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A B S T R A C T

Extrusion-based printing frequently requires a hollowing step to remove material from inside of artifacts and
subsequently reduce the amount of material, printing time, product weight, energy consumption, and ultimately,
the cost. Here, we introduce a novel support-free hollowing method that uses an arrangement of vertically-
aligned prolate spheroids. In addition to reducing stress concentration through their inherently smooth
boundaries, these spheroids require no additional support structure, when properly designed. Additionally, the
resulting spheroidal hollows facilitate the circular printing motion of extruders using G2/G3-codes, which
provide three critical advantages compared to the currently popular G1-code-based linear motion: shorter
printing time, better printing quality, and smaller tool path file. Here, spheroids are arranged by the Voronoi
diagram of 3D ellipsoids and the tool path, including circular printing motions, is produced using the Voronoi
diagram of circular 2D disks. The proposed algorithms are implemented as the HollowTron webserver and are
freely available from Voronoi Diagram Research Center.

1. Introduction

Additive manufacturing (AM), also frequently referred to as 3D
printing, has become popular due to its high degree of freedom for
producing the geometric and functional complexities of various pro-
ducts that could not otherwise be achieved. To implement AM, extru-
sion-based printing technologies, such as fused deposition modeling
and fused filament fabrication, are the most popular among the diverse
array of existing AM technologies.

Unfortunately, extrusion-based printing frequently requires addi-
tional support structures to prevent relatively large horizontal overhang
parts from falling during printing [1–3]. Typically, there must be ma-
terial below or near to the printing location in the current layer, or
gravity can call the newly printed material to fall. These extra support
structures have to be removed, either manually or by dissolving ma-
terial away from the printed objects after printing is finished. Notably,
support structures may be used either in the exterior or interior of a
product model, and exterior structures, like scaffolds, can be removed
much more easily, with a low cost of time and effort. Thus, in addition
to generating excess material waste, these support structures, particu-
larly internal ones, increase the production and post-processing times,

so support structures have an immediate influence on the productivity
and planning for AM processes.

Hollowing is a general technique used to eliminate material from
the interior of printed objects. Extrusion-based printing frequently re-
quires a hollowing step to reduce the amount of material used, printing
time, product weight, energy consumption, and overall cost [4]. Ad-
ditionally, hollowing can be used to control the material distribution
and subsequently alleviate stress at certain object locations. In appli-
cations, hollows can be used to host living organisms [5], to design
electrode materials with high specific capacity [6] and dielectric
structures [7], and serve various other purposes.

However, if a hollow is not carefully designed, it may have a long
overhang, beyond the technical limit of the material printing and
cooling system. Such structures require additional interior support
structures, which can only be removed after printing, by breaking the
boundary of printed object. Some studies have successfully created
support-free interior vacancies by satisfying both overhang length and
boundary slope constraints [8–12] by filling an interior hollow with a
self-supporting infill pattern that can effectively support hollow ceil-
ings. Some landmark studies in this vein include a honeycomb-cell
hollowing with a relatively smooth boundary [13], an elliptic cylinder
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representation of hollows [14], using a rhombic cell structure as an
infill pattern, where the slope angle of all rhombic cells was constrained
by a prescribed maximum overhang-angle [15], and employing block
representation of hollows using partitioned blocks [16]. However, each
of these methods has C0-continuity, i.e. a sharp corner, at some loca-
tions on the hollow boundary, which inherently create a high stress
concentration [17] and a higher crack development probability. Further
details are provided in [14]. A thorough literature review on hollowing
and support-free printing structures is provided in Appendix A. The
relatively simple idea of rounding sharp corners can significantly in-
crease the geometric complexity of an object, thus increasing the size of
CAD data files and the numerical instability of algorithms. Notably, the
proposed hollowing method can also be useful for the digital light
processing based 3D printing [18–21].

In the typical process, an object is represented in a CAD model and
then printed by a 3D printer. The printer is a numerically controlled
machine and its extruder, or printer head, is driven by a tool path that
contains G-codes that correspond to extruder motions. The four G-code
types for different motions are G0, G1, G2, and G3, which correspond to
rapid positioning, linear motion, clockwise circular motion, and coun-
terclockwise circular motion, respectively. Currently, most printers use
only G1-codes, in addition to G0-codes used for positioning. There are
two main reasons for this. First, a CAD model is stored in an STL file as a
set of triangles. This makes it a challenge to correctly extract abstract
information such as circularity, sphericity, etc. Second, an interpolator
for G2/G3-codes is more expensive than that for G1-code [22,23].
Importantly, circular motions offer three significant advantages: shorter
printing times, better printing quality, and smaller tool path files.
Appendix B provides brief review of tool path generation for printing.

Ourwork. Here, we introduce novel methods for (i) support-free
hollowing and (ii) printing artifacts using as many circular motions,
with G2/G3-codes, as possible. First, the support-free hollowing is
produced by arranging vertically aligned 3D prolate spheroids in the
object CAD model. Importantly, the properly designed spheroidal
hollow can be support-free and experience a significantly reduced stress
concentration. In this study, spheroids are defined as mutually exclusive
and placed to maintain a prescribed separation distance threshold, both
between adjacent spheroids and between spheroids and the object
boundary. Additionally, the size and shape of each spheroid depends on
the material stickiness property combined with the cooling parameters
of the specific printing facility. Second, spheroidal hollows are printed
using circular motions with G2/G3-codes, facilitating an improved
printing quality and efficiency. Each printing layer is defined by the
intersection between the object and a plane orthogonal to the printing
direction. Typically, this plane is parallel to the XY-plane, because the
printing direction corresponds to the Z -axis. Note that, in this study, the
object contains vertically-aligned spheroidal hollows. Therefore, the
printing layer defines a polygon to fill material, but circular regions are
maintained as empty, thus this feature facilitates fewer circular G2/G3-
codes rather than many short linear G1-codes.

The 3D spheroids are arranged using the Voronoi diagram of
spheroids which is based on the Voronoi diagram of 3D spherical balls.
Starting with the Voronoi diagram of the interior of a polyhedron
boundary, a new incrementing spheroid, at the Voronoi vertex with the
maximum clearance, can be inserted individually in a greedy manner.
Once a new spheroid is placed, the Voronoi diagram is updated with the
spheroid, and the spheroid increment process is repeated as many times
as necessary. The key challenge here is in correctly maintaining the
Voronoi diagram of spheroids within a polyhedral CAD model. This
study is an extension of our recent work [14], which introduced the
concept of support-free hollowing using smooth surfaces. The tool path
with G2/G3-codes is generated using the Voronoi diagram of circular
disks in a 2D polygon, where a disk is derived from a spheroid and the
polygon from the boundary of CAD model. A thorough numerical si-
mulation was conducted to verify and validate the proposed method, by
performing stress and deformation analyses using the ANSYS® program.

Artifacts were then actually printed using a SINDOH 3DWOX 1X®
printer. Contributions. The notable contributions of this work are
summarized in the following developments:

1. A method for generating support-free spheroidal hollows in a
polyhedral object.

2. A method for generating tool paths using circular printing motions.
3. The HollowTron webserver, which is freely available at http://

voronoi.hanyang.ac.kr/hollowtron.

Notes. In this study, an object to print is assumed to be represented
as an oriented 2-manifold triangular mesh. The build, or printing, or-
ientation is parallel to the Z -axis. In fact, it can be specified either
manually or by an automatic algorithm such as [24]. “Object”, “model”,
and “artifact” are interchangeably used, depending on context. An ob-
ject is a connected solid and is printed all at once. Specifically, no
consideration is given for: (i) the decomposition of an object into a set
of primitive objects, which can be assembled later in a support-free
manner [25], or (ii) multi-directional printing using a rotational plat-
form [26]. “Hollow” refers to a designed vacant space, whereas “void”
refers to an unintentional non-designed vacant space in a printed arti-
fact. “V-vertex” denotes a vertex of Voronoi diagram, and “V-edge,” “V-
face,” and “V-cell” are used similarly.

2. Material and methods

2.1. Modeling support-free spheroids

Fig. 1 shows a 2D schematic model of the printing process for a
vertically-aligned elliptic hollow on the XZ-plane. The printing direc-
tion is assumed to be parallel to the Z -axis. The green slabs denote
printing layers.

2.1.1. Printing parameters
Let σ0 be the thickness of each printing layer which is 0.1–0.4mm

for general extrusion-based printers (Fig. 1(a)). Notably, let δ0 be the
maximum overhang length that can be successfully printed without
an additional support structure. Further, let θ0 be the maximum
overhang angle (Fig. 1(b)). Notably, σ0 is printer-dependent, while δ0
and θ0 depend on both the printing material properties, such as sticki-
ness, and on the printing environment, including the temperature and
presence of wind. Typically, the parameters for plastic PLA (polylactic
acid) materials are as follows: =δ 50 mm and = °θ 600 .

Let τbtw and τbndry be the minimum wall thickness between adjacent
spheroids and between a spheroid and the model boundary, respec-
tively. For example, =τ δbtw 0 and =τ δ2bndry 0. Having two different
thresholds is desirable because an object boundary can be exposed to
sharp impacts from the environment. In general, ≥ ≥ >τ τ δ σbndry btw 0 0.
The lower bound on the spheroidal hollow size is determined by the
machine resolution, printing material properties, and design specifica-
tions, among other specifications.

2.1.2. Equations of ellipsoid and spheroid
An ellipsoid equation is given as:

+ + =x
a

y
b

z
c

1
2

2

2

2

2

2 (1)

where a, b, and c are the half lengths of the ellipsoid principal axes on
the X -, Y -, and Z -axes, respectively. In this research, we used prolate
spheroids, which are ellipsoids with = <a b c and with the major axes
parallel to the Z-axis, because the printing direction is assumed to be
parallel to the Z -axis. A prolate spheroid is obtained by revolving an
ellipse around its major axis. Ignoring the second term in Eq. (1) yields
an ellipse equation, shown on the XZ-plane (Fig. 1(c)) as:
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Let P1 and P2 in Fig. 1(c) be the points on the ellipse where the tangent
lines correspond to θ0. The following simple, yet important, observation
can then be made: If the distance between P1 and P2 is equal to or
shorter than δ0, the entire red elliptic arc can be printed by one printer
motion stroke, which produces a straight linear path segment in the
layer being printed. Thus, the red elliptic arc between P1 and P2 can be
printed without any extra support, even though the overhang angle of
the points inside the arc are greater than θ0. Consequently, the entire
ellipse can be printed without any additional supports.

The slope of the tangent line of Eq. (2) ellipse, at a point p x z( , ), is
− ×c
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2 . Then, P1 and P2 correspond to the solutions of the following

equation:
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Substituting Eq. (2) into Eq. (3) yields two solutions for x :
−

+

a

c θ atan

2

2 02 2
and

+

a

c θ atan

2

2 02 2
. Given ≤

+
δa

c θ a

2

tan
0

2

2 02 2
, the bound of a

is as follows:

≤ ≤
+ +δ a

δ δ c θ δ
2

2 2 16 tan
4

0 0
2

0
4 2

0
2

0
2

(4)

where c, σ0, and δ0 are input parameters. The lower bound of a corre-
sponds to the existence of P1 and P2, which is consistent with previously
reported works [14]. The upper bound corresponds to an ellipse with
the minimal eccentricity for a given c value that satisfies the con-
straints, i.e. the widest possible ellipse for any given height. The lower
bound of Eq. (4) is caused by the dependency between θ0 and δ0. Spe-
cifically, given the parameters c, θ0, and δ0, it is not possible to reduce a
below this lower bound while satisfying the relevant constraints.

Notably, Eq. (4) has an important consequence. Given the height c
of an ellipse, the size and shape of the ellipse is fixed. Hence, an ellipse
equation can be determined from c, σ0, and δ0. In this paper, for any
given c, an ellipse with the minimum possible eccentricity (i.e. the
widest possible ellipse) is created as a corresponding hollow.

Eccentricity measures the shape of a conic curve, and plays an
important role in this study as a control handle for ellipse and spheroid
shape. The eccentricity ϵ of the ellipse in Eq. (2) is defined as:

= − a
c

ϵ 1 .
2

2 (5)

Hence, the eccentricity of a circle is 0, and that of an ellipse is less than
1. The range of ϵ of the ellipse corresponding to Eq. (4) is derived using
Eq. (5) as follows:
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The lower bound of Eq. (6) yields the widest ellipse possible. Given an
eccentricity ϵ that satisfies Eq. (6), a can be determined from Eq. (5) as
follows:

= −a c 1 ϵ .2 (7)

As aforementioned, this study employs prolate spheroids. Let S be a
prolate spheroid and P be a plane passing through the major axis of S.
Then, ∂ ∩S P is an ellipse and the ellipses corresponding to any P are
congruent. Here we intentionally use eccentricity as a shape descriptor
for spheroid S.

2.2. Hollowing with Spheroids using the Voronoi diagram of ellipsoids

Given a polyhedron � , an optimal hollowing of � , using a certain
arrangement of spheroids, must be found. Specifically, we must de-
termine the optimal arrangement of a set of m ellipsoids
� = …3 {E3 , E3 , ,E3 }m1 2 within � , to maximize the sum of all the el-
lipsoid volumes while satisfying the 3D printing process constraints.
This is equivalent to minimizing the amount of material used to fill �

by maximizing the volume of the ellipsoidal hollows that will be left
unfilled. Notably, the increment of an ellipsoid terminates when one of
the termination conditions is encountered, which may be prescribed by
either the total volume or number of ellipsoids. Alternatively, the
process may terminate when an ellipsoid increment cannot exist
without violating the prescribed minimum wall thickness. Overall, the
ellipsoid packing problem is not any easier than the disk packing pro-
blem, which is NP-hard [27,28]. The algorithm used here is based on
Voronoi diagrams, which are powerful tools for spatial reasoning
among geometric objects. A brief review of the various Voronoi dia-
grams used in this paper is provided in Appendix C. Additionally, we
present this problem in a general setting of ellipsoids, rather than the
special case of spheroids.

X

Z

(a) (b)

+

+

X

Z

(c)

Fig. 1. A 2D model of a spheroidal hollow (shown as an ellipse in 2D) as it relates to the printing parameters of layer thickness, horizontal overhang length, and
overhang angle. The printing direction is parallel to the Z -axis, and green slabs represent printing layers. (a) maximum overhang length δ0. (b) Maximum allowed
overhang angle θ0. (c) Relationship between δ0 and θ0 for producing the widest possible ellipse.
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2.2.1. Arranging ellipses in a 2D polygon
A brief review is provided here for the ellipse packing algorithm in a

2D polygon, Poly2, with further details provided in [14]. The idea is
similar to that for its 3D counterpart. Fig. 2(a) shows the Voronoi

diagramˆVD (Poly2) of a simple polygon, Poly2, which is obtained from
the intersection between the Stanford bunny and a section plane. The

bunny polygon Poly2 has 758 oriented line segments.ˆVD (Poly2) con-
sists of two subsets, the interior and exterior, with respect to the
boundary of Poly2. Let VD(Poly2) be the interior subset, as shown in
Fig. 2(b).

In VD(Poly2), each V-vertex v is associated with a maximum empty
circle that touches three generators, called the clearance probe πv,
centered at v. The radius of πv is the distance from v to its generators.
Notably, different V-vertices may have varying clearance values. The
maximum clearance probe πmax is the largest clearance probe that can
be defined at a V-vertex vmax , and can be found in O n( ) time from VD
(Poly2) of n generator entities. The blue circle in Fig. 2(b) is the first
maximum clearance probe of the bunny.

The Voronoi diagram VD(�2,Poly2) of a set �2 of ellipses within
Poly2 is constructed as follows. Consider VD(Poly2) as the initial
Voronoi diagram �=VD VD( 2 , Poly2)0 0 , where � = ∅2 { }0 . Starting
from VD0, the algorithm first finds the V-vertex vmax with πmax of VD0.
Then, it places an ellipse ⊆E π21 max , centered at vmax , and updates the
Voronoi diagram to obtain �=VD VD( 2 , Poly2)1 1 , where � = E2 { 2 }1 1 .
The algorithm repeats the two steps described above as many times as it
requires. As shown in Fig. 2(c), VD4 and the maximum clearance probe
has a radius rmax , shown as the blue circle, which touches exactly three
points on the boundary of the bunny. Any ellipse contained within this

probe is free from intersecting with any other entities of the model. To
guarantee that the prescribed minimum wall thickness τbtw and τbndry is
maintained, the probe shrinks with a shrinkage ξ to reach the red
circle, called an ellipse mask μ with the radius =r ξr( )μ max , ≤ ≤ξ0 1. In
3D, μ is called an ellipsoid mask. The purpose of ξ is to provide the
user a convenient handle for controlling the distribution of ellipse
heights. The ellipse mask in Fig. 2(c) is defined by =ξ 0.7, and the red
ellipse inscribes the mask. Fig. 2(d)–(f) illustrate arrangements of 100
ellipses each, which are defined according to specific application needs.
In Fig. 2(d), the major axes of the ellipses are all vertically-aligned. In
Fig. 2(e), the right half of each ellipse is aligned horizontally. In
Fig. 2(f), the ellipse orientations are determined as a function of their
horizontal locations. The transition of the ellipse colors, which corre-
spond with orientation is noticeably smooth.

The key, challenging step in the algorithm is its insertion of each
ellipse into an existing Voronoi diagram. Given �=VD VD( 2 , Poly2)i i ,
where � = …2 {E2 , E2 , ,E2 }i i1 2 , the topology-oriented incremental al-
gorithm increments +E2i 1 into VDi to get +VDi 1. Because there is no
known analytical method to correctly and efficiently find V-vertices in a
computationally tractable manner, a numerical method is used to solve
this problem, as follows. Further details can be found in [14]. Let C2 be
a set of circles inscribing +E2i 1. Hence, C2 approximates +E2i 1. The al-
gorithm first individually increments each circle in C2 into VDi, using
the topology-oriented incremental algorithm in [29]. After this, it
merges the V-cells of the circles in C2, producing an accurate topology
structure of +VDi 1. The algorithm then computes the coordinates of
each new V-vertex by a numerical iteration, which converges quickly.

Fig. 2. The ellipse arrangement in a bunny polygon (758 edges on the boundary). (a) The entire Voronoi diagram of the bunny (ˆVD (Poly2)). (b) The interior subset of
the Voronoi diagram (VD(Poly2)). The blue circle represents the maximum clearance probe of the bunny. (c) The fifth ellipse to be placed within the red ellipse mask
after four other ellipses were incremented ( �=VD VD( 2 , Poly2)4 4 , where � = E E E E2 { 2 , 2 , 2 , 2 }4 1 2 3 4 ). The red circle represents an ellipse mask that was shrunken
from the blue circle. (d), (e), and (f) Ellipses placed according to different practical criteria. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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2.2.2. The arrangement of spheroids in a polyhedron in 3D
The use of the algorithm to find an ellipsoid arrangement, specifi-

cally for the vertically-aligned prolate spheroids in this paper, in a
polyhedral CAD model � ≡( Poly3) in 3D is conceptually similar to that
of the ellipses in 2D described previously. Thus, the idea itself is simple,
but constructing it in an accurate and efficient manner has been a
significant challenge, and to the best of our knowledge this has not been
accomplished previously.

The algorithm consists of two major steps: (i) constructing the
Voronoi diagram of the polyhedron � , and (ii) inserting a new ellipsoid
into the current Voronoi diagram of ellipsoids. Both steps rely heavily
on the topology-oriented incremental construction of 3D spherical balls,
which was recently reported in [30,31]. The overview of the algorithm
is presented here, with the details forthcoming in another mathematical
paper.

Constructing the initial Voronoi polyhedron. The Voronoi dia-
gram �� �( ) of a polyhedron � is a spatial tessellation, such that every
point in the space is assigned to the closest entity, either a vertex, edge,
or triangular face, of � . The Voronoi diagram �� �( ) is represented by
a quadruplet (V, E, F, C), which represent the sets of V-vertices, V-
edges, V-faces, and V-cells, respectively. The correct and efficient
construction of �� �( ) still posed a challenge.

Generally, the correct topology of the Voronoi diagram and the
correct coordinate of its V-vertices are sufficient to arrange ellipsoids in
a polyhedron, and most applications, including the current one, do not
require the geometry of V-edges and V-faces. In the rare case where it is
required, this geometry can be computed either analytically or nu-
merically, depending on the combination of generating entities for a
given topology. To obtain the correct topology, the topology-oriented
incremental construction approach is commonly used [32,29,30].

A polyhedron � is represented as a triplet � � �(V , E , F ), where �V ,
�E , and �F represent the sets of vertices, edges, and faces of � , re-

spectively. Consider the ordinary Voronoi diagram �ˆVD (V ) of the
vertices. If �V contains a sufficient number of vertices from the

boundary of � , the structure of �ˆVD (V ) converges to that of the
Voronoi diagram �� �( ) of � , which can be used to correctly place
ellipsoids. The approximation of �� �( ) is then constructed by the
following algorithm.

First, �ˆVD (V ) is constructed using the topology-oriented incre-
mental algorithm [30,31] to obtain the representation (V , E , F , C )V V V V

of the sets of V-vertices, V-edges, V-faces, and V-cells, respectively. VV

is then classified into two subsets, the interior subset VV
Int and the ex-

terior subset VV
Ext, with respect to the � boundary. EV , FV , and CV are

similarly classified. Let =VD VD(V , E , F , C )V V V V
Int Int Int Int be the Voronoi

diagram in � . Then, VD approximates �� � �( 3, ), where � = ∅3 { }.
Locating a new ellipsoid. Given �� � �( 3, ), the V-vertex

∈v VV
max Int that corresponds to the maximum clearance probe πmax can
be easily found, and the ellipsoid mask μ can be easily computed, by
applying the shrinkage ξ to πmax . Then, a new ellipsoid is defined at
vmax , and the Voronoi diagram is updated within � . During each el-
lipsoid increment, it is necessary to check whether the minimum wall
thicknesses τbndry and τbtw conditions are successfully satisfied.

Updating the Voronoi diagram with an incremented ellipsoid.
The idea for constructing the Voronoi diagram �� � �( 3, ) of a poly-
hedron � and an ellipsoid set �3 is conceptually similar to in the pro-
cess followed for a 2D scenario in Section 2.2.1. Notably, it is actually
very difficult to accomplish this construction in 3D correctly and effi-
ciently. Thus, the algorithm details are beyond the scope of this paper
and will instead be reported in another forthcoming paper, but a brief
overview is provided here. An ellipsoid E3 is approximated by a set B3
of inscribing balls, thus called inballs, which can be produced in a
variety of ways. An inball may intersect another, but cannot fully
contain another. Given �� �� � �= ( 3 , )i i , each of the inballs in B3 is
incrementally inserted, and the associated V-cells are merged to obtain
the �� +i 1 topology. Fig. 3 shows some of the details involved in the

incremental process of constructing spheroids in the cube: (a) the
boundary of cube � after being triangulated a few times, (b) the in-
terior subset of the approximated Voronoi diagram of � , (c) a spheroid
incremented in the approximated Voronoi diagram, and (d) the ap-
proximated Voronoi diagram, after five spheroids have been in-
cremented. Furthermore, Fig. 4 shows the spheroid increment process
for bunny and dog models. Notably, each large planar face is triangu-
lated with multiple triangular faces, because the construction of the
correct Voronoi diagram of a polyhedron with ellipsoidal hollows has
not yet been developed.

Solution accuracy. The accuracy of the approximation VD for the
Voronoi diagram �� �( ) is critical for ellipsoids to be placed accu-
rately in � and depends directly on the size of �V . Specifically, a larger

�|V | corresponds to a more accurate VD. Hence, it may be necessary or
desirable to subdivide each face ∈f F into multiple triangles to achieve
an acceptable accuracy level. Four different instances of refinements
made to the cube model and the corresponding Voronoi diagrams are
shown in Fig. 5.

Computational efficiency. Fig. 6 shows the computation time
profile of the proposed algorithm for arranging the spheroids. The black
curve at the top corresponds to the cube model shown in Fig. 3, where
every planar face is triangulated by multiple triangular faces. The blue
and red curves correspond to the bunny and dog models, respectively,
shown in Fig. 4. The horizontal and vertical axes denote the number of
spheroids and computation time, respectively. Clearly, the computation
time is linear to the number of spheroids.

2.3. Generating tool paths using G2/G3-codes

The 3D printer used in this work is an NC machine. To print an
artifact, a sequence of G-codes had to be generated to drive the extruder
for each printing layer. There are several popular software tools for this
purpose, such as Slic3r, an open source freeware [33] and Ultimaker
Cura, a freeware [34].

2.3.1. Advantages of using G2/G3-codes over G1-codes
One common approach for driving an extruder is to use linear

motions based on G1-codes. Circular motions, however, offer several
advantages over linear motions: (i) shorter printing time, (ii) better
printing quality around curved boundaries, and (iii) smaller tool path
file size.

Suppose that a circleC , or an arc onC , is intended to be printed, and
that C is approximated by a set of line segments, each of which will be
printed by a linear motion using a G1-code. To make sure the line
segments satisfy a priori defined quality constraint, a large number of
line segments, each corresponding to a G1-code, must be used.
However, if a circular interpolator is available, a single G2/G3-code can
be used to print C in its entirety.

A tool motion consists of three sub-segments: acceleration, decel-
eration, and moving at a constant speed, called a feed rate. Hence, if C
is printed by a large number of G1-codes, there are an equally large
number of acceleration and deceleration pairs. On the other hand, if a
G2 or G3-code is used, C can be printed with just one angular accel-
eration, one angular deceleration, and one segment of constant angular
velocity. Consequently, printing C using a single circular motion is
much faster than printing it with many linear motions.

Another critical issue is the printing quality, which must be ad-
dressed from two perspectives: (i) the instant printing pause between
two consecutive motions, and (ii) the approximation error of linear
motions for printing curved features. First, consider the linear motions
for two consecutive line segments Li and +Li 1, where ∩ =+L L pi i 1 . Both
an overshooting and a short moment with no motion at p exist because
of the deceleration for Li and the acceleration for +Li 1. This causes an
uneven extrusion of material, as the material extrusion rate is fixed and
cannot be adjusted to accommodate this temporary stay. Thus, the
printing quality suffers accordingly, and is lower than that obtained
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using a single command for circular interpolator. Fig. 7 shows an ex-
treme case of this, demonstrating how the printing quality is affected by
two consecutive linear motions. The tool path, consisting of G1-codes to
print a planar, rectangular surface, is shown in Fig. 7(a). Note that there
are long linear motions at the corners of the square. The resulting
printed artifact is shown in Fig. 7(b) and (c), and the overshooting at
the four corners can be clearly observed in both figures, consistent with
other recent reports [35]. Notably, this can happen at any vertex be-
tween two consecutive G1-codes. Additionally, the linear approxima-
tion of a circular feature produces an approximation error, termed α1,
which depends on the path generation software used. If a user is
equipped with G2/G3-codes, the error < <α α2 1 is then determined by
the circular motion interpolator design, which can in most cases be
equivalent to the machine resolution of the specific printer used.

2.3.2. Spheroidal hollows and G2/G3-codes via offsetting
Let O be the CAD model of an object with prolate spheroidal hol-

lows, whose major axes are parallel to the Z -axis. This is the artifact to
be printed. Let Poly2 be the layer to be printed, which is defined by the
intersection of O with a section a plane P parallel to the XY-plane.
Then, Poly2 is a polygon containing non-intersecting circles, where
each circle corresponds to a spheroid.

Fig. 8(a) shows a rectangular polygon Poly2= {Bndry, D1, D2, D3,
D4}, which contains four circular disks and the Voronoi diagram VD
(Poly2). Let ω be the width between two consecutive offsets, or between
the first offset and the polygon boundary, and let Ω be the width be-
tween the offset and the polygon boundary. Fig. 8(b) shows the (red)
offset of Poly2, where the offset amount = ωΩ for a small value of ω. In
this case, there are no offsets of the circles or rectangle intersections.
When = ωΩ 2 (Fig. 8(c)), the offset of Bndry intersects the offsets of
both D1 and D3. Furthermore, the offsets of D2 and D4 intersect as well.

Fig. 3. Incrementing spheroids into a cube using the Voronoi diagram of a cube with ellipsoids. (a) A cube � with triangulated faces represented as a triplet
� � �(V , E , F ) of the sets of vertices, edges, and faces ( �∣ ∣V : 770, �∣ ∣E : 2304, �∣ ∣F : 1536). (b) The interior subset of the ordinary Voronoi diagram VD(V) of V, which

approximates the interior of the Voronoi diagram of � . (c) The Voronoi diagram �� � �=( 3 {E3 }, )1 after the first ellipsoid E31 is incremented. (d) The Voronoi
diagram �� � �= …( 3 {E3 , E3 ,E3 }, )1 2 5 after the fifth ellipsoid E35 is incremented.

Fig. 4. Incrementing spheroids in the bunny (with 500 faces) and dog (with 300 faces) models using the Voronoi diagram of polyhedron with ellipsoids. (a) The
bunny model � ( �∣ ∣V : 252, �∣ ∣E : 750, �∣ ∣F : 500). (b) The interior subset of the ordinary Voronoi diagram VD(V) of V, which approximates the interior of the Voronoi
diagram of � . (c) The Voronoi diagram �� � �=( 3 {E3 }, )1 after the first ellipsoid E31 has been incremented. (d) The Voronoi diagram �� � �= …( 3 {E3 , E3 ,E3 }, )1 2 5
after the fifth ellipsoid E35 has been incremented. (e–h) The same spheroid increment process applied to the dog model � ( �∣ ∣V : 152, �∣ ∣E : 450, �∣ ∣F : 300). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

S. Choi, et al. Additive Manufacturing 35 (2020) 101254

6



When = ωΩ 3 (Fig. 8(d)), he offset of Bndry intersects the offsets of D1
and D2, the offsets of D2 and D3, the offsets of D2 and D4, etc. Ad-
ditionally, the offsets of D1, D2, and D4 intersect in this case.

In Fig. 8(d) we observe that the intersections between two con-
secutive contour-parallel offsets occur on the blue edges of the Voronoi
diagram. Hence, if VD(Poly2) is constructed as a preprocessing step, the
offset computation can be facilitated. In this study, this was done using
the algorithm reported in [14]. Then, each offset path for = iωΩ for

= …i 1, 2, is generated in O m( ) time, using a modified version of the
algorithm reported in [36,37], where m represents the number of en-
tities in Poly2. The offset generation algorithm is very simple and
proceeds as follows. It first scans the Voronoi vertices to calculate the
clearance of every vertex and mark those with a clearance greater than

Ω as “active”. Then, it finds the subgraph of VD(Poly2). Starting from
an active vertex, it traverses all incident edges where an edge e inter-
sects an offset of a related entity. After the propagation is completed,
the offset chain is generated by appropriately connecting the offset
vertices.

Fig. 8(e) shows Poly2, together with its Voronoi diagram VD(Poly2),
where Poly2 is a square ×100 100 mmwith 21 mutually exclusive disks.
The contour-parallel offset produced, using the Voronoi diagram with
the proposed algorithm, with =ω 2 mm for visualization, is shown in
Fig. 8(f). Importantly, the Voronoi edges are not part of tool paths.

3. Results and discussion

The primary products of this study are: (i) the support-free hol-
lowing algorithm based on prolate spheroids, (ii) the tool path gen-
eration algorithm relying heavily on circular printing motions with G2/
G3-codes, and (iii) the HollowTron webserver, which could implement
the two algorithms.

HollowTron takes an input of a 3D CAD solid model, represented as
a triangular mesh stored in an STL file, and arranges spheroidal hollows
within the boundary of the CAD model (Fig. 9). The geometric model,
with these generated spheroids, is stored in “Hollowed Model”. There
are two important outputs. For engineering analysis using ANSYS,
“Mesh Model” is stored in the STL format after the spheroids are tri-
angulated. For the printing process, a tool path file, consisting of G1,
G2, and G3-codes, is stored in a “Tool Path” file. Fig. 9 illustrates the
relationship among HollowTron, the ANSYS analysis, and a commercial
3D printer. Thorough experiments were performed with the following
settings.

Computational platform. The HollowTron webserver embeds the
APIs of the V library, developed by Voronoi Diagram Research Center
using C++. Stress and deformation analyses were conducted on a
desktop computer, specifically an Intel(R) Core(Tm) i7-8700 CPU@
3.2 GHz with 16 GB RAM.

Fig. 5. Varying cube model resolution and the corresponding Voronoi diagrams. (a–d) cube models, (e–h) corresponding Voronoi diagrams. (a) and (e) The lowest
resolution. ( �∣ ∣V : 14, �∣ ∣E : 36, �∣ ∣F : 24). (b) and (f) Low resolution, after each face of (a) is subdivided once. ( �∣ ∣V : 50, �∣ ∣E : 144, �∣ ∣F : 96). (c) and (g) Intermediate
resolution, after each face of (b) is subdivided once. ( �∣ ∣V : 194, �∣ ∣E : 576, �∣ ∣F : 384). (d) and (h) The highest resolution after each face of (c) is subdivided once. ( �∣ ∣V :
770, �∣ ∣E : 2304, �∣ ∣F : 1536).

Fig. 6. Computation time profile for arranging spheroids in an object re-
presented by a refined triangular mesh. Black curve: Cube ( �∣ ∣V : 6146) Blue
curve: Bunny ( �∣ ∣V : 5374) Red curve: Dog ( �∣ ∣V : 3633). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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3D printer. Artifacts were printed on a commercial extrusion-based
3D printer SINDOH 3DWOX 1X. The tray size was

× ×228 mm 200 mm 300 mm, the default printing bed temperature was
60 °C, nozzle temperature was 200 °C, nozzle printing speed was
40mm/s and was adjustable between 10mm/s and 200mm/s), the

minimum wall thicknesses was τbtw 1.0mm between two hollows and
τbndry 1.0mm between the hollows and model boundaries. As an ex-
ample of the types of structures used in this work, Fig. 10 shows a
bunny printed on top of a 2mm raft with an external support structure.
In this study, it is important to distinguish that “support-free” refers

Fig. 7. Illustration demonstrating the overshooting at the sharp corners. (a) Printing tool path for each layer. (b) Top view of the printed artifact. (c) Another view of
the printed artifact.

Fig. 8. Contour-parallel offset generation of a polygon Poly2 using its Voronoi diagram VD(Poly2). Black: Input polygon and circular disks within. Blue: The Voronoi
diagram VD(Poly2). Red: The contour-parallel offsets. (a) Poly2, which is D D D D{Bndry, , , , }1 2 3 4 , and its Voronoi diagram VD(Poly2). (b) The offset of Poly2
corresponding to = >ωΩ 0. No offset intersects any other. (c) The offset corresponding to = ωΩ 2 . (d) The offset corresponding to = ωΩ 3 . (e) A polygon Poly2 (in
black) with 21 circular disks and its Voronoi diagram VD(Poly2) (in blue). (f) Contour-parallel offsets (in red) computed using the Voronoi diagram and the algorithm
in [36,37]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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only to the interior hollows, and exterior support structures may exist.
Material specification. Plastic PLA (polylactic acid) was used as

the material to print artifacts with the following parameters. The
maximum allowed overhang angle (θ0) was °60 , the maximum overhang
length was (δ0) 5 mm, and the printing layer thickness (σ0) was 0.2mm.

Manufacturing setting. In general, all mentioned CAD models
containing spheroidal hollows were printed. To verify that the over-
hangs of support-free hollows would not fall, we subdivided and printed
a few models through some section planes, so that hollow interior could
be visually checked. However, exterior support structures were gener-
ated wherever necessary, and were removed after printing was com-
pleted.

3.1. Hollowed CAD models and analyses

Given an object CAD model, Fig. 9 shows an arrangement of
spheroids within the object boundary, determined using HollowTron.
To thoroughly compare our proposed method with other methods, we
performed both stress and deformation analyses using ANSYS Structure
[38]. Three-dimensional tetrahedral meshes were generated by ANSYS
Space Claim [39], and PLA was modeled as an isotropic linear elastic.
For the FEM analysis, the following parameters were used: A density of
1,240 kg/m3, Young's Modulus of 3.5 GPa, and Poisson's ratio of 0.36.

First, we performed a compression test by uniformly applying 5MPa
pressure to the top of a 100mm× 100mm× 100mm cube model. The
cube models with hollows defined by an octahedron and an ellipsoid
are illustrated in Fig. 11(a) and (d), respectively, where both hollow

shapes occupy 3.6% of the total cube volume. The von Mises stress
distributions, viewed from the front, are presented in Fig. 11(b) and (e),
and Fig. 11(b) clearly shows the high-stress region on the sharp edges of
the octahedron, which agrees with our initial expectation. Importantly,
the highest stress observed in the ellipsoidal hollow in Fig. 11(e) is
significantly lower than that in the octahedral hollow in Fig. 11(b). The
deformation analysis results are shown in Fig. 11(c) and (f), and in-
dicate that the ellipsoidal hollow deforms less severely.

The von Mises stress analysis results for three different hollow
methods, applied to the same cube, are shown in Fig. 12. In all cases,
forces are applied uniformly to the cube tops. Fig. 12(a) shows a large
rhombic hole, with a few additional smaller rhombic holes positioned
nearby. Notably, all the holes are located fully inside the cube and do
not intersect each other, maintaining a minimum distance of 1.5mm
between adjacent rhombuses. Let infill density ρ be defined as:

=
−

ρ
Vol(Poly3) Vol(Hollows)

Vol(Poly3) (8)

Where Vol(Poly3) is the total volume of the polyhedron Poly3 and Vol
(Hollows) is the total volume of all hollows within Poly3. In Fig. 12(a),

=ρ 0.52, and a sectional view of the hollow arrangement is provided.
Fig. 12(e) and (i) demonstrate arrangements of congruent rhombic
holes, with =ρ 0.52, and elliptic cylinders, with =ρ 0.53, respectively.
The latter was created by the algorithm in [14]. The second and third
columns in the figure illustrate the isometric and sectional views, re-
spectively, of the von Mises stress analysis results for the corresponding
models. The fourth column shows the total deformation analysis results.
The legends in the vertical bars to the right of the third and fourth
columns cover an identical value range.

In Fig. 12(b) and (c), a high stress concentration is observed near
both the cube wall and the ends of the rhombic hollows. This phe-
nomenon is exacerbated for rhombic hollows located near the top of the
cube, which are physically closer to the force application. Fig. 12(f) and
(g) exhibit similar stress concentrations, but the stress is more widely
distributed among the rhombic hollows. For the structures in Fig. 12(j)
and (k), the elliptic cylindrical hollows experience stress that is more
uniformly and widely distributed than the two rhombic methods.
Fig. 12(d), (h), and (l) show the total deformation analysis results for
the corresponding cases. In Fig. 12(d) and (h), a serious deformation,
covering most of the upper region of the cube, is observed. Contrarily,
significantly lower deformation, which is distributed evenly throughout
the cube, is shown in Fig. 12(l). Overall, these simulation results clearly
indicate that the elliptic cylindrical hollow is superior to the other
evaluated methods.

The proposed ellipsoidal hollow method was used to create several
models with HollowTron, and the same uniform compression test was

Fig. 9. The relationship among HollowTron, the ANSYS analysis, and a 3D printer.

Fig. 10. The bunny model printed with an external support structure on a raft.
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performed, as previously described. Fig. 13 presents nine cube models
with spheroidal hollows generated using HollowTron with varied
parameters, including shrinkage and infill density. Fig. 13(a) shows the
CAD model with spheroids generated with a shrinkage =ξ 0.9 and infill
density =ρ 0.9, denoted as = =ξ ρCUBE( 0.9, 0.9). The other cube
models included in Fig. 13 are denoted as follows: (b) CUBE(0.9, 0.8),
(c) CUBE(0.9, 0.7), (d) CUBE(0.8, 0.9), (e) CUBE(0.8, 0.8), (f)
CUBE(0.8, 0.7), (g) CUBE(0.7, 0.9), (h) CUBE(0.7, 0.8), and (i)
CUBE(0.7, 0.7). The corresponding von Mises stress analysis results for
these models are provided in Fig. 14, visualized at the middle section
plane. Table 1 summarizes the simulation results presented in Fig. 14,
specifying the maximum von Mises stresses and total deformations.
Ultimately, this numerical simulation confirms that support-free hol-
lowing, based on vertically aligned prolate spheroids, exhibits a sig-
nificantly low stress concentration and endures compressive strain
under a more constant stress than other evaluated methods are capable
of.

3.2. Printing artifacts: benchmark for tool path generation methods

To validate and verify the proposed method, several CAD models
with various interior hollows were printed. Fig. 15 provides an over-
view of all the printed cubes, indicating the different types of hollows
used. Each column in the figure corresponds to a different hollow type.
The 1st column (a and e) shows elliptic cylindrical hollows ( =ξ 0.9,

=ρ 0.5), while the remaining columns show spheroidal hollows: the
2nd column (b and f) shows CUBE(0.9, 0.9), the 3rd column (c and g)
shows CUBE(0.9, 0.8), and the 4th column (d and h)shows
CUBE(0.9, 0.7). The cubes were trimmed using planar facets to reveal
the interior structures. Furthermore, Fig. 16 presents two additional

cube models, with the same infill ratio, =ρ 0.7, but different shrinkage
values, =ξ 0.7 and 0.8. These can be directly compared with
CUBE(0.9, 0.7) in Fig. 15(d) and (h). Additionally, Fig. 17(a) and (b)
illustrate the printed bunny model = =ξ ρBUNNY( 0.9, 0.8), while the
printed dog model = =ξ ρDOG( 0.9, 0.8) is shown in Fig. 17(c) and (d).
To visualize the structure interiors, each model was subdivided into
four pieces via three section planes.

Fig. 18 shows the various methods used to print one layer of the
Poly2 data in Fig. 8(e). The layer to be printed is produced by a section
plane P , which cuts through CUBE(0.7, 0.9) in the middle, so the
equation of P is =Z 50 mm. Note that there are 500 (obtained from
100/0.2) layers to print the CUBE model because of the layer thickness

=σ 0.2 mm0 . Fig. 18(a)-(d) presents four different tool paths. These use
only G1-codes and were generated by a program installed on the
commercial printer used for the experiments in this work (The 3DWOX
Desktop program [40]).

Contrarily, the tool path generated by our proposed method
HollowTron, which utilizes G2/G3-codes as much as possible, is
shown in Fig. 18(e). The 1st row in this figure includes the direction-
parallel offset tool path, DirPrl, produced by 3DWOX Desktop
(Fig. 18(a)). The 1st column in the figure provides a graphical visua-
lization of the tool path, while a close-up is given in the 2nd column.
The 3rd column provides a histogram showing the frequency distribu-
tion of G-codes, with respect to the length of each code shown on the
horizontal axis. The colors in the histogram correspond to G-codes with
specified length intervals. Red denotes codes shorter than 2mm, such as
<2mm, blue indicates <4mm, black indicates <20mm, and green in-
dicates >20mm. For clarity, the red, blue, and green line segments in
the visualized tool paths correspond to the red, blue, and green colors,
respectively, in the histogram. The filled and unfilled bars in the

Fig. 11. The von Mises stress and total deformation of cube models with spheroidal and octahedral hollows. Pressure was applied uniformly to the cube tops, as
represented by the arrows. The dimension of the cube was 100mm× 100mm× 100mm. (a–c) Octahedral hollow results. (d–f) Spheroidal hollow results. The
volumes of both octahedron and ellipsoid hollows are 3.6% of the total cube volume. 1st column: CAD model. 2nd column: von Mises stress distribution, with the
results normalized by the applied 5MPa pressure. 3rd column: Total deformation, with the results normalized by the height of the cube, 100mm.
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histogram represent G1-codes that extrude material and G0-codes that
do not extrude material, respectively. These are shown as traversing
line segments in Fig. 18(a-2). Clearly, the direction-parallel tool path
has many short G0- and G1-codes. The two black, non-decreasing
curves represent the cumulative distribution of G-codes. The lower solid
curve corresponds to the filled bars (G1-codes) and the upper broken
curve corresponds to the summation of both filled and unfilled (G1- and
G0-codes). This comparison clearly illustrates the large number of G0-
codes.

The 2nd row in the figure shows the contour-parallel offset tool
paths, CntPrl-L, produced by 3DWOX Desktop (Fig. 18(b)). Here, cir-
cular features are first approximated by a number of line segments
before tool path generation is attempted. Notably, most G-codes are
short in length. The red ellipse in Fig. 18(b-2) corresponds to an unfilled
region in the printed layer, and clearly this method leaves several of
these small unfilled regions. The 3rd and 4th rows in the figure corre-
spond to two other tool paths generated by 3DWOX Desktop: crystaline
infill (Cryst) and grid infill (Grid), respectively. These methods leave

unfilled regions. The 5th row (Fig. 18(e)) shows the contour-parallel
offset tool path obtained using the Voronoi diagram (CntPrl-VD) pro-
duced by HollowTron, which implemented the proposed algorithm to
take advantage of spheroid hollows. In general, all the generated tool
paths were cross-validated using NCViewer [41].

Fig. 19 provides a summary of the histograms in the rightmost
column of Fig. 18. The unfilled, gray, and hatched bars correspond to
G0-, G1-, and G2/G3-codes, respectively, and the black filled bar de-
notes the total number of G-codes. Notably, our proposed method uses
the smallest number of G-codes, which corresponds to a relatively fast,
easy, and cost-effective process.

Fig. 20 shows the printed results of each layer generated by the tool
paths shown in Fig. 18. The DirPrl, CntPrl-L, Crystl, and Grid methods
are shown in Fig. 20(a)–(d), respectively. Interestingly, Fig. 20(b)
contains non-printed void defects, which result from incomplete tool
paths, as shown in Fig. 18(b-2). Previously, Kulkarni and Dutta [42]
distinguished two distinct types of voids: intra-layer voids, which exist
within a layer, and inter-layer voids, which exist between two adjacent

Fig. 12. The analysis of stress and deformation of cubes hollowed by three different methods. In all cases, pressure was uniformly applied to the cube tops. All
analysis was done using ANSYS. 1st column: CAD model. 2nd and 3rd column: von Mises stress distributions. 4th column: Total deformation results. The stress and
deformation results were normalized by the applied pressure (5MPa) and the height of the cube (100mm), respectively. (a) Sliced view of the cube hollowed by
various sized rhombic holes, with a material infill density =ρ 0.52). (b) and (c) The isometric and sectional views, respectively, of the von Mises stress distribution
corresponding to the structure in (a). (d) Total deformation for the structure shown in (a). (e–h) Hollowed by congruent rhombic holes ( =ρ 0.52). (i–l) Hollowed by
elliptic cylinders created by [14] ( =ρ 0.53).
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layers and are critical for mechanical properties [42,43]. The voids in
Fig. 20(b) provide a typical example of intra-layer voids. Fig. 20(c) and
(d) show some non-printed infill patterns.

Fig. 20(e) presents the printed result of the CntPrl-VD tool path
produced by HollowTron in Fig. 18(e). This print was done on the
same printer, 3DWOX 1X, by simulating each circular motion with a set
of short linear motions, obtained by approximating each corresponding

arc with a set of line segments. Specifically, the print-out is produced by
approximating an arc β with a line segment, where β has an angle °1 at
its center, and one last segment has a smaller angle. All extrusion rates
are identical for the structures shown in (a–e). This simulation ap-
proach had to be used in this study because the printer nozzle used
could only move linearly. In addition, we found neither a printer nor
printing service that could utilize circular printing motions with a

Fig. 13. Cube models with spheroidal hollows, generated by HollowTron, with different combinations of shrinkage ξ and infill density ρ. 1st column: =ρ 0.9. 2nd
column: =ρ 0.8. 3rd column: =ρ 0.7. 1st row: =ξ 0.9. 2nd row: =ξ 0.8. 3rd row: =ξ 0.7. (a) = =ξ ρCUBE( 0.9, 0.9), (b) CUBE(0.9, 0.8), (c) CUBE(0.9, 0.7), (d)
CUBE(0.8, 0.9), (e) CUBE(0.8, 0.8), (f) CUBE(0.8, 0.7), (g) CUBE(0.7, 0.9), (h) CUBE(0.7, 0.8), and (i) CUBE(0.7, 0.7).
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reasonable cost. Notably, the printed results exhibit almost no void
space. In fact, the tiny unfilled spots observed can be easily filled by
tiny linear moves, which can be directly identified using the Voronoi
edges.

Table 2 summarizes the analysis statistics for the five tool paths in
Fig. 18. Column A analyzes the direction-parallel tool path (1st row of
Fig. 18), which has a total of 2606 G-codes, including 1,417 G1-codes
and 1,189 G0-codes, with a total length of 20,600mm, composed of
19,186 and 1414mm of G1- and G0-code, respectively. The total
printing time was found to be 17min and 14 s, with the following feed
rates ϕ: =ϕ 130G0 mm/s for G0-codes and =ϕ 20G123 mm/s for G1-, G2-,
or G3-codes. Assuming that the extruder moves at its feed rate, the time
required to print all G1 and G0-codes was 15min and 59 s (19,186/20)
and 11 s (1,414/130), respectively. Notably, the sum of these times,
16min and 10 s, is 1 min and 4 s shorter than the measured time of
17min and 14 s. Thus, this represents a significant underestimation of
the measured total printing time. This result is consistent with earlier

Fig. 14. Stress analysis results, visualized at the middle section plane. The images of the von Mises stress distribution are obtained from the section plane =X 50 mm.
The results were normalized by the 5MPa applied pressure. 1st column: =ρ 0.9. 2nd column: =ρ 0.8. 3rd column: =ρ 0.7. 1st row: =ξ 0.9. 2nd row: =ξ 0.8. 3rd
row: =ξ 0.7. (a) = =ξ ρCUBE( 0.9, 0.9), (b) CUBE(0.9, 0.8), (c) CUBE(0.9, 0.7), (d) CUBE(0.8, 0.9), (e) CUBE(0.8, 0.8), (f) CUBE(0.8, 0.7), (g) CUBE(0.7, 0.9), (h)
CUBE(0.7, 0.8), and (i) CUBE(0.7, 0.7).

Table 1
Summary of the numerical simulation results shown in Fig. 14 using CUBE
models evaluated with ANSYS. Note, the stress and deformation values were
normalized by the applied pressure (5MPa) and the cube height (100mm),
respectively.

ρ

0.9 0.8 0.7

Max.
stress

Max.
deform.

Max.
stress

Max.
deform.

Max.
stress

Max.
deform.

ξ 0.9 1.74 1.74e–2 2.38 2.05e–2 4.85 2.58e–2
0.8 1.70 1.71e–2 2.62 2.07e–2 4.24 2.59e–2
0.7 1.80 1.73e–2 3.15 2.12e–2 4.08 2.64e–2
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works for NC milling machines [44], which also found that estimating
machining time by the tool traveling distance and feed rate under-
estimated the real measured machining time. This discrepancy can be
attributed to the acceleration and deceleration required for each head
movement, which make contribute significantly to the machining time.
Assuming that the time difference Σ of 1min and 4 s is equally dis-
tributed throughout the 2,606 G0- and G1-codes, the acceleration and
deceleration for each motion can be said to take 0.0246 s (γ6 and A1).
The same analysis was performed for the contour-parallel CntPrl-L
method, and the acceleration and deceleration in this case was found to
take 0.0073 s on each step (γ6 and B1).

The same analyses for the other two methods revealed acceleration
and deceleration times of 0.0269 and 0.0233 s, respectively, which are
quite close to that of DirPrl (γ6). Note that the machining time is
consistently underestimated in all the evaluated methods (γ2).

The average of Σ is 0.01595 s ((0.0246+0.0073)/2) for each pair
of acceleration and deceleration steps. In this calculation, columns C1
and D1 were ignored, because these methods do not fill the entire layer
but rather leave significant unfilled infills and thus have time char-
acteristics similar to those in A1.) This Σ value was then applied to each
of the 1,323 G-codes in the proposed method to generate a tool path,
CntPrl-VD, with a total resulting time of 15min and 15 s. This is an
11.5% and 12.6% reduction in printing time compared to the direction-

parallel method, and the contour-parallel after linearization CntPrl-L,
respectively. Notably, CntPrl-VD uses the fewest overall G-codes, and
thus has the least acceleration-deceleration pairs with each extruder
movement. Thus, this property provides a significant increase to the
printing efficiency achieved by this method. It is determined that
CntPrl-VD is superior to the direction-parallel path in AM, which con-
tradicts the previous finding reported in [44] for a milling machine. It is
expected that a spiral tool path, which can be derived from the CntPrl-
VD tool path with some additional effort, will further increase its
printing efficiency, as has been previously observed and reported in
[42].

Reducing the total printing time can increase the productivity
during AM printing processed, so it is desirable to: (i) shorten the total
traveling distance of the extruder printing motions, (ii) reduce the turns
taken between consecutive extruder printing motions, and (iii) reduce
the total traveling distance of extruder non-printing motions, called
bridging motions.

The advantage of using G2/G3-codes, as much as possible, is most
impactful for design features such as hollow cylinders and hollow
spheres, as shown in Fig. 21(a) and (b), respectively. For such features,
the region to print on a typical layer is a hollow circle, which consists of
two concentric circles, represented by the black solid circles in
Fig. 21(c). The CntPrl-VD tool path is also shown, where red solid

Fig. 15. Various printed hollowed cube models. Each cubes was cut by two planes to reveal their interior. Front and isomeric views are provided in the upper and
lower rows, respectively. (a) and (e) Elliptic cylindrical hollows (Shrinkage =ξ 0.9, infill density =ρ 0.5). (b–d) and (f–h) Spheroidal hollows. (b) and (f)

= =ξ ρCUBE( 0.9, 0.9). (c) and (g) CUBE(0.9, 0.8). (d) and (h) CUBE(0.9, 0.7).

Fig. 16. Hollowed cube models with the same infill density ( =ρ 0.7) but different shrinkage ( =ξ 0.7 and 0.8). (a) and (b) = =ξ ρCUBE( 0.7, 0.7). (c) and (d)
= =ξ ρCUBE( 0.8, 0.7).
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circles and dotted arrows correspond to circular printing motions and
non-printing motions, respectively. Fig. 21(d) shows the DirPrl tool
path. Notably, the CntPrl-VD tool path has no sharp turn at all.

From the Voronoi diagram perspective, a hollow circle is a degen-
erate case, as shown in Fig. 21(e). In this case, the Voronoi diagram has
a single V-edge, which contains no V-vertex where the V-edge is also a
circle that is concentric with the generator circles. The case where the
V-edge is an ellipse and the two generator circles are not concentric is
shown in Fig. 21(f).

This experiment proves that the tool path utilizing G2/G3-codes,

generated by the offsetting with the Voronoi diagram, has the following
three advantageous properties: shorter printing time, better printed
quality, and smaller file size.

4. Conclusions

In this paper, novel algorithms were proposed for generating sup-
port-free prolate spheroidal hollows, and corresponding tool paths
utilizing G2/G3-codes were developed for AM applications. Contrary to
currently popular methods based on rhombuses or cubes, spheroidal

Fig. 17. Printed bunny and dog, with 500 and 300 faces, respectively, on the model boundary. The artifacts here were subdivided into four pieces by three section
planes to reveal the interior structure. (a) and (b). = =ξ ρBUNNY( 0.9, 0.8). (c) and (d). = =ξ ρDOG( 0.9, 0.8).
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hollows avoid sharp corners and the corresponding problem of high
stress concentration locations. The resulting 3D shapes could be directly
printed with extrusion-based and digital light processing-based 3D
printers, without any extra interior supports. The tool paths fully utilize
circular printing motions based on G2/G3-codes, and thus benefit from
the associated advantages of shorter printing times, increased printing

quality, and reduced tool path file sizes. As needed, two efficient al-
gorithms, which were based on the topology-oriented incremental ap-
proach, were developed: one for constructing the Voronoi diagram of a
polyhedron, and another for the Voronoi diagram of spheroids within a
polyhedron, which to the best of our knowledge is the first of its kind.
Experimental results confirm the proposed method performs well and is

Fig. 18. The five different tool paths used and corresponding statistics. The data is the same as that used in Fig. 8(e), where the mid-plane =z 50 mm of
= =ξ ρCUBE( 0.7, 0.9). The images in rows 1–4 were produced by 3DWOX Desktop, and the image in row 5 was produced by HollowTron. 1st row (a): direction-

parallel (DirPrl), 2nd row (b): linearized contour-parallel (CntPrl-L), 3rd row (c): crystalline infill, 4th row (d): grid infill, and 5th row (e): contour-parallel offset
(CntPrl-VD). Left column: tool path covering the entire plane, center column: close-up of the path shown in the left column, and right column: frequency distribution
of tool motions with respect to code length. The colors were coded according to the length of code segments as follows. Red: < 2mm, blue < 4mm, black <20mm, and
green >20mm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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practical for a variety of applications.
Limitation and future works. Our research provides a starting

point for many future study directions. First, the hollows arrangement
can be further optimized by controlling certain parameters, including
the size and location of spheroids, the eccentricity of spheroids, and
others. In this way, the material distribution in objects can be better
controlled. Second, the method developed for spheroids could likely be
generalized to other shapes, such that a given design responds to ex-
ternal forces, in addition to gravity, while satisfying all relevant
printing constraints. Third, HollowTron can be improved to better ac-
commodate user functionalities.
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Fig. 19. A summary of Fig. 18, providing the number of G-codes for the five
different tool paths, based on the same data used in Fig. 8(e). Interestingly, the
proposed CntPrl-VD method uses the smallest number of G-codes. (a) DirPrl
method (the 1st row in Fig. 18). (b) CntPrl-L method (the 2nd row in Fig. 18).
(c) Crystl method (the 3rd row in Fig. 18). (d) Grid method (the 4th row in
Fig. 18). (e) CntPrl-VD method (the 5th row in Fig. 18). White, grey, hatched,
and black colors correspond to G0-codes, G1-codes, G2/G3-codes, and the total
summation of codes, respectively.

Fig. 20. Printed single-layer artifacts in Fig. 18 produced via different tool paths. The tool paths for (a) through (d) were generated using conventional tool path
generation methods and printed by 3DWOX 1X. The bed temperature was set as 65 °C because no raft was used to print these layers. (a) Direction-parallel (DirPrl, 1st
row in Fig. 18). (b) Contour-parallel, after linearization (CntPrl-L, 2nd row in Fig. 18). The corresponding unfilled regions in both figures are important to note in this
case. (c) Crystalline (Crystl, 3rd row in Fig. 18). (d) Grid (4th row in Fig. 18). Remaining unfilled infills can be clearly observed in (c) and (d). (e) CntPrl-VD (5th row
in Fig. 18). Each circular motion is simulated by a set of linear motions, so each corresponding arc β is approximated by a line segment, where β has an angle °1 at the
center. The extrusion rate was kept consistent for all structures in (a–e).
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Appendix A. Literature review on modeling for 3D printing

Interior hollowing. The initial proposal for detect structural defects in fabricated objects was made by Telea and Jalba (2011), as a notion of
printability involving geometrical attributes like local thickness as well as the shape and topology of thin regions and their surroundings [45]. Stava
et al. (2012) then introduced a method for detecting structural problems in fabricated objects causing them to break or collapse due to insufficient
structural strength. In this work, they used a lightweight structural analysis solver, together with an approximation of 3D medial axis, and introduced
a method to correct any regions with high structural stress by combining thickening and strut insertion operations to enhance hollow mechanical
strength [4]. Wang et al. (2013) presented skin-frame structure method, which is used to minimize the number of struts by solving a 0-sparsity
optimization problem formulated as a multi-objective programming problem [8]. The fabricated objects here were physically stable and could be
printed with significantly less material. Lu et al. (2014) introduced the concept of support-free hollowing, using both simulation and physical
evaluations of object strength, by arranging honeycomb-cells with an adaptive centroidal Voronoi diagram to define the inner structure [9]. Zhang
et al. (2015) reported a method for designing internal frame structures based on a medial axis, such that objects were fabricated with a minimal
amount of material but could still withstand a given external load [46]. Both static and dynamic balances were studied by designing hollows, interior
infills, and dynamic model shapes, among other methods [47–50]. Lee and Lee (2017) proposed an algorithm, based on three-dimensional block
partitioning, where the blocks were obtained by dividing objects via arbitrary planes [16]. Hornus et al. (2017) reported an iterated geometric
carving algorithm, used to compute maximally large empty cavities with nested sets of inner walls, all of which had exactly the minimal printable
thickness [49]. This algorithm was based on the medial axis of polygon interior and an exact polygon offsetting technique. Lee et al. (2018) presented
an algorithm for creating hollows of elliptic cylinders, which were created by a projection of planar ellipses computed using the Voronoi diagram of
planar circles [14]. Martinez et al. (2018) introduced a microstructure with a wide range of elastic behaviors, which can be fabricated by a fused
filament fabrication process by enforcing continuity and self-support while satisfying the overhang angles constraint [50]. This structure offered a
range of orthotropic elastic responses that could be spatially graded, providing a promising option for hollow infill patterns. Their method utilized
the Voronoi diagram based on clever polyhedral distances, rather than the typical Euclidean distance. Zhou et al. (2019) presented an approach for

Table 2
Comparison between theh five different tool paths: Direction-parallel (DirPrl), Linearized Contour-parallel (CntPrl-L), Crystalline (Crystl), Grid (Grid), and Contour-
parallel offset using Voronoi diagram (CntPrl-VD). DirPrl, CntPrl-L, Crystl, and Grid were generated by 3DWOX Desktop, and CntPrl-VD was generated by
HollowTron. The tool paths are analyzed for three criteria: number of G-codes, length of G-codes, and total printing time. The G-code length unit is mm.

Offset method DirPrl(A) CntPrl-L (B) Crystl (C) Grid (D) CntPrl-VD (E)
(A1) (B1) (C1) (D1) (E1)

# (%) # (%) # (%) # (%) # (%)

# G-code Grand total (α1)a 2,606 (100) 6,941 (100) 2,602 (100) 2,743 (100) 1,323 (100)
Printing Total (α2)b 1,417 (54) 6,459 (93) 1,371 (53) 1,416 (52) 964 (73)

G1 (α3) 1,417 (54) 6,459 (93) 1,371 (53) 1,416 (52) 164 (12)
G2 & G3 (α4) - (0) - (0) - (0) - (0) 800 (61)

Bridging G0 (α5) 1,189 (46) 482 (7) 1,231 (47) 1,327 (48) 359 (27)

(A2) (B2) (C2) (D2) (E2)

Length (%) Length (%) Length (%) Length (%) Length (%)

Length G-code Grand Total (β1)c 20,600 (100) 20,956 (100) 20,304 (100) 20,643 (100) 18,659 (100)
Printing Total (β2)d 19,186 (93) 19,691 (94) 18,787 (93) 19,181 (93) 17,888 (96)

G1 (β3) 19,186 (93) 19,691 (94) 18,787 (93) 19,181 (93) 4,569 (25)
G2 & G3 (β4) - (0) - (0) - (0) - (0) 13,319 (71)

Bridging G0 (β5) 1,414 (7) 1,265 (6) 1,517 (7) 1,462 (7) 771 (4)

(A3) (B3) (C3) (D3) (E3)

Printing time Measured (γ1) 17min 14 s 17min 25 s 17min 0 s 17min 14 s 15min 15 s
Saved(A) Saved(B)
11.5% 12.6%

Estimatedf Total (γ2)e 16min 10 s 16min 34 s 15min 50 s 16min 10 s 15min 0 s
G1 (γ3) 15min 59 s 16min 24 s 15min 39 s 15min 59 s 3min 48 s
G2 & G3 (γ4) - - - - 11min 6 s
G0 (γ5) 11 s 10 s 11 s 11 s 6 s

(De)accel. time/G-code (γ6) 0.0246 s 0.0073 s 0.0269 s 0.0233 s 0.0160 s

a = +α α α( 1) ( 2) ( 5).
b = +α α α( 2) ( 3) ( 4).
c = +β β β( 1) ( 2) ( 5).
d = +β β β( 2) ( 3) ( 4).
e = + +γ γ γ γ( 2) ( 3) ( 4) ( 5).
f The feed rates (ϕ) for G1, G2, and G3: 20mm/s, G0: 130mm/s.
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generating a tree-like support structure, similar to a pillar structure, which could be applied to both the exterior and interior of models [51].
Furthermore, Zhang et al. (2019) used barycenter in a similar way [52]. Tricard (2019) reported a greedy algorithm to place rib-like structures on
hollow walls, with the intention of supporting the hollow roof [53]. The resulting structure formed a ribbed-vault, following a hierarchy of rib-like
walls that were progressively eroded away and straightened, eventually merging with the interior object walls. Vaissier et al. (2019) proposed an
algorithm that could create the geometry and topology of both inner and outer support structures by removing some initial lattice structure beams
within the object exterior with a genetic algorithm [54]. Ulu et al. (2019) introduced a shape parameterization method used to design a minimum
weight shell object, without a self-intersecting boundary [55]. This method can accommodate not only gravity, but also external forces from other
directions, but may require additional interior support structures to be successfully fabricated. Thorough reviews on the process view of AM can be
found at [56,57]. However, all methods suffer from the presence of sharp corners, with C0-continuities on object boundaries.

Support-free structure. Support-free structures became a subject of study in 2016. Reiner and Lefebvre [12] proposed three interactive sculpting
operators of trim, preserve, and grow, to be used for designing support-free models that require no support structures whatsoever. Wu et al. (2016)
developed a method, based on topology optimization, to generate support-free infill structures, which produced a solid model minimizing com-
pliance in the material update procedure in each iteration of the optimization process [15]. While this work considered the minimum thickness of the
generated structure during the optimization process as a manufacturing constraint, it did not include the overhang constraint. Concurrent works of
Langelaar [10] and Gaynor and Guest [58] (both in 2016), and the subsequent work by Johnson and Gaynor [59], also relied on topology opti-
mization, but these considered an overhang angle threshold during the optimization process to generate support-free material distributions. Un-
fortunately, none of these approaches were directly connected to those utilizing interior hollows. Wang et al. (2019) presented an optimization
method to reduce the total material consumed by printed objects and their support structures by minimizing the outer support volume of a printed
model [60]. In this work, they built a self-supporting frame with a set of scale-adaptive parallelepiped grids to replace the solid interior of the printed
model, so that the material consumption could be further reduced. Jiang et al. (2019) studied how printing orientation could influence the pro-
ductivity, in relation to both interior and exterior support structures [61]. The objective here was to reduce the total amount of material consumed,
as well as the production time and energy required for object manufacturing. Many prior works that utilize topology optimization techniques,
applied to support structure design, did not address the relevant problem of avoiding large overhangs [62]. Furthermore, all previously reported
methods leave C0-continuities on object boundaries.

Appendix B. Brief review on tool path generation for 3D printing

A 3D printer is an NC machine, and a tool path must be generated to drive an extruder to fill material on the model boundary and interior for each
layer. Generally, this tool path is translated to a set of G-codes, which has been the standard for NC machines for machining since the 1950s [63].

Fig. 21. Printing layer with the hollow circle shape, which is most effectively and efficiently produced by circular printing motions. (a) Hollow cylinder. (b) Hollow
sphere. (c) Hollow circle with two concentric (solid black) circles with the CntPrl-VD tool path. (d) DirPrl tool path. The red solid circles and lines are printing
motions, and the red dotted lines are non-printing motions. (e) Voronoi diagram of a hollow circle defined by two concentric circles. The blue solid curve is the V-
edge, which is a concentric circle. (f) The Voronoi diagram of a hollow circle defined by two non-concentric circles. The blue solid curve is the V-edge, which is an
ellipse. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Among others, G0, G1, G2, and G3 are the most critical commands, and they correspond to rapid positioning, linear, clockwise circular, and
counterclockwise circular printing motions, respectively. Tool path generation is a critical step in the planning process for AM. This step depends
directly on the tool path strategy, also referred to as deposition strategy or layer filling strategy [42].

There are four primary strategies for generating tool paths in AM: (i) direction-parallel method (also referred to as zigzag or raster method), (ii)
contour-parallel method, (iii) spiral method, and (iv) Hilbert space-filling curve method. A direction-parallel zigzag tool path is easy to generate, and
has thus been the most popular choice for NC milling machines [44,63]. In fact, most studies on tool path generation in AM also use this approach
[64–66]. Further, possible warpage problems and the stacking of fault lines can be prevented by changing the direction of tool path from layer to
layer [42,67]. However, the resulting tool path may contain many short tool motions, which can result in the fabricated artifact containing many tiny
voids.

Contour-parallel tool paths have many advantages in AM applications. However, developing a robust algorithm to generate these tool paths is
difficult, because of the challenge involved in constructing the Voronoi polygon diagram, which is the main computational building block for these
tool paths. Hence, some studies have used a hybrid approach, using the offsetting-based contour-parallel tool path on the model boundary and the
direction-parallel zigzag tool path for its interior [68]. Still, few reliable algorithms for constructing this type of Voronoi diagram are available
[69,70,36,14]. One potential problem, from the perspective of AM, is the fault line stack-up that can occur when two consecutive layers are printed
by identical tool paths. In this case, it may be beneficial to print the second layer by a tool path generated from a different method, to avoid this
potential danger. Contour-parallel methods for AM were discussed in detail in [71–73]. Interestingly, [74] presented an idea for using the medial axis
transformation of a polygon P , which is a subset of the Voronoi diagram of P, to generate the extruder tool path. They demonstrated this concept
using a case study of a thin wall.

Contrarily, spiral paths are derived from a contour-parallel path, and are formed by trimming an unnecessary segment of one offset loop and
connecting it to the adjacent offset loop. A spiral path avoids using unnecessary G0-codes as much as possible, and instead uses consecutive printing
motions of G1-, G2-, and G3-codes. Hence, spiral paths are the most efficient option among all tool path generation methods for reducing printing
time. Another popular tool path is the use of a Hilbert space-filling curve, a special type of fractal curve [75–79]. Unfortunately, this method
produces unnecessarily many stops and turns in the tool motion.

We emphasize here that the contour-parallel and spiral tool paths are particularly important for printing a single-layer-of-parts nesting problem
to build a mixed batch of homogeneous or heterogeneous parts. This is because the polygonal regions from a single part are printed by a single, or
very few, connected printing motion(s), and long bridge motions are minimized [80–82]. To solve this problem, we must determine the build
orientation for each part, solve the bin-packing problem of parts in the printing space, and generate the tool path. Notably, there are several studies
on tool path generation from arcs, circles, Bezier curves, B-spline curves, and NURBS surfaces [83–88], among other approaches.

Appendix C. Brief review of related Voronoi diagrams

In this appendix, the types of Voronoi diagrams that are used extensively by the proposed method are briefly reviewed.
The Voronoi diagram (VD) of a set of generators is defined as the tessellation of space such that each tessellation cell contains the locations that

are closer to the corresponding generator than to any others. In general, VD is known to be the most efficient and compact data structure for spatial
reasoning among particles. Various VD types can be defined by generator type, distance definition, and dimensions, with further details provided in
[89]. In this study, we used the VD of spherical balls and ellipsoids, particularly those constructed within a polyhedron � in 3D. Unless otherwise
specified, all distances used in this paper are the Euclidean distances.

The ordinary Voronoi diagram of points. The most basic and popular VD is the ordinary Voronoi diagram VD(P) of a set P of generator points
in 2D and 3D. In VD(P), V-edges are line segments and V-cells are convex. Fig. 22(a) provides an example VD(P) with 11 points in the plane.

The Voronoi diagram of a polygon in 2D. Let Poly2 be a simple polygon, defined by a set V of vertices and a set E of edges, which are denoted
as p-vertices and p-edges, respectively. The Voronoi diagram of this polygon VD(Poly2) is defined according to the general definition of Voronoi
diagrams. Fig. 22(b) shows an example VD(Poly2) in 2D where Poly2 is a 2D bunny polygon, produced from the 3D bunny model in Fig. 22(d). Each
p-edge is associated with, and is the owner of, a V-cell, and each reflex p-vertex, defined as one with an internal angle between two incident p-edges
greater than °180 , is also the owner of a V-cell. The efficient and robust construction of VD(Poly2) is not trivial, and there are only very few robust
codes available for this [36,89,14]. The red circle in Fig. 22(b) represents the maximum clearance probe that can be found in O n( ) time from VD
(Poly2).

The Voronoi diagrams of disks and balls. The Voronoi diagram, VD(D2), of a set D2 of circular disks is a generalization of the ordinary Voronoi
diagram of points in 2D. Here, the distances are defined from the disk boundaries. Notably, VD(D2) has intriguing topological properties that do not
exist in VD(P), the details of which can be found in [90,91]. In VD(D2), the V-edges are hyperbolic arcs, and each V-edge is curved so that the half-
space of the smaller generator is convex. Therefore, is disks are different sizes, some V-cells are non-convex. Importantly, VD(D2) can readily be
constructed correctly and efficiently [90–92,29]. An example of the Voronoi diagram VD(D2,Poly2) of a disk set D2, contained in a non-convex
polygon Poly2 with 758 edges, which is obtained from the 3D Stanford bunny model, is presented in Fig. 22(c). Here, the red circle represents the
maximum clearance probe after the five disks are inserted into the Voronoi diagram of the polygon.

Let VD(B3) be the VD of a set of 3D spherical balls, B3, and VD(B3,Poly3) be the VD of balls in the polyhedron Poly3 in 3D. Fig. 22(d) shows VD
(B3,Poly3), where B3 has five spherical balls and Poly3 is the 3D bunny model, decimated to have 500 triangular faces due to the computational time
constraint for experiments.

Voronoi diagram of ellipses and ellipsoids. For a given plane, the VD can be further generalized. Let VD(E2) be the Voronoi diagram of a set of
ellipses, E2, where the distance is defined by the ellipse boundaries. In VD(E2), the V-vertex v defined by three ellipses corresponds to the roots of a
polynomial with a degree as high as 184 [93], which makes it difficult to find the roots exactly and efficiently. The V-edge between two ellipses can
also be very complicated to define [94]. Therefore, the computation of V-vertices, V-edges, and their association through the topological structure
among ellipses in VD(E2) is a significant challenge. There are only very few studies on constructing such a VD(E2) [93,14]. Let VD(E2,Poly2) be the
VD of E2 contained in a polygonal container Poly2 in 2D. To the best of our knowledge, no previous work besides our own has been done on such a
VD [14]. Fig. 22(e) provides an example of VD(E2), where the ellipses are the bunny polygon. Let VD(E3) be the Voronoi diagram of a set E3 of
ellipsoids in 3D, and VD(E3,Poly3) be the Voronoi diagram of E3 within the polyhedron Poly3 in 3D. Neither construction algorithms has been
reported yet. An example of VD(E3,Poly3), where Poly3 is the bunny, and E3 has five ellipsoids, specifically spheroids, is shown in Fig. 22(f).
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