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ABSTRACT At the transmitter of a Direct Sequence Spread Spectrum (DSSS) communication system, data
bits are spread using a spreading sequence. To demodulate the transmitted data bits, the received signal should
be de-spread using the same spreading sequence. However, there are many non-cooperative communication
systems, where a receiver does not have the information on the spreading sequence. In such systems,
to demodulate the transmitted data bits across a wide area, it is necessary to blindly estimate the spreading
sequence at low Signal-to-Noise Ratio (SNR). Furthermore, for real-time processing, the computational
complexity for the blind estimation should be minimized. In this paper, a novel algorithm is proposed to
blindly estimate a spreading sequence and data bits based on turbo processing for both synchronous and
asynchronous cases. The proposed algorithm can significantly improve the error rates of estimated data bits
and the chips in the spreading sequence compared to an Eigen-Value Decomposition (EVD) based algorithm.
Furthermore, compared to the EVD-based algorithm, the proposed algorithm drastically reduces the number
of required multiplications.

INDEX TERMS Blind estimation, direct sequence spread spectrum, turbo processing.

I. INTRODUCTION
Direct Sequence Spread Spectrum (DSSS) has been widely
used in both military and commercial communication sys-
tems [1]–[6]. At the transmitter of a DSSS communication
system, to generate a wideband signal, data bits are multiplied
by a spreading sequence, which comprises multiple chips [2].
The transmitted data bits are demodulated after the received
signal is despread with the same sequence. The ratio of
the chip rate to the data bit rate is defined as processing
gain. Due to the processing gain, the received signal has
low probability of interception and can be demodulated even
below the level of Additive White Gaussian Noise (AWGN)
power [2], [5]–[7].

There are several non-cooperative communication sys-
tems, where the receiver does not have information on a
transmitted DSSS signal. The applications of these systems
include eavesdropping, spectrum surveillance and source
localization [8]–[11]. In non-cooperative communication sys-
tems, it is common for the receiver to possess information on
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the modulation parameters, including data rate and a spread-
ing sequence used in the transmitter. Furthermore, there are
cases where the receiver does not even have information of
the presence of a DSSS signal.

The receiver should blindly estimate several modulation
parameters and a spreading sequence to recover transmitted
data bits.Without the information on a DSSS signal, the usual
procedure for blind estimation is implemented as follows
[12]: The receiver detects whether there is a DSSS signal.
If there exists a DSSS signal, the receiver estimates the mod-
ulation parameters such as the data bit rate and the length of a
spreading sequence from the received signal. After parameter
estimation, a spreading sequence is estimated to demodulate
the transmitted signal.

To detect the presence of a DSSS signal, several studies
have been performed based on energy radiometry [13] and
the autocorrelation of received signals [7], [14]. In addi-
tion, several studies have investigated the blind estimation of
modulation parameters [15]–[18].

To recover transmitted data bits in non-cooperative com-
munication systems, critical challenge is the estimation
of a spreading sequence from a received DSSS signal.
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This estimation problem is extremely difficult even with the
information of the data bit rate and the length of a spreading
sequence. Several studies have examined the blind estimation
of a spreading sequence [9], [10], [19]–[25]. In [9], a spread-
ing sequence was estimated in a multi-path environment
based on a multi-channel identification technique [26], [27].
Neural network algorithms were applied for the blind estima-
tion of a spreading sequence in [22]–[24]. In [10] and [25],
an Eigen-Value Decomposition (EVD)-based algorithm was
proposed for the blind estimation of a spreading sequence.
This algorithm estimates a spreading sequence based on the
EVD of the autocorrelation matrix of the received signal. The
EVD-based algorithm is one of the best performing algo-
rithms for blind estimation of a spreading sequence. However,
the EVD-based algorithm requires high computational com-
plexity. Furthermore, there exists a partial-encoding problem
in an asynchronous case [25]. To solve the partial-encoding
problem, several modified algorithms have been proposed
based on the EVD-based algorithm in [15], [28]–[30].
However, these algorithms result in increased computation
complexity and performance degradation.

In non-cooperative communication systems, it is essential
to blindly estimate a spreading sequence and data bits from
DSSS signals at low SNR. Furthermore, for real-time pro-
cessing, computational complexity should be minimized for
the blind estimation.

Therefore, in this paper, a novel algorithm is proposed to
blindly estimate a spreading sequence and data bits based
on turbo processing. With the proposed algorithm, a receiver
calculates extrinsic information based on received signals and
updates Log-Likelihood Ratios (LLRs), iteratively [31], [32].
Turbo processing has been applied to decoding problems,
equalization, coded modulation, and joint source and channel
estimation [31]–[33]. However, there has been no previous
research on the blind estimation of a spreading sequence and
data bits based on turbo processing.

The contributions of this paper are as follows:
• A novel algorithm is proposed to simultaneously blindly
estimate a spreading sequence and data bits simul-
taneously. This is the first approach based on turbo
processing in estimating a spreading sequence for
non-cooperative communication systems.

• The proposed algorithm can be implemented for both
synchronous and asynchronous cases. In other words,
even when the receiver does not have prior information
on time synchronization, the proposed algorithm pro-
vides a method to jointly estimate a spreading sequence
and data bits and to acquire time synchronization.

• The performance of the proposed algorithm is evalu-
ated via simulations. From the simulation, it is shown
that the proposed algorithm can achieve better estima-
tion performance than that of an EVD-based algorithm.
Especially, a performance gain of approximately 3.0 dB
performance gain is observed in an asynchronous case.

• The computational complexity is analyzed for the pro-
posed algorithm. As the proposed algorithm drastically

reduces the number of multiplications compared with
the EVD-based algorithm, it is less computationally
complex.

• With the proposed algorithm, a spreading sequence is
estimated without a partial-encoding problem.

The remainder of this paper is organized as follows.
In Section II, the system model is presented for this paper.
In Section III, a novel algorithm is proposed to blindly
estimate a spreading sequence and data bits. Then, simula-
tion results are shown and discussed in Section IV. Finally,
the conclusions of this paper are presented in Section V.

II. SYSTEM MODEL
In this section, a system model is presented for the proposed
blind estimation algorithm. In the system, a transmitter sends
a baseband DSSS signal, which is the product of data bits
and a spreading sequence c = {c1, c2, · · · , cL}, where L is
the length of a spreading sequence. The spreading sequence
is a random binary sequence of length L and a data bit
is modulated by Binary Phase Shift Keying (BPSK). It is
assumed that the length of the spreading sequence is equal to
spreading gain and that the spreading sequence is repeatedly
used to transmit multiple data bits.

The transmitted baseband signal s(t) is expressed as

s(t) =
∞∑
k=1

ak
L∑
l=1

cl p(t − lTc − kTs), (1)

where ak is the kth data bit (ak ∈ {−1, 1}), cl is the lth chip in
a spreading sequence (cl ∈ {−1, 1}), Tc is the chip duration
of a spreading sequence (Tc = Ts/L), Ts is the period of a
data bit, and p(t) is a pulse-shaping filter.

In non-cooperative communication systems [8]–[11],
a receiver does not have the information of the spreading
sequence c. Therefore, in this paper, the receiver simultane-
ously estimates a spreading sequence c and data bits. It is
assumed that the data bit period Ts and the length L of a
spreading sequence are known to the receiver before the blind
estimation of a spreading sequence as in previous studies [9],
[10], [19].

At a receiver, a received signal r(t) is expressed as
r(t) = s(t − τ )+ w(t), t ≥ 0, (2)

where w(t) is the complex AWGN with zero mean and
variance N0 and τ is the unknown desynchronization value
between the receiver and a transmitter.1 In this paper, without
loss of generality, it is assumed that τ = 0, but the receiver
does not have the information of the τ value. In addition,N0 is
assumed to be known to the receiver and channel estimation is
not required since the transmitted signal is a baseband signal.
The received signal is sampled at a rate Tc. The sampled
signal z[i] can be expressed as

z[i] = r(iTc + ζ ), i = 0, 1, 2 · · · , (3)

where ζ is an arbitrary value in the rage of [0,Tc).

1In non-cooperative systems, since a receiver does not have information
of the desynchronization value, the boundary of a data bit is not known at the
receiver.

VOLUME 8, 2020 148067



H. Choi, H. Moon: Blind Estimation of Spreading Sequence and Data Bits in Direct-Sequence Spread Spectrum

FIGURE 1. System block diagram.

Let us define two different types of blind estimation of a
spreading sequence and data bits. One is a synchronous case,
where a receiver has the information of the desynchronization
value τ . The other is an asynchronous case, where the receiver
does not have the information of the desynchronization
value τ .
With the proposed algorithm, a spreading sequence andM

spread data bits are simultaneously estimated based on an
input matrix, which is constructed by sampling the received
signal. The block diagram of the system is shown in Fig. 1.

Let us define ym,1 as follows:

ym,1 =


z[(m− 1)L +1]

z[(m− 1)L +1+ 1]
· · ·

z[mL +1]


T

, (4)

where (·)T is a transpose operator and1 denotes a time offset.
Here, the time offset 1 is the number of shifted samples to
construct an input matrix. Subsequently, with the time offset
1, an input matrix Y1 is expressed as follows:

Y1 =


y1,1
y2,1
...

yM ,1

 . (5)

The element in the kth row and the lth column of Y1 is
denoted by y1(k,l). For a time offset 1, let us define a time
synchronization error ε1 as the time difference between the
beginning of a data bit and the first sample in an input matrix,
where ε1 is a value in the range of [0,Ts). In this paper,
since τ is assumed to be zero, ε1 is the same as 1Tc.
In a synchronous case, it is sufficient to consider only an

input matrix Y1 with 1 = 0. Then, the input matrix Y0 is
expressed as

Y0 =


a1c1 a1c2 · · · a1cL
a2c1 a2c2 · · · a2cL
...

...
. . .

...

aMc1 aMc2 · · · aMcL

+W0, (6)

where W0 is the noise part of the input matrix Y0 and is
expressed as

W0 =


w[0] w[1] · · · w[L − 1]
w[L] w[L + 1] · · · w[2L − 1]
...

...
. . .

...

w[ML − L] w[ML − L + 1] · · · w[ML − 1]

 ,
(7)

FIGURE 2. Input matrices generated from received samples.

where w[i] = w(iTc + ζ ), which is a sample of AWGN w(t).
In the mth row of Y0, ak is multiplied with the spreading
sequence c. In addition, in the lth column of Y0, each data bit
is multiplied by the same chip cl of the spreading sequence.
Then, the element in the kth row and the lth column y0(k,l) of
Y0 is

y0(k,l) = akcl + w0
(k,l), (8)

where w0
(k,l) is the element in the kth row and the lth column

element ofW0.
In an asynchronous case, since a receiver does not have

the information of the desynchronization value, the proposed
algorithm constructs L input matrices. The L input matrices
are constructed from the (M + 1)L − 1 samples with L
different time offsets 1 = 0, 1, · · · ,L − 1. Fig. 2 shows
the construction of L input matrices from the samples for the
proposed algorithm.

Therefore, for the proposed algorithm, ML and
(M+1)L−1 consecutive samples are required in synchronous
and asynchronous cases, respectively.

If ε1 is not zero, the input matrix Y1 is expressed as
Y1 =

[
S1,0,S1,1

]
+W1, (9)

whereW1 is the noise part of the Y1 with a time offset 1,

S1,0 =


a1c1+1 · · · a1cL
a2c1+1 · · · a2cL
...

...
...

aMc1+1 · · · aMcL

 (10)

and

S1,1 =


a2c1 · · · a2c1
a3c1 · · · a3c1
...

...
...

aM+1c1 · · · aM+1c1

 . (11)

In the kth row of Y1, ak is multiplied by the last L−1 chips
in the spreading sequence and ak+1 is multiplied by the first
1 chips in the spreading sequence due to the synchronization
error.

III. PROPOSED ALGORITHM
In this section, the proposed algorithm is presented for blind
estimation of a spreading sequence and data bits simultane-
ously. This proposed algorithm is based on the turbo pro-
cessing principle for a maximum a posteriori probability
decision. In the proposed algorithm, the channel LLRs of
chips in a spreading sequence and those of data bits are
iteratively calculated to obtain a posteriori LLRs.
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At each iteration, after the channel LLRs of chips in a
spreading sequence are first calculated, a priori probabili-
ties of chips in a spreading sequence are updated with the
calculated channel LLRs. Subsequently, the channel LLRs of
data bits are calculated with the updated a priori probabilities
of chips in a spreading sequence. Moreover, a priori proba-
bilities of data bits are updated with the calculated channel
LLRs.2 The extrinsic information of the calculated channel
LLRs is used in the next iteration.

A. LOG-LIKELIHOOD RATIO
Let us consider a synchronous case. In this case, the input
matrix Y1 is constructed with a time offset 1 = 0.
With a time offset 1, a posteriori LLR L1(cl) of cl ,

is defined as

L1(cl) , L
(
cl |v(l,1)

)
= Lch

(
v(l,1) | cl

)
+ Lpr (cl)

=

M∑
k=1

Lch
(
y1(k,l) | cl

)
+ Lpr (cl) , (12)

where v(l,1) is the lth column of Y1, Lch(y1(k,l) | cl) is the
channel LLR of y1(k,l) for cl and Lpr(cl) is a priori LLR
of cl . Here,

Lch
(
y1(k,l) | cl

)
= log

 Pr
(
y1(k,l) | cl = 1

)
Pr
(
y1(k,l) | cl = −1

)
 , (13)

and

Lpr (cl) = log
[

Pr (cl = 1)
Pr (cl = −1)

]
. (14)

With a time offset 1, a posteriori LLR L(ak ) of ak is
defined as

L1(ak ) , L(ak |u(k,1))

= Lch(u(k,1)|ak )+ Lpr(ak )

=

L∑
l=1

Lch
(
y1(k,l) | ak

)
+ Lpr(ak ), (15)

2It is possible to change the order of the LLR calculation between chips
in a spreading sequence and data bits. For convenience, in this paper,
the LLR calculation of chips in a spreading sequence is followed by the LLR
calculation of data bits.

FIGURE 3. LLR calculation from an input matrix Y0.

where u(k,1) is the kth row of Y1, Lch(y1(k,l) | ak ) is the
channel LLR of y1(k,l) for ak and Lpr(ak ) is a priori LLR
of ak . Here,

Lch
(
y1(k,l) | ak

)
= log

 Pr
(
y1(k,l) | ak = 1

)
Pr
(
y1(k,l) | ak = −1

)
 , (16)

and

Lpr (ak) = log
[

Pr (ak = 1)
Pr (ak = −1)

]
. (17)

From (12) and (15), it is observed that a posteriori LLR
of cl can be calculated with the lth column of Y1 and a
posteriori LLR of ak can be calculated with the kth row of
Y1. Fig. 3 shows how to calculate a posteriori LLRs from an
input matrix.

In a synchronous case, as y1(k,l) is expressed as y1(k,l) =
akcl + w1(k,l), the channel LLR of y1(k,l) for cl is calculated
as (18), shown at the bottom of the page where γ (x|y) =
−x2+log Pr(y), Re[x] is a real part of x and the approximation
(a) is obtained from [34]

log[exp(x1)+ exp(x2)] ≈ max(x1, x2). (19)

As max(x1, x2) is the same as (x1 + x2 + |x1 − x2|)/2,
the channel LLR of y1(k,l) for cl is expressed as

Lch
(
y1(k,l) | cl

)
≈

∣∣∣∣∣4Re[y
1
(k,l)]

N0
+ Lpr(ak )

∣∣∣∣∣−
∣∣∣∣∣−4Re[y

1
(k,l)]

N0
+ Lpr(ak )

∣∣∣∣∣ ,

=


sgn

(
Re[y1(k,l)]

)
2Lpr(ak ),

if
∣∣∣Re[y1(k,l)]∣∣∣ > N0

4
Lpr(ak ),

8Re[y1(k,l)]

N0
, otherwise,

(20)

where sgn(x) is a sign function [31].

Lch
(
y1(k,l) | cl

)
= log


∑

ak∈{−1,1}
Pr
(
y1(k,l) | cl = 1, ak

)
Pr(ak )∑

ak∈{−1,1}
Pr
(
y1(k,l) | cl = −1, ak

)
Pr(ak )

 ,
(a)
≈ max

[
γ

(
Re[y1(k,l)]− 1
√
N0

∣∣∣∣ak=1
)
, γ

(
Re[y1(k,l)]+ 1
√
N0

∣∣∣∣ak=− 1

)]

− max

[
γ

(
Re[y1(k,l)]+ 1
√
N0

∣∣∣∣ak=1
)
, γ

(
Re[y1(k,l)]− 1
√
N0

∣∣∣∣ak=− 1

)]
, (18)
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Similarly, Lch
(
y1(k,l) | ak

)
, the channel LLR of y1(k,l) for ak ,

can be expressed as

Lch
(
y1(k,l) | ak

)

= log


∑

cl∈{−1,1}
Pr
(
y1(k,l) | ak = 1, cl

)
Pr(cl)∑

cl∈{−1,1}
Pr
(
y1(k,l) | ak = −1, cl

)
Pr(cl)

 ,
≈

∣∣∣∣∣4Re[y
1
(k,l)]

N0
+ Lpr(cl)

∣∣∣∣∣−
∣∣∣∣∣−4Re[y

1
(k,l)]

N0
+ Lpr(cl)

∣∣∣∣∣ ,

=


sgn

(
Re[y1(k,l)]

)
2Lpr(cl),

if
∣∣∣Re[y1(k,l)]∣∣∣ > N0

4
Lpr(cl),

8Re[y1(k,l)]

N0
, otherwise.

(21)

For the turbo processing, the extrinsic information for cl
and ak are denoted as λ1cl and λ

1
ak , respectively. The extrinsic

information is expressed as follows

λ1cl =
1
2n1

Lch(v(l,1)|cl),

=
1
2n1

M∑
k=1

Lch(y1(k,l)|cl), (22)

λ1ak =
1
2n2

Lch(u(k,1)|ak ),

=
1
2n2

L∑
l=1

Lch(y1(k,l)|ak ), (23)

where n1 and n2 are the smallest integer greater than or equal
to log2M and log2L, respectively.

3 The extrinsic information
is used to update a priori probability.

B. SYNCHRONOUS CASE
Let us consider a synchronous case, where the receiver
has the information of a desynchronization value τ . Then,
the aposteriori LLRs of chips in the spreading sequence
L0(cl) and those of data bits L0(ak ) are calculated from (12)
and (15) for the input matrix Y0, respectively. At each itera-
tion, L0(cl) and L0(ak ) are calculated for l = 1, 2, · · · ,L and
k = 1, 2, · · · ,M . To calculate L0(cl) and L0(ak ), the a priori
probabilities Pr(cl = 1) and Pr(ak = 1) are updated based on
the extrinsic information obtained from the previous iteration.

Before the first iteration, the a priori probabilities
Pr(cl = 1) and Pr(ak = 1) are initialized for all l and k values.
After the initialization, L0(cl) is first calculated from (12).
Subsequently, the extrinsic information λ0cl for cl is fed back
to update the a priori probability of Pr(cl = 1) as follows:

Pr(cl = 1)← fatv
(
λ0cl

)
, (24)

3As division by a power of two can be easily implemented by a shift
operation, its computational complexity is negligible compared with a mul-
tiplication operation.

FIGURE 4. Plots of activation functions.

FIGURE 5. Iterative calculation of a posteriori LLR.

where fatv(x) is an activation function. In this paper, as in
[35]–[37], a logistic function is used for the activation
function. This function is expressed as [38]:

fatv(x) =
1

1+ e−µx
, (25)

where µ is a positive coefficient. Fig. 4 shows plots of the
activation function (25) for different coefficient µ values.

After Pr(cl = 1) is updated, L0(ak ) is calculated from (15).
Then, the extrinsic information λ0ak for ak is also fed back to
update the a priori probability of Pr(ak = 1) as follows:

Pr(ak = 1)← fatv
(
λ0ak

)
. (26)

The updated a priori probabilities are used at the next iter-
ation to calculate L0(cl) and L0(ak ). Fig. 5 summarizes the
overall iterative procedure for the proposed algorithm.

After the end of the last iteration, the estimated chips in a
spreading sequence and data bits are obtained based on the
sign of L0(cl) and L0(ak ) as follows:

ĉl = sgn
(
L0(cl)

)
, l = 1, 2, · · · ,L, (27)

âk = sgn
(
L0(ak )

)
, k = 1, 2, · · · ,M . (28)

C. ASYNCHRONOUS CASE
Let us consider an asynchronous case, where the receiver does
not have the information of the desynchronization value τ .
In this case, the receiver estimates a spreading sequence and
data bits for all possible desynchronization values. There-
fore, L input matrices are generated from the consecutive
(M + 1)L − 1 samples with L time offsets 1.
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Subsequently, among the L estimations of chips in a spread-
ing sequence and data bits, the receiver selects the most
reliable one.

For each time offset 1, the a posteriori LLRs of chips in
a spreading sequence and those of data bits are calculated
from (12) and (15). After the end of the last iteration for each
1 value, tentative estimations of a spreading sequence and
data bits are obtained as

ĉl (1) = sgn
(
L1(cl)

)
, l = 1, 2, · · · ,L, (29)

âk (1) = sgn
(
L1(ak )

)
, k = 1, 2, · · · ,M . (30)

Then, from the tentative estimation, an input matrix Ŷ1 is
regenerated as

Ŷ1 = sgn



ĉ11
ĉ21
...

ĉL1

 · [â11, â21, · · · , âM1]
 . (31)

The receiver computes the Euclidean distance between an
input matrix Y1 and a regenerated input matrix Ŷ1. The
computed Euclidean distance is used as a reliability measure
for a tentative estimation. Let us define 2 as the time offset
1, with which the minimum Euclidean distance is obtained.
Then, 2 is expressed as

2 = argmin
1

(∣∣Y1 − Ŷ1∣∣2)
= argmin

1

(
M∑
k=1

L∑
l=1

z2[(k − 1)L + l − 1+1]

− 2̂y1(k,l)z[(k − 1)L + l − 1+1]+ (̂y1(k,l))
2
)

(a)
≡ argmin

1

L−1∑
i=1

(z[i])2 +
ML+1∑
i=ML−1

(z[i])2

− 2
M∑
k=1

L∑
l=1

ŷ1(k,l)z[(k − 1)L + l − 1+1]

)
, (32)

where ŷ1(k,l) is the kth row and the lth column element of Ŷ1.
(a) is derived as follows:
(i) In the second line of (32), with i = L,L+1, · · · ,ML−1,

the first term (z[i])2 is included for all1. Therefore, this
term can be simplified as the first and the second terms
of the third line in (32).

(ii) As the value of ŷ1(k,l) is 1 or −1, (̂y1(k,l))
2 is always one

for all l and k .
Therefore, the final estimation of a spreading sequence and

data bits can be obtained as follows:

ĉl = ĉl (2), l = 1, 2, · · · ,L, (33)

âk = âk (2), k = 1, 2, · · · ,M . (34)

Algorithm 1 presents the proposed algorithm as a pseudo
code for an asynchronous case.

Algorithm 1 Blind Estimation of a Spreading Sequence
and Data Bits
Input : (M + 1)L − 1 consecutive samples
Output: Estimated chips in a spreading sequence and

data bits
1 for 1 = 0 to L − 1 do
2 Initialization of Pr(cl) and Pr(ak );
3 for n = 1 to Niter do
4 for l ← 1 to L do
5 calculate Lch(y1(k,l)|cl), L

1(cl), λ1cl ;
6 Pr(cl)← fatv(λ1cl ) ;
7 ĉl (1) = sgn(L1(cl));
8 end
9 for k ← 1 to M do

10 calculate Lch(y1(k,l)|ak ), L
1(ak ), λ1ak ;

11 Pr(ak )← fatv(λ1ak ) ;
12 âk (1) = sgn(L1(ak ));
13 end
14 end
15 end

16 2 = argmin1
(∣∣Y1 − Ŷ1∣∣2) ;

17 ĉl = ĉl (2), l = 1, 2, · · · ,L;
18 âk = âk (2), k = 1, 2, · · · ,M ;

D. COMPUTATIONAL COMPLEXITY
In this subsection, the computational complexity is analyzed
for the proposed algorithm. In addition, the computational
complexity is compared with that of the conventional
EVD-based algorithm.

Let us first consider a synchronous case. The computational
complexity is summarized as follows:
• Normalization of an M × L input matrix by N0
(signal-to-noise ratio normalization):
– ML multiplications

• Calculation of channel LLRs as in (20) and (21):
– 2MLNiter additions4

• Calculation of extrinsic information based on the
calculated channel LLRs as in (22) and (23):
– (2ML −M − L)Niter additions
– (M + L)Niter bit shift operations

• Update of a priori probabilities using a logistic function
as in (24) and (26), that can be implemented with a
look-up table [39]:
– (M + L)Niter memory accesses for a one-dimensional
look-up table of a logistic function

• Calculation of a priori LLRs similar to that in (14) and
(17), which can be implemented with a look-up table:

4The calculation of a channel LLR comprises of a magnitude comparison
of an input value and multiplications by a power of two. The complexity
of magnitude comparison is the same as that of an addition. In addition,
multiplication by a power of two can be implemented with a shift operation,
which has negligible computational complexity compared with addition.
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TABLE 1. Computational complexity.

– (M+L)Niter memory accesses for an one-dimensional
look-up table of a logarithm function

• Calculation of a posteriori LLRs as in (12) and (15):
– (M + L)Niter additions

Therefore, the proposed algorithm requires approximately
ML multiplications and 4NiterML additions for the syn-
chronous case, as the shift operation and memory access for
a look-up table are negligible compared with an addition or a
multiplication.

On the other hand, in the asynchronous case, the proposed
algorithm requires L input matrices of size M × L obtained
from (M + 1)L − 1 samples. In addition, to calculate the
Euclidean distance between an input matrix Y1 and its regen-
erated matrix Ŷ1, 2L−1multiplications and L(ML−1) addi-
tions are required. Therefore, the proposed algorithm requires
(M+1)L+2L−2multiplications and 4NiterML2+L(ML−1)
additions. Thus, for the asynchronous case, computational
complexity is approximately L times that of the synchronous
case.

For the conventional EVD-based algorithm [10], [20], [25],
it is necessary to compute the average of M covariance
matrices of size L × L. Subsequently, after the calculation
of eigen-decomposition of the averaged covariance matrix,
the spreading sequence is estimated based on two largest
eigenvalues and the corresponding eigenvectors. Therefore,
ML2+L3 additions andML2+L3 multiplications are required
for this algorithm [21], [40], [41]. With the EVD-based algo-
rithm, almost the same computational complexity is required
for both synchronous and asynchronous cases.

Table 1 summarizes the computational complexity of
the EVD-based algorithm and proposed algorithm in syn-
chronous and asynchronous cases.

IV. NUMERICAL RESULT
In this section, simulation results of the proposed algorithm
are presented. A simulator was built to obtain the results for
the proposed algorithm in an AWGN channel. The perfor-
mance of the proposed algorithm was compared with that of
an EVD-based algorithm.

The estimation performances were obtained from 10,000
runs of Monte Carlo simulations for an SNR value between
−20.0 dB and −10.0 dB. For the simulation, 100 data bits
were spread with a spreading sequence of length 31 and
the coefficient µ for an activation function is fixed to 3.0.
The results were obtained after Niter iterations, where Niter
is an integer in the range [1, 25]. In the asynchronous cases,
the desynchronization value was set to iTc, where i is an
integer, uniformly distributed between 0 and L − 1. Table 2
summarizes the parameters used for the simulation.

TABLE 2. Simulation parameters.

Let us define Pe(x), which is an ideal BER (bit error rate)
performance of BPSK for SNR of x after despreading. Pe(x)
is expressed as

Pe(x) =
1
2
erfc

(√
Gx
)
, (35)

where erfc(x) is an error function and G is the processing
gain [42]. As the proposed estimation algorithm cannot out-
perform the ideal BER Pe(x), Pe(x) is used as a lower bound
for estimation performance. For the estimation of a data bit,
as a data bit is spread by a spreading sequence of length L,
G becomes L. On the other hand, for the estimation of a chip
in a spreading sequence, as it can be regarded that a chip in
a spreading sequence is spread by a sequence of lengthM , G
becomes M .

Fig. 6 shows the error rate versus SNR for a chip in
a spreading sequence and a data bit. The solid and
dashed lines represent the performances of the algorithms
in synchronous and asynchronous cases, respectively. The
results were obtained after 10 iterations with the proposed
algorithm.

Fig. 6.(a) shows the plots of the error rate of a chip
in a spreading sequence for the proposed and EVD-based
algorithms. In the synchronous case, for the error rate of
10−2, −13.9 dB and −12.6 dB are required with the proposed
and EVD-based algorithms, respectively. Furthermore, in the
asynchronous case, for the error rate of 10−2, −13.4 dB and
−10.0 dB are required with the proposed and EVD-based
algorithms, respectively. Compared to the EVD-based algo-
rithm, the proposed algorithm achieves better performance
with respect to chips in a spreading sequence. Particularly,
in the asynchronous case, the proposed algorithm has per-
formance gain of approximately 3.0 dB compared with the
EVD-based algorithm.

Fig. 6.(b) shows plots of the error rate of a data bit for
a proposed and EVD-based algorithms. In the synchronous
case, for the error rate of 10−1, −14.7 dB and −14.5 dB
are required with the proposed and EVD-based algorithms,
respectively. Furthermore, in the asynchronous case, for the
error rate of 10−1, −14.4 dB and −13.6 dB are required
with the proposed and EVD-based algorithms, respectively.
Compared to the EVD-based algorithm. the proposed algo-
rithm achieves better performance with respect to data bit
error rate.

From the Fig. 6.(a) and Fig. 6.(b), it is evident that the
estimation performance of a chip in a spreading sequence is
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FIGURE 6. Error rate vs SNR.

better than that of a data bit for a fixed SNR. This is because
the size of column M is smaller than that of row L with an
M × L input matrix.
The proposed algorithm is based on the iterative

calculations of a posteriori LLRs. Therefore, the estimation
performance is dependent on the number Niter of iterations.
To investigate the influence of Niter on the estimation perfor-
mance, Fig. 7 shows the plots of the error rate for different
Niter with the proposed algorithm. For the results, SNR is
fixed at −15.0 dB. As Niter increases, the error rate of a
chip in a spreading sequence converges to approximately
2.1×10−2 or 4.2×10−2 in a synchronous or an asynchronous
case, respectively. In addition, the error rate of a data bit
converges to approximately 9.8 × 10−2 or 12.5 × 10−2 in
synchronous or asynchronous case, respectively. Fig. 7 show
that the performances saturate after 10 and 20 iterations for
an asynchronous and a synchronous cases, respectively. In the
asynchronous case, as estimation performance degrades due
to the time synchronization error, the error rate converges to
a higher value compared with that in the synchronous case.

FIGURE 7. Error rate vs number Niter of iterations.

Therefore, in the asynchronous case, the error rate saturates
after fewer iterations than in the synchronous case.

V. CONCLUSION
In this paper, a novel algorithm is proposed to blindly estimate
chips in a spreading sequence and data bits based on turbo
processing principle in non-cooperative baseband communi-
cation systems. With the proposed algorithm, the a posteriori
LLRs of chips in a spreading sequence and data bits are calcu-
lated and a priori probabilities are updated based on channel
LLRs. The proposed algorithm can be implemented for both
synchronous and asynchronous cases. Therefore, regardless
of the information of a desynchronization value, chips in a
spreading sequence and data bits can be estimated simul-
taneously. The simulation results show that the proposed
algorithm can achieve better estimation performance than an
EVD-based algorithm. Especially, in the asynchronous case,
a performance gain of approximately 3.0 dB was achieved
compared to the EVD-based algorithm to estimate the chips
in a spreading sequence.

In addition, this paper analyzed the computation
complexity of the proposed algorithm. The complexity
of the proposed algorithm is compared with that of an
EVD-based algorithm. As the proposed algorithm consider-
ably reduced the number of multiplications required, it is less
computationally complex than the EVD-based algorithm.
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