that the conjugacy classes of the elements in the same conjugacy class are the same.

The minimal polynomial of αi ∈ GF(qm) over GF(q), Mαi (x), can be obtained by using the conjugacy
classes as follows:

Mαi (x) = ∏
z∈U

αi

(x− z). (6)

The degree of Mαi (x) is equal to |Uαi |, where |S| is the cardinality of a set S. Note that since Mαi (x)
has all the elements in Uαi as its roots, g(x) in (1) has all the elements in Uαb , Uαb+1 , · · · , Uαb+d−2 as its
roots. Let SN denote the null spectrum of the BCHq(n, k) which has the generator polynomial in (1).
Then SN is obtained as follows:

SN =
b+d−2⋃

i=b

Uαi . (7)

Sr in (2) is also expressed as the set of the exponents of the elements in SN such as Sr = {i | αi ∈ SN}.
Then, the complement of Sr, denoted by Sr

c, is obtained as follows:

Sr
c = {i | αi ∈ GF∗(qm) \ SN}. (8)

It is clear that Sr
c = Zn \ Sr where Zn = {0, 1, · · · , n− 1}.

Let Ci denote the cyclotomic coset of i modulo n with respect to GF(q). Then, the exponents of all
the elements in Uαi make up Ci and Sr =

⋃b+d−2
i=b Ci by (2) and (7).

2.3. Galois Field Fourier Transform

The roots of a received codeword r(x) can also be obtained by performing the Galois field Fourier
transform (GFFT) on r(x). The GFFT of c(x), denoted as C(X), can be expressed in polynomial form
as follows:

C(X) = c(α0) + c(α1)X + · · ·+ c(αn−1)Xn−1, (9)

where c(αi) ∈ GF(qm) for i ∈ {0, 1, · · · , n− 1}. It is also expressed in vector form as follows:

C =
(
C0, C1, · · · , Cn−1

)
=
(
c(α0), c(α1), · · · , c(αn−1)

)
. (10)
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The GFFT matrix MG is defined as follows:

MG =


α0 α0 α0 · · · α0

α0 α1 α2 · · · αn−1

α0 α2 α4 · · · α2(n−1)

...
...

...
. . .

...
α0 αn−1 α2(n−1) · · · α(n−1)2

 . (11)

Then, the GFFT of c is simply obtained by C = c×MG. By the definition of g(x) in (1), Cb = Cb+1 =

· · · = Cb+d−2 = 0.
The GFFT of r(x), denoted as R(X), can be expressed in polynomial form as follows:

R(X) = r(α0) + r(α1)X + · · ·+ r(αn−1)Xn−1, (12)

where r(αi) ∈ GF(qm) for i ∈ {0, 1, · · · , n− 1}. The vector form of R(X) is expressed as follows:

R =
(

R0, R1, · · · , Rn−1
)
=
(
r(α0), r(α1), · · · , r(αn−1)

)
. (13)

By using MG in (11), the GFFT of r is simply obtained by R = r × MG. In the error-free case
(i.e., e(x) = 0), Rb = Rb+1 = · · · = Rb+d−2 = 0. However, if e(x) 6= 0, we may have Ri 6= 0 for some
i ∈ {b, b + 1, · · · , b + d− 2}.

The GFFT of e(x), denoted as E(X), can be expressed in polynomial form as follows:

E(X) = e(α0) + e(α1)X + · · ·+ e(αn−1)Xn−1, (14)

where e(αi) ∈ GF(qm) for i ∈ {0, 1, · · · , n− 1}. The vector form of E(X) is expressed as follows:

E =
(
E0, E1, · · · , En−1

)
=
(
e(α0), e(α1), · · · , e(αn−1)

)
. (15)

By using (5), (10) and (13), it is clear that R = C + E = (c + e)MG.

3. Theoretical Analysis of BCH Codes on the Aspects of Blind Reconstruction

3.1. GFFT of a Single Symbol Error

In this subsection, the GFFT values of a single symbol error is investigated. Let wt(a) denote the
Hamming weight of a vector a, i.e., wt(a) is the number of non-zero elements in a. Note that a single
symbol error e(x) satisfies wt(e) = 1.

Lemma 1. If a received codeword r(x) of BCHq(n, k) contains a single symbol error, then

r(αi) 6= 0, ∀i ∈ Sr. (16)

Proof. Let e(x) = ejxj for some j ∈ {0, 1, · · · , n − 1} and ej ∈ GF∗(q). Since the GFFT value of
e(x) with respect to αi is Ei = e(αi) = ejα

ij 6= 0 for all i ∈ {0, 1, · · · , n− 1} and Ci = 0 for i ∈ Sr,
Ri = Ci + Ei 6= 0 for i ∈ Sr.

Lemma 1 shows that if r(x) contains a single symbol error, any root of g(x) cannot be a root of
r(x). In the next subsection, the distribution of GFFT values of c(x) is analyzed.
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3.2. GFFT of Codewords

Let Sc(αi) denote the set of the GFFT values taken by all the codewords c(x) of BCHq(n, k) for
x = αi as follows:

Sc(αi) ,
{

c(αi) | c(x) ∈ BCHq(n, k)
}

. (17)

Suppose that the minimal polynomial Mα(x) of a primitive n-th root of unity α ∈ GF(qm) over GF(q)
has a degree m′ where m′|m. Then, any αi ∈ GF(qm) can be expressed by a linear combination of
α0, α1, · · · , αm′−1 as follows:

αi = h0 + h1α + · · ·+ hm′−1αm′−1, (18)

where hi ∈ GF(q) for i ∈ {0, 1, · · · , m′ − 1}. Moreover, based on (18), any αi ∈ GF(qm) can be
expressed in vector form, denoted as vαi , as follows:

vαi = (h0, h1, · · · , hm′−1). (19)

Note that vαi is a row vector. Let Vαi ∈ GF(q)n×m′ be a matrix with v(αi)0 , v(αi)1 , · · · , v(αi)n−1 as its rows,
and rk(αi) denote the rank of Vαi over GF(q).

Lemma 2. Suppose that a message m(x) is generated uniformly at random, a codeword c(x) of BCHq(n, k) is
encoded by g(x) as in (3), and k ≥ rk(αi). Then, it is satisfied that

Sc(αi) = {0}, ∀i ∈ Sr, (20)

|Sc(αi)| = qrk(αi), ∀i ∈ Sr
c, (21)

Pr
(
c(αi) = x

)
=

1
|Sc(αi)|

, ∀x ∈ Sc(αi). (22)

Proof. First of all, for any i ∈ Sr, it is always true that c(αi) = 0 due to the definition of Sr. Therefore,
Sc(αi) = {0} and Pr(c(αi) = 0) = 1/|Sc(αi)| = 1 for any i ∈ Sr.

Second, in order to prove (21), let Γ ∈ GF(q)qk×n denote a matrix having all the qk codewords of
BCHq(n, k) as its rows. Then, the GFFT values of qk codewords can be expressed in vector form as follows:

Λ = Γ× Vαi , (23)

where Λ ∈ GF(q)qk×m′ is a matrix with the vector forms of all GFFT values of qk codewords with
respect to αi as its rows. Note that the rank of Γ is k because all the rows of Γ are the codewords
of BCHq(n, k), and the rank of Vαi is rk(αi) by the definition. The matrix Γ can be decomposed as
Γ = ∆ × G where ∆ has all the elements of GF(q)k as its rows and G is the generator matrix of
BCHq(n, k). Note that the rank of Λ, rank(Λ), is equal to rank(Γ×Vαi ) = rank(∆×G×Vαi ). Since the
size of ∆ is qk × k and rank(∆) = k, rank(∆× G × Vαi ) = rank(G × Vαi ). The j-th row of G × Vαi is
expressed as gj × Vαi where gj is the j-th row of G, j ∈ {1, 2, · · · , k}. Since gj × Vαi 6= 0 for i ∈ Sr

c and
j ∈ {1, 2, · · · , k}, g1, g2, · · · , gk are linearly independent, and k ≥ rk(αi), it is clear that rank(G× Vαi )

is equal to rk(αi). Therefore, the rank of Λ is also equal to rk(αi), which implies that there are qrk(αi)

distinct rows in Λ and |Sc(αi)| = qrk(αi) for any i ∈ Sr
c.

Lastly, in order to show (22), let x0, x1, · · · , xn1−1 ∈ GF(q)n be all distinct codewords such that
x0(α

i) = x1(α
i) = · · · = xn1−1(α

i) = x for given i and x ∈ GF(qm). Also, let y0, y1, · · · , yn2−1 ∈
GF(q)n be all distinct codewords such that y0(α

i) = y1(α
i) = · · · = yn2−1(α

i) = y for the same i and
y ∈ GF(qm). These relations can be expressed in matrix multiplication as follows:
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
x0

x1
...

xn1−1

×M(i+1)
G =


x
x
...
x

 , (24)


y0

y1
...

yn2−1

×M(i+1)
G =


y
y
...
y

 , (25)

where M(i+1)
G is the (i + 1)-st column of MG in (11). In order to show Pr(c(αi) = x) = 1/|Sc(αi)|, it is

enough to show n1 = n2. Without loss of generality, suppose that n1 > n2. From (24), we can obtain
x0 − x0

x1 − x0
...

xn1−1 − x0

×M(i+1)
G =


0
0
...
0

 . (26)

Note that n1 vectors xi − x0 are all distinct. By adding y0 to each row of the first matrix in LHS of (26),
we obtain 

y0 + x0 − x0

y0 + x1 − x0
...

y0 + xn1−1 − x0

×M(i+1)
G =


y
y
...
y

 . (27)

Note that n1 vectors y0 + xi− x0 are still all distinct and they are valid codewords. According to (27), the
number of codewords which have y as the GFFT value with respect to αi is n1, which is a contradiction
to the assumption n1 > n2 and hence n1 = n2. Therefore, if GFFT is performed on all the codewords
of BCHq(n, k) with respect to αi, all the elements of Sc(αi) occur uniformly at random for the random
message m(x), which implies Pr(c(αi) = x) = 1/|Sc(αi)| for any i ∈ Sr

c.

By Lemma 2, it is clear that c(αi) = 0 for i ∈ Sr and c(αi) for i ∈ Sr
c takes a value from Sc(αi)

uniformly at random. In the next subsection, the distribution of GFFT values of r(x) is analyzed.

3.3. GFFT of Received Codewords

Consider a received codeword r(x) = c(x) + e(x) having a single symbol error, i.e., e(x) = ejxj with
ej 6= 0. Let Se(αi) be the set of all GFFT values of a single symbol error e(x) with respect to αi as follows:

Se(αi) ,
{

e(αi) | e(x) = ejxj, ej ∈ GF∗(q), j ∈ {0, 1, · · · , n− 1}
}

. (28)

By using Lemma 2, the distribution of GFFT values of r(x) with a single symbol error is analyzed
as follows.

Corollary 1. Suppose that a message m(x) is generated uniformly at random, a codeword c(x) of BCHq(n, k)
is encoded by g(x) as (3), e(x) is a single symbol error, and k ≥ rk(αi). Then, it is satisfied that

Se(αi) ⊂ Sc(αi), ∀i ∈ Sr
c. (29)
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Proof. By Lemma 2, if k ≥ rk(αi), it is clear that |Sc(αi)| = qrk(αi) for i ∈ Sr
c, which means that Sc(αi)

contains all the linear combinations of (αi)0, (αi)1, · · · , (αi)n−1 over GF(q). Therefore, Sc(αi) contains
Se(αi) for any i ∈ Sr

c and (29) holds.

Let Sr(αi) be the set of all GFFT values of r(x) with a single symbol error ejxj with respect to αi

as follows:

Sr(αi) ,
{

r(αi) | r(x) = c(x) + ejxj, ej ∈ GF∗(q), c(x) ∈ BCHq(n, k), j ∈ {0, 1, · · · , n− 1}
}

. (30)

Lemma 3. Suppose that a message m(x) is generated uniformly at random, a codeword c(x) of BCHq(n, k) is
encoded by g(x) as (3), e(x) is a single symbol error, and k ≥ rk(αi). Then, it is satisfied that

Sr(αi) = Sc(αi), ∀i ∈ Sr
c, (31)

Pr
(
r(αi) = x

)
=

1
qrk(αi)

, ∀x ∈ Sr(αi), ∀i ∈ Sr
c. (32)

Proof. Based on (30), Sr(αi) can be expressed as follows:

Sr(αi) =
{

c(αi) + e(αi) | c(αi) ∈ Sc(αi), e(αi) ∈ Se(αi)

}
. (33)

As shown in Corollary 1, if e(x) is a single symbol error and k ≥ rk(αi), Se(αi) ⊂ Sc(αi) for any i ∈ Sr
c.

Therefore, Sr(αi) is equal to Sc(αi) for any i ∈ Sr
c.

The probability in (32) is derived as follows:

Pr
(
r(αi) = x

)
= Pr

(
c(αi) + e(αi) = x

)
= ∑

y∈Se(αi)

Pr
(
c(αi) = x− y

)
Pr
(
e(αi) = y

)
(a)
=

1
|Sc(αi)|

∑
y∈Se(αi)

Pr
(
e(αi) = y

)
=

1
|Sc(αi)|

=
1

qrk(αi)

(34)

for x ∈ Sr(αi) and i ∈ Sr
c. The equality (a) holds by Lemma 2.

Lemma 3 assumes wt(e) = 1, however, in practice, multiple errors also occur. If wt(e) > 1,
Lemma 1 does not hold because r(αi) can be 0 for some i ∈ Sr even though e(x) 6= 0. Note that
Pr
(
e(αi) = 0, e(x) 6= 0, i ∈ Sr

)
is equal to the undetectable error probability of the BCH code which

has {αi | i ∈ Sr} as its null spectrum.

Lemma 4. Suppose that a message m(x) is generated uniformly at random, a codeword c(x) of BCHq(n, k) is
encoded by g(x) as (3), e(x) is generated by q-ary symmetric channel with error probability ε, and k ≥ rk(αi).
Then, it is satisfied that

Sr(αi) = Sc(αi), ∀i ∈ Sr
c, (35)

Pr
(
r(αi) = x

)
=

1
qrk(αi)

, ∀x ∈ Sr(αi), ∀i ∈ Sr
c. (36)
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Proof. For i ∈ Sr
c, Sc(αi) contains all the linear combinations of (αi)0, (αi)1, · · · , (αi)n−1 over GF(q).

Since the error e(x) is not a single symbol error anymore, Se(αi) is defined as follows:

Se(αi) =

{
e(αi) | e(x) =

n−1

∑
j=0

ejxj, ej ∈ GF(q)
}

. (37)

Se(αi) also contains all the linear combinations of (αi)0, (αi)1, · · · , (αi)n−1 over GF(q) and hence
Sr(αi) = Sc(αi) for any i ∈ Sr

c because r(αi) = c(αi) + e(αi).
The probability in (36) is derived as follows:

Pr
(
r(αi) = x

)
= Pr

(
c(αi) + e(αi) = x

)
= ∑

y∈Se(αi)

Pr
(
c(αi) = x− y

)
Pr
(
e(αi) = y

)
=

1
|Sc(αi)|

∑
y∈Se(αi)

Pr
(
e(αi) = y

)
=

1
|Sc(αi)|

=
1

qrk(αi)

(38)

for x ∈ Sr(αi) and i ∈ Sr
c.

As you can see from Lemmas 3 and 4, the conclusions (31) and (32) and (35) and (36) are the same.
It implies that if the encoded message m(x) is generated uniformly at random, the GFFT of r(x) with
respect to αi takes a value in Sr(αi) uniformly at random regardless of the distribution of e(x) for i ∈ Sr

c.

By Lemma 4, the probability that r(x) has αi as its root for i ∈ Sr
c is 1/qrk(αi). Based on Lemma 4,

the performance of blind reconstruction method of BCH codes [15] is analyzed in the next section.

4. Analysis of Blind Reconstruction Method of BCH Codes

4.1. Blind Reconstruction Method of BCH Codes

In this subsection, the blind reconstruction method of BCH codes based on consecutive roots
of generator polynomials [15] is described. In order to perform this method, it is assumed that
the codeword synchronization is perfectly done and the code length n is known to the receiver.
Suppose that M codewords are received. The j-th received codeword is expressed in polynomial
form as rj(x) = rj,0 + rj,1x + · · · + rj,n−1xn−1 and in vector form as rj = (rj,0, rj,1, · · · , rj,n−1) for
j ∈ {1, 2, · · · , M}. Let Lj denote the set of pairs consisting of the length l of the consecutive roots and
the starting value s of these consecutive roots of rj(x) defined as follows:

Lj ,
{
(s, l) | s ∈ {1, 2, · · · , n− 1}, 2 ≤ l ∈ N, rj(α

i) = 0, ∀i ∈ C l
s

}
, (39)

where C l
s , ∪s+l−1

i=s Ci. For example, if rj = (0, 0, 1, 0, 1, 1, 0) is received, then the GFFT of rj is
Rj = (1, 0, 0, 1, 0, 1, 1), and therefore Lj = {(5, 2)}. Note that 0 < s < n and 2 ≤ l of the elements in Lj.
By using (39), for rj(x), the maximum length of consecutive roots (MLCR) lmax

j and the corresponding
starting value of consecutive roots (SVCR) smax

j are obtained as follows:

(smax
j , lmax

j ) = arg max
(sj ,lj)∈Lj

lj. (40)
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Let Smax denote the set of (smax
j , lmax

j ) for j ∈ {1, 2, · · · , M} as follows:

Smax ,
{
(smax

j , lmax
j ) | j ∈ {1, 2, · · · , M}

}
(41)

The blind reconstruction method of BCH codes in [15] has two-stage processes.

1. First stage: The most frequent smax
j in Smax is selected and called a reference SVCR (R-SVCR),

denoted as sre f .
2. Second stage: The most frequent lmax

j among the pairs having smax
j = sre f in Smax is selected and

called a reference MLCR (R-MLCR), denoted as lre f .

By setting b = sre f and d = lre f + 1 in (1), the generator polynomial of the used BCH code is
reconstructed.

4.2. Performance Analysis of Blind Reconstruction Method of BCH Codes

In this subsection, the performance of blind reconstruction method in [15] is analyzed. Suppose
that BCHq(n, k) is used and M codewords are received. The generator polynomial g0(x) is set as in (1)
with b = s0 and d = l0 + 1. In order to succeed in blind reconstruction of this BCH code, sre f and lre f
should be correctly determined as sre f = s0 and lre f = l0. Define the sets of received codewords, M(s, l),
Mm(s, l), M∗(s, l), and Me(s, l) as follows:

M(s, l) =
{

rj(x) | (s, l) ∈ Lj
}

, (42)

Mm(s, l) =
{

rj(x) | (smax
j , lmax

j ) = (s, l)
}

, (43)

M∗(s, l) =
{

rj(x) | rj(x) ∈ Mm(s, l), rj(α
i) 6= 0, ∀i ∈ {1, 2, · · · , n− 1} \ C l

s

}
, (44)

Me(s, l) =
{

rj(x) | ej(x) 6= 0, rj(x) ∈ M(s, l)
}

. (45)

Note that M∗(s, l) ⊆ Mm(s, l) ⊆ M(s, l). In order to succeed in the first stage of the blind reconstruction
method, the following relation should be satisfied,

n−1

∑
l=2
|Mm(s0, l)| >

n−1

∑
l=2
|Mm(s, l)|, ∀s 6= s0. (46)

The relation (46) can be simplified as in the following Lemma 5.

Lemma 5. If the following inequality is satisfied, then the first stage of the blind reconstruction of BCH codes
in [15] always succeeds,

|M∗(s0, l0)| > |M(s, 2)|, ∀s 6= s0, (47)

and the success probability of the first stage is lower-bounded as

Pr
( n−1

∑
l=2
|Mm(s0, l)| >

n−1

∑
l=2
|Mm(s, l)|, ∀s 6= s0

)
≥ Pr

(
|M∗(s0, l0)| > |M(s, 2)|, ∀s 6= s0

)
. (48)

Proof. In order to succeed in the first stage of the blind reconstruction method in [15], the relation (46)
should be satisfied. The LHS in (46) satisfies the following inequalities,

n−1

∑
l=2
|Mm(s0, l)|

(a)
≥

n−1

∑
l=2
|M∗(s0, l)|

(b)
≥ |M∗(s0, l0)|.

(49)
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The first inequality (a) is derived by using M∗(s0, l) ⊆ Mm(s0, l), and the second inequality (b) is
trivial. The RHS in (46) satisfies the following inequality,

n−1

∑
l=2
|Mm(s, l)| (a)

= |
n−1⋃
l=2

Mm(s, l)|

(b)
≤ |

n−1⋃
l=2

M(s, l)|

(c)
= |M(s, 2)|.

(50)

The first equality (a) in (50) is derived by using Mm(s, l) ∩Mm(s, l′) = ∅ for all l 6= l′. The second
inequality (b) is derived by using Mm(s, l) ⊆ M(s, l). The third equality (c) is derived by using
M(s, l′) ⊆ M(s, l) for all l′ > l.

Therefore, if |M∗(s0, l0)| > |M(s, 2)| for any s 6= s0, the first stage of the blind reconstruction method
of BCH codes in [15] always succeeds. Furthermore, by the Equations (49) and (50), the inequality (48)
clearly holds.

If the first stage succeeds, in order for the second stage to succeed, the following relation should
be satisfied,

|Mm(s0, l0)| > |Mm(s0, l)|, ∀l 6= l0. (51)

The relation (51) can be simplified as in the following Lemma 6.

Lemma 6. If |M∗(s0, l0)| > |M(s, 2)|, ∀s 6= s0, holds and the following inequality is satisfied, then the second
stage of the blind reconstruction of BCH codes in [15] always succeeds,

|M∗(s0, l0)| > |Me(s0, 2)|, (52)

and the success probability of the second stage is lower-bounded as

Pr
(
|Mm(s0, l0)| > |Mm(s0, l)|, ∀l 6= l0

)
≥ Pr

(
|M∗(s0, l0)| > |Me(s0, 2)|

)
, (53)

where, for better readability, the given condition that |M∗(s0, l0)| > |M(s, 2)|, ∀s 6= s0, is omitted in
the probability.

Proof. Since |M∗(s0, l0)| > |M(s, 2)| for any s 6= s0, |Mm(s0, l0)| > |Mm(s0, l)| holds for l > l0
as follows:

|Mm(s0, l)|
(a)
≤ |M(s0 + 1, l − 1)|
(b)
< |M∗(s0, l0)|
(c)
≤ |Mm(s0, l0)|.

(54)

The inequality (a) in (54) is derived by using Mm(s0, l) ⊆ M(s0 + 1, l− 1). The inequality (b) is derived
by using |M∗(s0, l0)| > |M(s, 2)| for s 6= s0 and |M(s0 + 1, 2)| ≥ |M(s0 + 1, l− 1)|. The inequality (c) is
derived by using M∗(s0, l0) ⊆ Mm(s0, l0). Therefore, it remains to prove that our assumption implies
|Mm(s0, l0)| > |Mm(s0, l)| for l < l0.

If the j-th received codeword rj(x) is error-free (i.e., ej(x) = 0), then rj(x) /∈ Mm(s0, l) for all
l < l0 because rj(x) ∈ M(s0, l0) always holds. Therefore, ej(x) 6= 0 for rj(x) ∈ Mm(s0, l), l < l0
and then, the relation (51) can be simplified as |Mm(s0, l0)| > |Mm(s0, l) ∩ {rj(x) | ej(x) 6= 0}|
for l < l0. Since it is always satisfied that |Mm(s0, l) ∩ {rj(x) | ej(x) 6= 0}| ≤ |M(s0, l) ∩ {rj(x) |
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ej(x) 6= 0}| = |Me(s0, l)|, if |Mm(s0, l0)| > |Me(s0, l)| for l < l0, the second stage succeeds.
Furthermore, since |Me(s0, l)| > |Me(s0, l′)| for l < l′, if |Mm(s0, l0)| > |Me(s0, 2)| is satisfied, then
the second stage also succeeds. Note that the LHS in (51) satisfies that |Mm(s0, l0)| ≥ |M∗(s0, l0)|.
Therefore, if |M∗(s0, l0)| ≥ |Me(s0, 2)| is satisfied, then the second stage always succeeds.

The lower-bound on the success probability of the second stage is derived as follows:

Pr
(
|Mm(s0, l0)| > |Mm(s0, l)|, ∀l 6= l0

)
= Pr

(
|Mm(s0, l0)| > |Mm(s0, l)|, ∀l ≤ l0

)
= Pr

(
|Mm(s0, l0)| > |Mm(s0, l) ∩ {rj(x) | ej(x) 6= 0}|, ∀l ≤ l0

)
≥ Pr

(
|Mm(s0, l0)| > |M(s0, l) ∩ {rj(x) | ej(x) 6= 0}|, ∀l ≤ l0

)
= Pr

(
|Mm(s0, l0)| > |Me(s0, l)|, ∀l ≤ l0

)
= Pr

(
|Mm(s0, l0)| > |Me(s0, 2)|

)
≥ Pr

(
|M∗(s0, l0)| > |Me(s0, 2)|

)
.

(55)

Note that, for better readability, the given condition that |M∗(s0, l0)| > |M(s, 2)|, ∀s 6= s0, is omitted in
the probability.

By Lemmas 5 and 6, if |M∗(s0, l0)| > maxs 6=s0 |M(s, 2)| and |M∗(s0, l0)| > |Me(s0, 2)|, then the
blind reconstruction method of BCH code in [15] always succeeds. Moreover, the success probability of
the blind reconstruction method of BCH code in [15] is lower-bounded, as in the following Theorem 1.

Theorem 1. Suppose that randomly generated M codewords of BCHq(n, k), which uses the generator
polynomial g(x) as in (1) with b = s0 and d = l0 + 1, are received after passing through q-ary symmetric
channel with error probability ε. Then, the success probability of the blind reconstruction method of BCH codes
in [15], denoted as Ps, is lower-bounded as follows:

Ps ≥
M

∑
x=1

B(M, x, p0) ∏
Ci⊆C

l0
s0

c

{
x−1

∑
y=0

B
(

M, y,
1

qrk(αi)

)}
∏
Cj⊆C

l0
s0

{
x−1

∑
y=0

B
(

M, y, Pue
(
Cj
))}

, (56)

where B(M, x, p) = (M
x )px(1 − p)M−x, p0 = {(1 − ε)n + Pue(C l0

s0)}∏
z∈C l0

s0

c
(
1 − 1/qrk(αz)

)
, C l0

s0

c
=

{1, 2, · · · , n− 1} \ C l0
s0 , and Pue(C) is the undetectable error probability of BCH code having {αi | i ∈ C} as its

null spectrum.

Proof. By Lemmas 5 and 6, if |M∗(s0, l0)| > maxs 6=s0 |M(s, 2)| and |M∗(s0, l0)| > |Me(s0, 2)|, then the
blind reconstruction of BCH codes in [15] always succeeds. In order to calculate the probability that
|M∗(s0, l0)| > maxs 6=s0 |M(s, 2)| and |M∗(s0, l0)| > |Me(s0, 2)|, the probabilities that rj(x) ∈ M∗(s0, l0),
rj(x) ∈ M(s, 2), and rj(x) ∈ Me(s0, 2) should be calculated, respectively.
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If the j-th received codeword rj(x) is error-free or has an undetectable error, it is always true

that rj(x) ∈ M(s0, l0). Furthermore, if rj(α
i) 6= 0 for i ∈ C l0

s0

c
, it is also true that rj(x) ∈ M∗(s0, l0),

where C l0
s0

c
= {1, 2, · · · , n− 1} \ C l0

s0 . Then, Pr
(
rj(x) ∈ M∗(s0, l0)

)
is derived as follows:

Pr
(

rj(x) ∈ M∗(s0, l0)
)
= Pr

(
rj(α

i) = 0, ∀i ∈ C l0
s0 , rj(α

z) 6= 0, ∀z ∈ C l0
s0

c
)

(a)
= Pr

(
rj(α

i) = 0, ∀i ∈ C l0
s0

)
∏

z∈C l0
s0

c
Pr
(

rj(α
z) 6= 0

)

(b)
=
{
(1− ε)n + Pue

(
C l0

s0

)}
∏

z∈C l0
s0

c

(
1− 1

qrk
(

αz
) )

, p0,

(57)

where Pue(C l0
s0) is the undetectable error probability of BCH code having {αi | i ∈ C l0

s0} as its null

spectrum. In the equality (a) in (57), rj(α
i) for i ∈ C l0

s0

c
occurs uniformly at random because the message

is generated uniformly at random. Therefore, the event that rj(α
i) = 0 for any i ∈ C l0

s0 and the event

that rj(α
z) = 0 for any z ∈ C l0

s0

c
are independent and hence the equality (a) holds. The equality (b) is

derived by using Pr(rj(α
i) = 0, ∀i ∈ C l0

s0) = {(1− ε)n + Pue(C l0
s0)} and Lemma 4.

The probability that rj(x) ∈ M(s, 2) for s 6= s0 is calculated by using Lemma 4 as follows:

Pr
(

rj(x) ∈ M(s, 2)
)
= Pr

(
rj(α

i) = 0, ∀i ∈ C2
s

)
= Pr

(
rj(α

i) = 0, ∀i ∈ C2
s ∩ C

l0
s0

)
Pr
(

rj(α
z) = 0, ∀z ∈ C2

s \ C
l0
s0

)
= Pr

(
rj(α

i) = 0, ∀i ∈ C2
s ∩ C

l0
s0

)
∏

z∈C2
s \C

l0
s0

Pr
(

rj(α
z) = 0

)

= Pue
(
C2

s ∩ C
l0
s0

)
∏

z∈C2
s \C

l0
s0

1
qrk(αz)

.

(58)

For better readability, s 6= s0 is omitted in the probability.
Let M1(Ci) be {rj(x) | rj(α

z) = 0, ∀z ∈ Ci} and M2(Ci) be {rj(x) | rj(α
z) = cj(α

z) + ej(α
z) =

0, ∀z ∈ Ci, ej(x) 6= 0}. If |M∗(s0, l0)| is greater than |M1(Ci)| for any Ci ⊆ C l0
s0

c
and also greater

than |M2(Ci)| for any Ci ⊆ C l0
s0 , it is also satisfied that |M∗(s0, l0)| > |M(s, 2)| for any s 6= s0. It is

because if there exists Ci ⊆ C2
s such that Ci ⊆ C l0

s0

c
, it is true that |M∗(s0, l0)| > |M(s, 2)| due to

|M∗(s0, l0)| > |M1(Ci)| ≥ |M(s, 2)| for any Ci ⊆ C l0
s0

c
. Furthermore, if there exists Ci ⊆ C2

s such that
Ci ⊆ C l0

s0 , then it is also true that |M∗(s0, l0)| > |M(s, 2)| due to |M∗(s0, l0)| > |M2(Ci)| ≥ |M(s, 2)| for
any Ci ⊆ C l0

s0 . Then, the condition for the success of the first stage of blind reconstruction method is
simplified as follows:

|M∗(s0, l0)| > |M1(Ci)|, |M∗(s0, l0)| > |M2(Cj)|, ∀Ci ⊆ C l0
s0

c
, ∀Cj ⊆ C l0

s0 . (59)
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Moreover, Pr(rj(α
z) = 0, ∀z ∈ Ci) for Ci ⊆ C l0

s0

c
is simplified as follows:

Pr
(

rj(α
z) = 0, ∀z ∈ Ci ⊆ C l0

s0

c
)
= Pr

(
rj(x) ∈ M(i, 1), Ci ⊆ C l0

s0

c
)

(a)
= Pue

(
Ci ∩ C l0

s0

)
∏

Cj⊆Ci\C
l0
s0

1

qrk(αj)

(b)
=

1
qrk(αi)

.

(60)

The equality (a) is derived by using (58) and (b) is derived by using Ci ∩ C l0
s0 = ∅ and Ci \ C l0

s0 = Ci.
Furthermore, Pr(rj(α

z) = 0, ∀z ∈ Ci, ej(x) 6= 0) for Ci ⊆ C l0
s0 , is also simplified as follows:

Pr
(

rj(α
z) = 0, ∀z ∈ Ci ⊆ C l0

s0 , ej(x) 6= 0
)
= Pr

(
rj(x) ∈ M(i, 1), Ci ⊆ C l0

s0

)
= Pue

(
Ci ∩ C l0

s0

)
∏

Cj⊆Ci\C
l0
s0

1

qrk(αj)

(a)
= Pue

(
Ci
)
.

(61)

The equality (a) is derived by using Ci ∩ C l0
s0 = Ci and Ci \ C l0

s0 = ∅
The probability that rj(x) ∈ Me(s0, 2) is the same as the undetectable error probability of a BCH

code having {αi | i ∈ C2
s0
} as its null spectrum as follows:

Pr
(

rj(x) ∈ Me(s0, 2)
)
= Pue

(
C2

s0

)
. (62)

If |M∗(s0, l0)| > |M2(Ci)| for Ci ⊆ C2
s0

, then the second stage of the blind reconstruction method
succeeds. Therefore, Pr(|M∗(s0, l0)| > |Me(s0, 2)|) ≥ Pr(|M∗(s0, l0)| > |M2(Ci)|) for Ci ⊆ C2

s0
.

Finally, by using (57)–(62), Ps is lower-bounded as

Ps ≥ Pr
(
|M∗(s0, l0)| > max

s 6=s0
|M(s, 2)|, |M∗(s0, l0)| > |Me(s0, 2)|

)
=

M

∑
x=1

Pr
(
|M∗(s0, l0)| = x

)
Pr
(

max
s 6=s0
|M(s, 2)| < x, |Me(s0, 2)| < x | |M∗(s0, l0)| = x

)
(a)
≥

M

∑
x=1

Pr
(
|M∗(s0, l0)| = x

)
∏
Ci⊆C

l0
s0

c
Pr
(
|M1(Ci)| < x

)
∏
Cj⊆C

l0
s0

Pr
(
|M2(Cj)| < x

)

=
M

∑
x=1

B(M, x, p0) ∏
Ci⊆C

l0
s0

c

{
x−1

∑
y=0

B
(

M, y,
1

qrk(αi)

)}
∏
Cj⊆C

l0
s0

{
x−1

∑
y=0

B
(

M, y, Pue
(
Cj
))}

.

(63)

The inequality (a) in (63) is derived by using Pr(|M∗(s0, l0)| > |Me(s0, 2)|) ≥ Pr(|M∗(s0, l0)| >
|M2(Ci)|) for Ci ⊆ C2

s0
. Note that the event of |Mz(Ci)| < x is independent with the event of |Mz(Cj)| <

x for i 6= j and z ∈ {1, 2} because Ci ∩ Cj = ∅ for i 6= j. Furthermore, the event of |M1(Ci)| < x and
the event of |M2(Cj)| < x for i 6= j are also independent because Ci ∩ Cj = ∅ for i 6= j.

In Theorem 1, a lower-bound on the success probability of the blind reconstruction method of
BCH codes in [15] is obtained. In order to confirm the validity of this lower-bound, simulations are
performed by using the following BCH codes.
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• BCH2(31, 21), BCH2(63, 51), BCH2(127, 113): These are binary BCH codes having {αi | i ∈ C4
1} as

their null spectrum.
• BCH32(31, 29), BCH64(63, 59): These are Reed–Solomon (RS) codes having {αi | i ∈ C4

1} as their
null spectrum.

As you can see from Figure 1, the success probability of the blind reconstruction of binary BCH
codes is well bounded by the lower-bound in (56). However, for BCH2(63, 51), the gap between the
simulation result and the lower-bound is larger than the others because BCH2(63, 51) has a cyclotomic
coset of cardinality 2, while all the cyclotomic cosets of BCH2(31, 21) and BCH2(127, 113) have the
cardinality 5 and 7, respectively. In (56), if a cyclotomic coset Ci ⊆ C l0

s0

c
has small cardinality, 1/qrk(αi)

becomes bigger and then, B(M, y, 1/qrk(αi)) becomes smaller. Therefore, the lower-bounds of the blind
reconstruction performance of BCH2(31, 21) and BCH2(127, 113) is much tighter than BCH2(63, 51).
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Figure 1. Comparison of the correct reconstruction probability with the proposed lower-bound for
binary Bose–Chaudhuri–Hocquenghem (BCH) codes.

As you can see from Figure 2, the success probability of the blind reconstruction of RS codes is
also well bounded by the lower-bound in (56). Moreover, as the code length increase, the proposed
lower-bound of RS codes becomes tighter and therefore this lower-bound can be a good estimation of
blind reconstruction performance for practical RS codes. Furthermore, since the proposed lower-bound
can estimate the blind reconstruction performance without the extensive simulation, the proposed
lower-bound is suitable for practical use.
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Figure 2. Comparison of the correct reconstruction probability with the proposed lower-bound for
Reed–Solomon (RS) codes.
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5. Conclusions

The blind reconstruction method of BCH codes in [15] shows the best performance, but the
theoretical analysis of this method has not been performed. In this paper, by analyzing the properties
of BCH codes on the aspects of blind reconstruction, a lower-bound on the success probability of
the blind reconstruction method in [15] is derived. Especially, the distribution of GFFT values of the
received codewords are analyzed and the blind reconstruction method is formalized based on the
conjugacy classes. Furthermore, the analysis results can be applied not only to the binary BCH codes,
but also to the non-binary BCH codes, including RS codes. By comparing the derived lower-bound
with the simulation results, it is confirmed that the success probability of the blind reconstruction is
well bounded by the proposed lower-bound.
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