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Abstract: Carbon fiber reinforced plastics (CFRPs) have high specific stiffness and strength, but they
are vulnerable to transverse loading, especially low-velocity impact loadings. The impact damage
may cause serious strength reduction in CFRP structure, but the damage in a CFRP is mainly internal
and microscopic, that it is barely visible. Therefore, this study proposes a method of determining
impact damage in CFRP via poly(vinylidene fluoride) (PVDF) sensor, which is convenient and has
high mechanical and electrical performance. In total, 114 drop impact tests were performed to
investigate on impact responses and PVDF signals due to impacts. The test results were analyzed to
determine the damage of specimens and signal features, which are relevant to failure mechanisms
were extracted from PVDF signals by means of discrete wavelet transform (DWT). Support vector
machine (SVM) was used for optimal classification of damage state, and the model using radial basis
function (RBF) kernel showed the best performance. The model was validated through a 4-fold
cross-validation, and the accuracy was reported to be 92.30%. In conclusion, impact damage in CFRP
structures can be effectively determined using the spectral analysis and the machine learning-based
classification on PVDF signals.

Keywords: poly(vinylidene fluoride); impact damage; delamination; discrete wavelet transform
(DWT); support vector machine (SVM)

1. Introduction

Carbon fiber reinforced plastics (CFRPs) are widely used in aerospace, military, marine, and
automotive industry due to their high specific strength and stiffness [1]. However, CFRPs are easily
damaged by transverse loading because fibers in the composite structures are mainly focused on
in-plane direction than in the direction normal to plane [2,3]. A CFRP especially suffers low-velocity
impacts, such as dropping a tool on the laminate surface during maintenance, bird strikes, and fall of
hailstones [3]. The major failure mechanisms caused by a low-velocity impact are matrix cracking,
delamination, and fiber failure [4]. These types of damages can reduce the strength of CFRPs up to
30% of that of intact CFRP, and the consequences of impact are likely to be serious, when the damage
occurs in civil or military aircraft. [5,6]. However, the damages are barely visible because they are
internal, microscopic damage [7]. Therefore, the detection of internal damage induced by impact needs
to be carried out, and follow-ups such as repair or replacement of damaged parts should be done.
Fiber Bragg grating (FBG) sensors, strain gauges, and ceramic-based piezoelectric sensors have been
used to detect impact damages [8]. However, these sensors have problems such as vulnerability to
impact damage due to their brittleness and difficulty of integration into a structure [8,9].
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The poly(vinylidene fluoride) (PVDF) sensors are being used in the field of structural health monitoring
(SHM) due to their high electrical and mechanical performance such as fast electromechanical response,
low acoustic impedance, and high impact resistance [8]. Moreover, PVDF sensors are more convenient
than conventional sensors as they can be easily manufactured into a variety of shapes and cut or bent
to fit into machines in complex shapes [9]. A PVDF sensor can be easily applied to a surface of a test
specimen using a bonding tape, and the sensor can easily be removed and reused [10]. Furthermore,
they can be embedded into laminates in that a PVDF sensor is a thin-film-type sensor [9,11]. From these
results, it can be inferred that a PVDF sensor can be implemented as an effective impact damage
detection sensor, since it basically has high impact resistance and can be easily integrated to structures
with various geometry.

There have been several studies to detect damages in composite structures using the PVDF sensors.
Kim et al. [12] conducted drop impact tests on CFRP specimens and extracted damage signals from
vibrations via high-pass filtering, and spectral analysis was done to compare the signals from PVDF
and PZT. Bar et al. [13,14] used PVDF sensors as Acoustic Emission (AE) sensors and extracted the
AE parameters from the PVDF signals to study the relationship between the parameters and failure
mechanisms. Bae et al. [8] studied about the relationship between impact energy and peak voltage of
PVDF signals from impacted CFRP structures. However, much less works have been done to analyze
the relationships between PVDF signals and impact damage process and mechanisms. This is because
in-depth analysis of PVDF signals takes a great effort due to the low sensitivity of PVDF and complexity
of the impact damage signals.

Another approach to signal analysis has been to use classification methods based on machine
learning algorithms. Most research in this field have focused on analyzing biological signals to
predict patient symptoms [15–17]. This is due to the complexity of biosignals and the relatively weak
correlation between signals and related symptoms. Many researchers have also used machine learning
algorithms to analyze damage signals, especially on AE signals or vibration signals, which are effective
tools in the field of SHM [18–20]. This is mainly due to damping of the signal and effect of boundary
conditions or geometry of the specimens that distort signals. The PVDF sensor signals from impact
damages in CFRPs are also hard to be analyzed since the damage signals are affected by a variety of
failure mechanisms, and signal features can be easily distorted due to damping in the CFRP. Moreover,
due to the low sensitivity and damping of signal in the sensor, the signal information can be easily lost
when the signals are processed [21]. Therefore, a machine learning algorithm was used to analyze the
signal features of the PVDF sensor signals with higher accuracy.

Support vector machine (SVM) is one of the machine learning-based classification algorithms.
It has fewer parameters to adjust than other classification algorithms and can classify data with high
accuracy even when the training dataset is small [22]. In this study, an impact damage determination
model based on SVM was constructed by training the model with PVDF signal features according to
the damage state of the impacted specimens. The damage states were determined by analyzing the
impact responses of CFRP specimens. Then, discrete wavelet transform (DWT) was used to extract
spectral features, which was found to be closely related to failure mechanisms. After that, the damage
determination model based on SVM was trained by dataset of signal features labelled as damage
state. Finally, 4-fold cross-validation was performed on the models using different kernel functions,
for validation of the models and selecting the optimal kernel.

A PVDF sensor, which has a great potential as an impact detection sensor due to its superior
mechanical and electrical properties, was not investigated enough due to its low sensitivity and
difficulty in signal analysis. In this study, a novel method of determining impact damages in CFRP
laminates using a PVDF sensor was proposed. PVDF signals induced by drop impact tests were
analyzed in time and frequency domain in comparison with impact response for evaluation of failure
mechanisms. The spectral features physically related to failure mechanisms were drawn out using
DWT. Subsequently, a SVM algorithm was used to analyze the signal features, which determined the
impact damage with the accuracy of 92.30%. In conclusion, the damage states, which was difficult to
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be analyzed due to the complexity of signals, could be effectively determined by combining spectral
analysis and the SVM algorithm.

2. Drop Impact Tests

2.1. Materials and Experimental Settings

CFRP laminates with the stacking sequence [0◦/90◦]13s were used. The matrix resin was cured at
125 ◦C for 90 min. Total thickness of the laminates is 5 mm, descriptions for the mechanical properties
of CFRPs provided by the manufacturers (TB Carbon Co, Ltd., Yangsan, Korea) are tabulated in Table 1.
In addition, the specimens were trimmed into the dimension of 120 mm × 120 mm using water-jet
cutting to prevent mechanical damages in the specimens.

Table 1. The mechanical properties of carbon fiber reinforced plastics (CFRPs).

Tensile Strength 1

(0◦) (MPa)
Tensile Strength 1

(90◦) (MPa)
Interlaminar Shear
Strength 2 (MPa)

Density
(g/cm3)

2520 134 88 1.59

Acquired by ASTM D 1 3039 and ASTM D 2344 2 on a UD laminate.

To analyze the damage in the CFRP specimens and acquire PVDF signals, a PVDF sensor was
attached to an impact test specimen using a bonding tape. Drop impact tests were performed under
different impact energy levels and radius of curvature in the nose part (R) as Table 2. This is because
deformation is mainly dependent on impact force and impactor nose geometry in low velocity impact
according to Hertzian contact law, except for the characteristic of the specimen properties (boundary
conditions, materials, thickness, layup sequences, fiber orientation, etc.) [23]. However, using specimens
with different properties will also affect the propagation of impact signals. Signal characteristics
changes will also follow as the signals propagate, and the accuracy of the SVM model will be degraded
due to the inconsistency of signal characteristics in the database. In case of impactor with R of 64 mm,
drop tests at energy level of 24, 30, and 36 J were also performed because the damage in the specimen
occurred at 30 J. In this study, hemispheric impactors were used to induce blunt impact that leaves
barely visible damage on surface of CFRP specimen [23]. The example of barely visible impact damage
induced by blunt impactor in comparison to the impact by sharp (conical) impactor is shown in
Figure 1. The blunt impactor induced matrix cracking and indentation, which were hard to be visually
inspected. However, the damage by conical impactor was relatively clearly visible because of the fiber
breakage due to the highly localized impact force. Five hemispheric impactors with different R were
used. A schematic explanation R and the image of impactor noses are shown in Figure 2.

To analyze the impact damages, the impact load (F), the kinetic energy of the impactor before and
after impact, (Ei), (Ea) were measured. The absorbed impact energy (Eabs) and the impact energy ratio
(rabs) were further calculated as

Eabs = Ei −Ea (1)

rabs =
Eabs

Ei
(2)

A PVDF sensor (LDT0-028K) (TE Connectivity, Schaffhausen, Switzerland) was attached 35 mm away
from the impact point. The sensor was applied to the surface of a specimen using a double-sided bonding
tape and was reused for 20 impact tests because of the reusability of the sensor [10]. New bonding
tapes were applied after each test, as the adhesion may be reduced by impacts. Test conditions of the
specimens are shown in Figure 3. As shown in Figure 4, the load and PVDF signals from impacts were
collected, respectively, through NI USB-6351 (National Instrument, Austin, TX, USA) with sampling
rate of 250 kHz and PCI-6133 (National Instrument, Austin, TX, USA) with sampling rate of 1 MHz.
The collected data were processed through MATLAB Signal Processing Toolbox 8.3 (Mathworks,
MA, USA).
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Figure 2. The images of radius of curvature in the nose part of the impactor (R): (a) a schematic
explanation of R of impactor; (b–f) impactor nose shapes with different R: (b) 4 mm, (c) 8 mm, (d) 16 mm,
(e) 32 mm, and (f) 64 mm.

Table 2. Impact test cases according to the impact energy and R.

Case Number Impact Energy (J) R (mm)

1 3

4

2 6
3 9
4 12
5 15
6 18
7 21

8 3

8

9 6
10 9
11 12
12 15
13 18
14 21
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Table 2. Cont.

Case Number Impact Energy (J) R (mm)

15 3

16

16 6
17 9
18 12
19 15
20 18
21 21

22 3

32

23 6
24 9
25 12
26 15
27 18
28 21

29 3

64

30 6
31 9
32 12
33 15
34 18
35 21
36 24
37 30
38 36
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Figure 3. A schematic of the geometry of the test specimens and the location of the poly(vinylidene
fluoride) (PVDF) sensor.
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Figure 4. Experimental setup for acquiring PVDF signals and impact response data from drop impact tests.

2.2. Impact Response

An impact damage in a CFRP consists of various failure mechanisms such as matrix cracking,
delamination, and fiber breakages, etc. Delamination is the most critical failure mechanism to
strength reduction in composite laminates because it accompanies instantaneous damage [1,2,24,25].
The ultrasonic C-scanning is conventionally used to examine delamination of the damaged specimens.
However, C-scanning is time consuming and costly, that it is not adequate for determining damages for
the large dataset for machine learning. Failure mechanisms of impact damages could also be effectively
analyzed with impact responses of composite laminates [1]. Moreover, the impact response analysis
could be immediately done after an impact test. Therefore, impact responses were analyzed to observe
the delamination.

Figure 5a shows the impact response at the energy levels from 3 to 9 J using impactor with R
of 4 mm. However, the load curve shape changes at relatively high impact energy (from 12 to 21 J).
Unlike the small load drops that can be observed in Figure 5a, which are from the vibration at the
boundary condition, sharp load drops (>2 kN) and following oscillation in load curves were observed
in Figure 5b. The load point where the sharp load drop is observed is called the delamination threshold
load (DTL) [26]. DTL is the load where bending strain exceeds allowable interlaminar shear strain,
followed by rapid growth of internal damage in composite structure [25]. Therefore, the specimens
which were loaded beyond their DTL were determined as damaged, and the others which showed
elastic behavior upon impact were determined as intact.

The propagation of internal damage by the impact loads exceeding DTL can be observed in
Figure 6. The images were obtained using Ez-Scan VII, (Orient NDT, Goyang, Korea) which has analog
to digital converter with 200 MHz sampling rate and 10 MHz flat beam immersion transducer. In the
intact specimen, a small area of damage at the impact point could be barely seen, which can be inferred
as minor matrix cracks or indentation. In the damaged specimen, however, delamination occurred and
propagated to the area of 51.26 cm2. The damage propagated rapidly can be considered as the impact
load exceeded DTL.
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In addition, the damage states of the specimens can be confirmed through a change in the kinetic
energy of the impactor. Figure 7 shows a schematic of the kinetic energy loss of impactor that occurs
as a result of damage. As the impact load exceeds DTL, the propagation of delamination, additional
matrix cracking, and fiber breakages occur, and the kinetic energy of the impactor will drop due to the
sudden internal damage leading to strain energy release [2].

3. PVDF Signal Analysis

3.1. PVDF Signal

A PVDF sensor is a polymer type piezoelectric sensor, which is very thin (0.028 mm) and flexible,
that it is capable of being applied to various shapes of structures (Figure 8). A PVDF sensor is capable
of measuring stress wave and elastic wave, which is strain energy released upon damage [8]. The stress
wave signal, which is below frequency of 20 kHz was filtered out to investigate on elastic waves for
damage determination. The reason is that stress waves are mainly dependent on deflection caused
by impacts, whereas elastic waves are physically related to the damage, as they are emitted from the
damage itself.
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Figure 8. An image of a PVDF sensor (LDT0028K).

As an example, elastic waves extracted from PVDF signals induced by impact energy of 9 J (case 3) and
12 J (case 4) were analyzed (Figure 9). The elastic waves, which are emitted at 0.5 ms in both Figure 9a,b
can be assumed as signals from matrix cracking, which occurs at low impact energy. At 1.3 ms of
Figure 9b, the impact load reaches DTL; therefore, the matrix and fiber damage, and delamination
occur, emitting elastic waves with high energy.

The damages could be analyzed by comparing the elastic waves with the load curves. However,
the waveform of the damage signal is not reliable due to the high damping coefficient of the CFRP [27].
In contrast, the spectral features are known to be reliable features. One-dimensional spectral features
such as the peak frequency and center frequency of the elastic waves are effectively used to analyze
failure mechanisms [28,29]. However, when it comes to impact damage, elastic waves from damage
consist of signals from a variety of failure mechanisms. Therefore, DWT, one of the time–frequency
domain analysis methods was used to analyze the spectral features over all frequency ranges of the
elastic waves.
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Figure 9. Graphs of elastic waves due to impact load: (a) impact energy-9 J, R-4 mm (intact) and
(b) impact energy-12 J, R-4 mm (damaged).

3.2. Wavelet Transform

Wavelet transform (WT) is a type of the time–frequency analysis method that decomposes a signal
based on mother wavelets. Mother wavelets are finite waves unlike sinusoidal waves, which are used
in Fourier transform. For these reasons, WT is adequate for decomposing the PVDF signals from
impact damages since nonstationary elastic wave from various failure mechanisms are combined when
impact damage occurs [30].

The basic WT, continuous wavelet transform (CWT), decomposes a signal in time and frequency
domain, and the decomposition of the signal X(t) based on mother wavelet ϕ∗ can be defined as

CWT(a, b) =
1

|a|0.5

∫ +∞

−∞

X(t)ϕ∗
( t − b

a

)
dt (3)

where a is the scaling parameter, used to scale the amplitude of wavelet signals, and b is the translation
parameter, which shifts the signal in time domain. In this study, DWT was used and the DWT
decomposing signal X(t) is defined as

DWT(m, n) =
1

|2m|0.5

∫ +∞

−∞

X(t)ϕ∗
(

t− 2mn
2m

)
dt (4)

where m and n are integers that substitute scaling parameter and translation parameter as 2m and
2mn, respectively. Therefore, DWT takes much less computation time DWT, while preserving the
information in signal [31,32].

The result of DWT is an approximation coefficient (A1) and a detailed coefficient (D1) each.
The approximation coefficient is a signal with lower frequency range, and the detailed coefficient is the
signal with higher frequency range. The maximum frequency is 500 kHz based on Nyquist criterion.
Therefore, the frequency range of the approximation coefficient is 0 kHz–250 kHz, and the frequency
range of the detailed coefficient is 250–500 kHz. The approximation coefficient can be decomposed into
another approximation coefficient and detailed coefficient again. This means lower frequency signals
can be decomposed until the targeted frequency bands are acquired. This is explained in Figure 10,
which is the example of three-level DWT.

In this study, PVDF signals were decomposed to three levels using a Daubechies wavelet.
The Daubechies wavelets have been used for decomposing elastic waves in other relevant studies,
because the Daubechies wavelets are efficient for analyzing transient features of the signals [18,30,32–35].
Daubechies wavelet with four vanishing moments were used, since it was effective in decomposing
damage signals in relevant studies [30,35].
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Figure 10. A decomposition tree structure of three-level discrete wavelet transform (DWT) decomposition
and result of decomposition (A3 and D1–D3).

3.3. Feature Extraction

Prior to analyzing decomposed signals, the signals were denoised by means of DWT denoising,
which is a technique of reducing the noise of every DWT coefficients. The signals were denoised using
soft thresholding, since hard thresholding technique can leave some traces of noise [30]. The example
of the reduction in noise is shown in Figure 11.
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Figure 11. The decomposed signals from 9 J impact, with R of 4 mm: (a) the signal before denoising
and (b) the signal denoised using soft thresholding.

Spectral features of a signal are reliable since the frequency of the signal is only slightly affected
by the damping and boundary conditions compared to the time domain features. Figure 12a shows
the peak frequency of the elastic wave according to the failure mechanism defined in the study by
Arumugam et al. [36], which was obtained by analyzing the elastic wave signal from quasi-static
bending tests and impact tests on CFRP cross-ply laminates. Figure 11b is the frequency band of
the coefficients from DWT. The detailed coefficients closely match with the frequency bands of the
matrix cracking, delamination and matrix debonding, and fiber failure and fiber microbuckling.
Therefore, DWT was performed to level 3, since the approximation coefficient does not need to be
further decomposed.
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Figure 12. Frequency contents of elastic wave according to: (a) failure mechanisms in carbon fiber
reinforced plastic (CFRP) cross-ply laminates by Arumugam et al. [36] and (b) coefficients of a PVDF
sensor signal acquired by three-level DWT.

The D3 signal, which corresponds to the matrix cracking, is dominant before the delamination
initiates (amplitude 0.022 V), as can be seen in Figure 13a. In Figure 13b, the impact load exceeds DTL at
1.3 ms. After a strong signal corresponding to matrix cracking, (amplitude 0.498 V), delamination and
fiber breakage follows (D1 and D2). These physical processes match well with previous studies showing
that the DWT coefficients of the PVDF sensor signals represent failure mechanisms properly [26,37]
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The energy ratios of DWT coefficients were extracted to construct feature dataset for training
damage determination model. The reason is that energy ratios of frequency contents not only can
be used for quantitative representation of failure mechanisms [33,36,38] but also are reliable features,
which are less effected by the boundary conditions and impact location [39]. The name and frequency
range of the extracted features are organized in Table 3. Calculation of signal energy Ek and energy
ratio Erk, where X and t are signal voltage and time, respectively, is defined as follows.

Ek =
∫
|X k(t)|2dt

(for k = 1, 2, 3, 4)
(5)

Erk = Ek
E1+E2+E3+E4

(for k = 1, 2, 3, 4)
(6)
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Table 3. Energy ratio of three-level discrete wavelet transform (DWT) coefficients, its frequency range,
and related failure mechanisms.

Energy Ratio Feature Frequency Range (kHz) Related Failure Mechanisms

Er1
0.00–62.50

(A3)
–

(Friction and reverberation)

Er2
62.50–125

(D3) Matrix cracking

Er3
125–250

(D2)
Delamination

Matrix debonding

Er4
250–500

(D1)
Fiber failure

Fiber microbuckling

4. Support Vector Machine

4.1. Support Vector Machine Algorithm

SVM is a supervised classification method based on optimization theories. SVM is trained to
maximize the margin between the classified groups. The optimal boundary that maximizes the margin
is called a hyperplane, which is determined by support vectors. Support vectors are feature vectors
that are closest to the classification boundary [40]. SVM techniques have good generalization capability
for small-sample cases of classification [41] and are utilized in many fields, including fault and damage
detection [18,22,34,38,41]. A schematic of SVM is shown in Figure 14 to visualize the relationships
between feature vectors, decision function D(x), margin, and hyperplane, before further descriptions
of SVM algorithm [40].

SVM used to determine which group of n-dimensional feature vectors xk is classified into A or B.
The label yk value according to the feature vector is expressed as follows.

For
(
x1, y1

)
,
(
x2, y2

)
,
(
x3, y3

)
, . . . ,

(
xp, yp

)
If xk ∈ A, yk = 1
If xk ∈ B, yk = − 1

(7)

The support vector machine algorithm determines the parameters of the determination function
through learning of these feature vectors, and the process follows the rules,

D(x k) = w× xk+b (8)

where w and b are the adjustable parameters of the decision function.

If xk ∈ A, D(xk) ≥ 1
If xk ∈ B, D(xk) ≤ −1

(9)

The plane that is nearest to hyperplane can be described as Equation (10)

ykD(xk) −1 = 0 (10)

The two feature vectors xA and xB that satisfies Equation (10) are support vectors, and the margin
M is the distance between the planes D(xA) = 1 and D(xB) = −1

M =
yAD(xA)

||w||
−

yBD(xB)

||w||
=

2
||w||

(11)
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The margin M can be expressed using parameter was Equation (11). The SVM algorithm is an
optimization problem of maximizing the margin. Maximizing the margin can be transformed into
minimizing problem as follows.

max(M) = max
2
||w||

→ min||w|| → min||w||2 (12)

Equation (12) can be expressed as Equation (13) using Lagrangian where α is a Lagrange multiplier,

L(w, b,α) =
1
2
||w||2 −

p∑
k = 1

αk[y kD(xk)−1] (13)

which satisfies conditions

αk ≥ 0, k = 1, 2, 3, . . . , p, αk

[
ykD(xk)−1

]
= 0 (14)

The minimum value of L could be calculated by differentiation

∂L
∂w

= w∗ −
p∑

k = 1

α∗kykxk = 0 (15)

Hence,

w∗ =
p∑

k = 1

α∗kykxk (16)

The optimal parameter w* is given as Equation (16) and b can also be calculated by Equation (14).
Finally, equation for hyperplane can be achieved by calculating the plane in the middle of D(xA)
and D(xB).
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Figure 14. A schematic explanation of relationships between hyperplane, margin, decision function
D(x), and feature vectors.

4.2. Kernel Function

The SVM algorithm described earlier is not adequate for classifying the dataset in Figure 15a into
A or B, since it is only effective in linearly separable data. In this case, feature vectors are mapped onto
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a new feature space as Figure 9b, using kernel function. The kernel function K is used to convert dot
product of feature vectors.

xT
kxm → K(x k, xm

)
. (17)
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Figure 15. Schematic diagrams showing: (a) feature vectors which are not linearly separable and
(b) feature vectors mapped into new feature space via kernel function.

The representative kernels are Equation (18) linear kernel, Equation (19) sigmoid kernel, Equation (20)
polynomial kernel, and Equation (21) RBF (radial basis function) kernel.

K(x, y) = xT
·y (18)

K(x, y) = tan h(ax T
·y + b) (19)

K(x, y) =
(
xT
·y + c

)d
(20)

K(x, y) = exp
(
−γ

∣∣∣∣∣∣xT
·y

∣∣∣∣∣∣)2
(21)

4.3. SVM-Based Impact Damage Determination Model

The process of determining damage states based on the SVM algorithm is shown in Figure 16.
To train the damage determination model, the impact responses were analyzed to determine the
damage state of the specimens. The results were used to label the feature vectors xk, which are the
energy ratios of DWT coefficients.

xk = (Er1, Er2, Er3, Er4)If xk ∈ Damaged, yk = 1 If xk ∈ Undamaged, yk = −1 (22)
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Figure 16. Process of constructing the impact damage determination model via support vector machine
(SVM) algorithm.

When a new feature vector is input to the trained SVM model, the damage state of the specimen
is determined by the spatial relation between the hyperplane and the feature vector; whether it is on
one side of the divided space or the other.
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Furthermore, 15 additional impact tests were performed at energy levels where damage initiated,
in that better quality of hyperplane can be generated by adding features close to the boundary of the
classes (Table 4).

Table 4. Additional drop impact tests at the damage initiating energy level.

Additional Case
Number

Damage Initiation Impact
Energy Range R (mm) Impact Energy (J)

1
9–12 4

10
2 11
3 12

4
9–12 8

10
5 11
6 12

7
15–18 16

15
8 16
9 17

10
18–21 32

18
11 19
12 20

13
30–36 64

30
14 32
15 34

4.4. Model Evaluation

The performance of the SVM depends on the choice of kernel function, and there are no definite
rules of selecting proper kernel function [42]. Therefore, we trained and tested performance of models
using different kernel functions to choose the best one. To validate SVM models using different kernels,
we used 4-fold cross-validation, which is effective in preventing overfitting, and also evaluates the
model when the dataset is small [43]. A schematic of 4-fold cross-validation for total 129 feature
vectors is shown in Figure 17. “Training data” is the dataset used to construct classification model,
and “test data” is the data which is input to the trained model to validate whether the model predicted
the label of the data correctly or not. The data is divided into four groups of A, B, C, and D randomly.
The components of the confusion matrix, which is descripted in Table 5 were used to compute the
accuracy, precision, recall, and average precision (AP) for each iteration. The performance values for
four iterations were averaged, so that every data is used for validating the performance, and overfitting
due to the lack of test data can be prevented.

• Accuracy is the most intuitive indicator of the classification performance of a model, and it is the
probability that the model will correctly judge whether a specimen is damaged or not.

Accuracy =
TP + TN

TP + FP + NP + TN
(23)

• Precision is the ratio of features that are actually “damaged,” among the features the model
classified as damaged.

Precision =
TP

TP + FP
(24)

• Recall is the ratio of features predicted as “damaged” among features that are actually “damaged”.

Recall =
TP

TP + FN
(25)
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• AP is frequently used over precision or recall for performance validation, which is the measure of
mean precision at a set of equally spaced recall levels [0, 0.1, . . . ., 1]:

AP =
1

11

∑
r∈{0,0.1,...,1}

pinterp(r), (26)

where r is recall value and pinterp is the interpolated line of maximum precision at each recall level
r. Further descriptions are given in [44].
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Table 5. Confusion matrix of impact damage determination model.

Damaged
(Predicted)

Intact
(Predicted)

Damaged
(real)

True positive
(TP)

False negative
(FN)

Intact
(real)

False positive
(FP)

True negative
(TN)

5. Results and Discussion

5.1. Damage State Determination

In this study, a total of 114 drop impact tests were performed to analyze the impact damage in
CFRPs. The impact load and energy absorption ratio were evaluated to determine impact damage by
each impact tests. To train machine learning-based classification model for damage determination,
the damage determination results, which will be used to label feature vectors, must be exact and
precise. Otherwise, the SVM model cannot be considered valid, as the label information is not credible.
The damage of the specimens was determined as “intact” or “damaged,” depending on the occurrence
of delamination. This is because delamination accompanies instantaneous damage and resulting
strength loss [2,25].

The description of determining the DTL value is given in Figure 18. The elastic waves were
emitted at 1.3 ms, and the load dropped about 4 kN at the same time. It can be inferred that strong
elastic waves were emitted as delamination occurred, and load also dropped as the local stiffness at the
impact point was degraded due to the damage. Therefore, the load point where significant load drop
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and emission of elastic waves occur at the same time is determined as DTL. DTL according to five
different impactor R are shown in Figure 19. The results reported that DTL converges to a certain value
when the R of impactor is constant, and that value increases with R. This is due to change of force
distribution; impactors with larger R causes less localized strains due to larger contact area. In that
reason, it requires higher impact energy and impact force for damage initiation. It can be inferred that
impactor of different nose shapes induce different types of damages.
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In addition, impact energy absorption ratios were analyzed as shown in Figure 20 to confirm
the occurrence of significant impact damage when impact load exceeds DTL. The energy absorption
ratio increments were significant: 24.6%, 19.4%, 27.8%, and 15.3%. These values correspond to the
increments marked with the pointers in case of Figure 20a–d. The increment values of absorption ratio
are scattered because the impact damage in composite laminates does not occur by similar extent,
even when the test is performed under the same impact conditions [26]. Although exact severity of the
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damages cannot be achieved, identical transition of the energy absorption ratio in case of Figure 20a–d
sufficiently explain that significant damage occurred as the impact load exceeded DTL. However,
in case Figure 19e, the damage absorption ratio did not increase as much as it did in impactors with R
of 4–32 mm (3%), since impact by R of 64 mm required higher impact energy for damage to initiate
compared to impactors with R of 4–32 mm, and the higher impact energy and force for damage
initiation increases the damage at locations away from impact site [23]. This results in less damage at
impacted location, which means less stiffness decrease and less impact energy absorption of impactor.Materials 2020, 13, x FOR PEER REVIEW 18 of 23 
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(d) 32 mm, and (e) 64 mm.
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Moreover, signal energies according to damage state were examined for quantitative comparison
intensity of signals according to damage state. The significant increase in signal energy upon damage
initiation could be observed in every impact condition as shown in Table 6. This result validates the
dramatic growth of damage as delamination proceeds. In addition, the damage state classification
result on 64 mm R impact could be considered valid despite the small increase in energy absorption
ratio since signal energy increased by 8.32 times as delamination occurred.

Table 6. Signal energies of elastic wave according to damage state I (intact) and D (damaged).

R (mm) 4 8 16 32 64

Damage state I D I D I D I D I D
Impact energy(J) 9 12 9 12 12 15 18 21 30 36

Signal energy(
V2
·s
)
× 10−6 0.9842 19.341 1.2468 25.530 1.1853 18.899 2.0235 24.549 3.3408 27.807

In conclusion, it is reasonable to classify impact damage in CFRP based on the initiation of
delamination, in that it accompanies rapid growth of damage. This result was validated by load curve,
energy absorption analysis, and PVDF signal analysis.

5.2. Signal Dataset Construction and Analysis

In total, 129 (114 tests + 15 additional tests) of energy ratio feature vectors were labelled with
damage states, which were determined by impact response analysis. The descriptive statistic of total
129 feature vectors (74 I (intact) + 55 D (damaged)) is tabulated in Table 7. Each feature was normalized
to be in scale between 0 and 1, for better comparison of the values. As shown in the results, the means of
features Er2, Er3, and Er4, which correspond to ratio of failure mechanisms in the specimens, increased
by 8.3, 38, and 82 times each, respectively. This significant change of features is due to instant damage
growth as delamination occurred.

Table 7. Statistic descriptions of normalized energy ratio of Er1~4 according to damage state.

Feature Mean Standard Deviation

Damage state I D I D
Er1 0.9731 0.7337 0.03145 0.2076
Er2 0.0337 0.2799 0.03946 0.2123
Er3 0.0054 0.2063 0.01176 0.2482
Er4 0.0025 0.2050 0.00678 0.2050
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The feature dataset was visualized in Figure 21, where 3 coordinates correspond to energy ratio
of detailed coefficients, Er2, Er3, and Er4. It can be considered that the distribution of feature value
depends upon damage state of the specimens and shows little correlation with impact condition.
This is because the PVDF sensor was unable to capture the change of failure mechanisms by the effect
of nose shapes. However, the change of failure mechanism ratio according to the damage state could
be measured, because of the significant damage due to delamination.

5.3. SVM Model Validation

Energy ratios of frequency bands were proven to be effective features for determining damage
state. However, some data could not be clearly differentiated by damage states due to low sensitivity
and high damping of PVDF sensors. Therefore, SVM was used to make a clear boundary that classifies
feature vectors for decisive damage determination.

Damage determination results used to train the SVM model was acquired as two states, based on the
physical process where internal damage in composite laminates starts to grow. Moreover, the damage
determination result was validated by analyzing impact energy absorption ratio and signal energies.
Therefore, the performance of the classifier presented in Table 8 is valid. The performance validation
result of 4-fold cross-validation over 4 representative kernel functions is summarized in Table 8.

Table 8. Performance of classifiers using different kernel functions.

Kernel Function Training Time (s) Accuracy (%) Precision (%) Recall (%) AP

Linear 0.0007 90.79 89.65 88.87 0.8434
Polynomial 0.13 87.56 91.77 77.61 0.8048

RBF 0.003 92.30 97.91 83.51 0.8867
Sigmoid 0.00025 58.14 0 0 0.4285

The model using sigmoid kernel failed to determine every damaged state, and can be considered
that sigmoid kernel is not appropriate in this model. The model using polynomial function had
the longest training time despite its lower accuracy compared to the model using the linear kernel.
The model using linear kernel, which is the simplest form of SVM, was found to be compliant,
with accuracy of 90.79% and the shortest training time. The model using RBF kernel showed the best
performance, with accuracy of 92.30%, and was also found to have highest AP value of 0.89. Therefore,
it can be considered that the model using RBF kernel is most adequate for determining impact damage
by analyzing PVDF signal data.

To sum up the results, the damage state was determined by impact response, and SVM models
were trained with signal features to predict damage state of the impacted specimen. The accuracy
of the model using RBF polynomial kernel was confirmed to be 92.30%. This can be considered a
valid result, since this accuracy is higher compared to similar research, despite lack of data [45,46].
From these results, the SVM algorithm-based impact damage state classification method presented in
this study is reasonable.

6. Conclusions

In this article, PVDF signals induced by impact damages in CFRP specimens were measured,
and the determination of damages was performed based on DWT and a SVM algorithm. The PVDF
sensor signals were analyzed in time–frequency domain in accordance with impact process. Moreover,
by employing a machine learning algorithm, damage state of the specimens could be classified
optimally. Consequently, the impacts which barely have any effect on strength of CFRP structures,
which could be sorted out quantitatively. The conclusions of this study are as follows.

1. The impact responses of CFRP cross-ply laminates specimens were analyzed to determine the
damage state in test specimens. The specimens loaded over their DTL were considered to include
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delamination, and the resulting delamination could be observed using C-scan. The specimens
were classified into “damaged” and “intact,” based on the occurrence of delamination, where rapid
damage growth in CFRP initiates. Energy absorption ratios increased by at least 15% to as much
as 27% higher as damage occurred, indicating the validity of damage classification. The energy
absorption ratio increased by only 3% in case of impact damage induced by impactor with R of
64 mm. However, this is due to the less localized force and damage. The damage classification
result can still be considered valid since PVDF signal energy increased by 8.32 times according
to the damage in the specimens, when compared to the signal energy from intact specimen,
implying that the significant damage was developed in the specimens.

2. PVDF signals were divided in frequency domain by means of three level DWT. Each frequency
band of detailed coefficients (D1, D2, and D3) were found to represent failure mechanisms of
CFRP through comprehensive analysis with load curve. For quantitative evaluation of failure
mechanisms, energy ratio from each DWT coefficients were extracted as Er1–Er4., which represent
reverberation and frequency, matrix cracking, delamination and debonding, and fiber damage
in CFRP, respectively. The coefficients Er2, Er3, and Er4 significantly increased by 8.3, 38, and
82 times each, respectively, as delamination occurred.

3. A SVM algorithm was utilized to create an optimal border to classify feature vectors for
determining damage state clearly. Of all the models using different kernel functions, the model
using RBF kernel showed the highest accuracy and AP of 92.30% and 0.89, respectively. This is a
reasonable reliability, which are compliant compared to the accuracy of previous relevant studies.
Based on these results, determining the impact damage in CFRP using SVM method can be
considered effective.

4. The novel methodology of determining the damage state of CFRPs based on PVDF signals was
proposed. This work emphasizes on the damage state determination despite of the low sensitivity
of sensor and complexity of the signals by combining spectral analysis and a SVM algorithm.
A PVDF sensor could not be used for accurate impact damage determination sensor despite its
high impact resistance and convenience, because of its low sensitivity and complex nature of the
impact damage signal. By studying on the relationships between impact damage and process
and PVDF signal characteristics, significant difference in DWT coefficients upon impact damage
was identified. Moreover, SVM was used for definite determination of impact damages since
some data could not be clearly separated due to the low sensitivity of the sensors. As a result,
the damage could be determined with high accuracy. This method can be applied for monitoring
CFRP structures, since PVDF sensors can fit into various structures compared to conventional
sensors. Moreover, because this method utilizes machine learning for damage determination,
impact damage in composite laminates can be automatically determined. Therefore, it would
save a lot of time and efforts for analyzing and detecting damages.
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