
Applied Mathematics and Computation 375 (2020) 125076

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

VOROPACK-D: Real-time disk packing algorithm using Voronoi

diagram

Joonghyun Ryu

a , Mokwon Lee

a , Donguk Kim

c , Josef Kallrath

d ,
Kokichi Sugihara

e , Deok-Soo Kim

a , b , ∗

a Voronoi Diagram Research Center, Hanyang University, Republic of Korea
b Department of Mechanical Engineering, Hanyang University, Republic of Korea
c Department of Industrial Engineering, Gangneung-Wonju National University, Republic of Korea
d Department of Astronomy, University of Florida, Gainesville, FL 32611, USA
e Meiji Institute for Advanced Study of Mathematical Sciences, Japan

a r t i c l e i n f o

Article history:

Received 1 November 2019

Accepted 19 January 2020

Available online 12 February 2020

MSC:

00-01

99-00,

Keywords:

Tessellation

NP-hard

Heuristic

Optimization

Computational geometry

Monotone convergence

a b s t r a c t

The disk packing problem (DPP) is to find an arrangement of circular disks within the

smallest possible container without any overlap. We discuss a DPP for polysized disks in

a circular container. DPP is known NP-hard and reported algorithms are slow for finding

good solutions even with the problem instances of small to moderate sizes. Here we in-

troduce a heuristic algorithm which finds sufficiently good solutions in realtime for small

to moderate-sized problem instances and in pseudo-realtime for large problem instances.

The proposed algorithm, VOROPACK-D, takes advantage of the spatial reasoning property

of Voronoi diagram and finds an approximate solution of DPP in O (n log n) time with O (n)

memory by making incremental placement of n disks in the order of non-increasing disk

size, thus called a big-disk-first method. The location of a placement is determined using

the Voronoi diagram of already-placed disks. If needed, we further enhance a big-disk-first

realtime packing solution using the Shrink-and-Shake algorithm by taking an additional

O (Mn 2) time for each shrinkage where M � n is the number of protruding disks for each

shrinkage. Experimental results show that the proposed algorithm is faster than other re-

ported ones by several orders of magnitude, particularly for large problem instances. The-

oretical observations are verified and validated by a thorough experiment. This study sug-

gests that Voronoi diagram might be useful for solving other hard optimization problems

related with empty spaces. VOROPACK-D is freely available at Voronoi Diagram Research

Center (http://voronoi.hanyang.ac.kr/software/voropack-d).

© 2020 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Suppose that we are given a set D = { d 1 , d 2 , . . . , d n } of disks where each disk d i = d i (c i , r i) ∈ D is associated with center

c i (x i , y i) ∈ R

2 and radius r i ∈ R . We want to find the smallest circular container d 0 = d 0 (c 0 , r 0) which contains all disks in D
∗ Corresponding author at: School of Mechanical Engineering, Hanyang University, Republic of Korea.

E-mail address: dskim@hanyang.ac.kr (D.-S. Kim).

https://doi.org/10.1016/j.amc.2020.125076

0 096-30 03/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.amc.2020.125076
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2020.125076&domain=pdf
http://voronoi.hanyang.ac.kr/software/voropack-d
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dskim@hanyang.ac.kr
https://doi.org/10.1016/j.amc.2020.125076
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

without any overlap except on their boundaries. Hence, we want to determine the center c 0 and radius r 0 of the container

together with the disk arrangement, i.e. , the coordinates of the disk centers c 1 , c 2 , . . . , c n . The disk packing problem (DPP)

discussed in this paper can be formulated as an optimization problem as follows.

Formulation 1 (DPP-Polysized-Circular-container (DPP-PCc) Problem) .

Minimize r 0 (1)

Subject to

(x i − x j)
2 + (y i − y j)

2 ≥ (r i + r j)
2 (2)

(x 0 − x i)
2 + (y 0 − y i)

2 ≤ (r 0 − r i)
2 (3)

r 0 ≥ 0 (4)

where i � = j, i, j = 1 , 2 , . . . , n .

Inequality (2) prevents that two disks overlap in more than one point. They are allowed to touch each other in one point.

Inequality (3) enforces all disks to be contained within the container. Formulation 1 has n (n +1)
2 + 1 constraints and 2 n + 3

decision variables. The number of decision variables can be reduced to 2 n + 1 by enforcing c 0 (or c i of any d i ∈ D) to coincide

with the coordinate origin. The formulation has a linear objective function with one variable over nonlinear inequalities each

defining a segment of the quadratic boundary of the non-convex feasible solution space.

DPP is NP-hard even if we ignore the rotational variety of disk arrangement [1] . There can be frequently infinitely many

alternative optimal solutions. For example, consider D = { d 1 , d 2 , d 3 } where d 1 and d 2 are equal-sized and d 3 is tiny. Suppose

that the optimal container d 0 is the circle containing both d 1 and d 2 and is tangent to d 1 and d 2 where they are in a

tangential contact. Then, it is possible that the tiny d 3 can rattle in the interstitial region between d 1 and d 2 within the

container, thus called a rattler. The rattler may take any one among infinitely many locations in the region. See Section 2 for

literature review.

In this paper, we present a heuristic algorithm VOROPACK-D for solving DPP. The algorithm finds sufficiently good so-

lutions of the problem instances of small to moderate size in realtime and those of large size in pseudo-realtime, i.e. very

efficiently. The idea is simple as follows. With a sufficiently large container d 0 , the algorithm increments disks in the or-

der of non-increasing size, thus called the big-disk-first method. For each increment, we make sure that the constraints of

Eqs. (2) and (3) are satisfied. We use the Voronoi diagram of polysized circular disks which are contained within the initial

container. Taking advantage of the empty space information available from the Voronoi diagram, the algorithm finds a good

location for an incrementing disk. As there are O (i) vertices and edges in the Voronoi diagram of i disks, we can find an

appropriate location for (i + 1)th disk in O (i) time using a straightforward linear scan of edges. After all disks are placed, the

minimum enclosing circle can be found in O (n) time. Hence, a good packing of n disks can be easily found in O (n 2) time us-

ing the big-disk-first heuristic with the Voronoi diagram. We present the accelerated big-disk-first method to O (n log n) time

using two priority queues: One for maintaining interstitial voids among disks in a sorted order of clearance and the other

for maintaining the Voronoi edges in the free space (which is called the infinite void later) in a sorted order of distance

from the center of the container. An example of the performance is as follows. Let A1, A2, and A3 be the sets with 50, 100,

and 10 0 0 disks where the i th disk has radius i , respectively; B1, B2, and B3 be those with 50, 100, and 10 0 0 disks where

the i th disk has radius i −
1
2 , respectively. VOROPACK-D, which implements the O (n 2) time algorithm, finds the packings of

A1, A2, B1, and B2 in the solution containers in 18, 32, 12, and 35 msec where the container radii are 5.6%, 5.1%, 5.1%, and

3.3% larger than the best-known minimum container, respectively. It finds the packings of A3 and B3 in 757 and 806 msec

where the packing densities are 0.8539 and 0.8940, respectively and the container radii 19782.500 and 2.894, respectively.

Note that no known packing results are reported for A3 and B3. If it is necessary or desirable, the realtime packing solution

of VOROPACK-D can be enhanced by the Shrink-and-Shake (S&S) method reported in 2004 in [2] . The accelerated S&S al-

gorithm developed in this paper uses the Voronoi diagram of disks and takes an additional O (Mn 2) time for each shrinkage

where M � n is the number of protruding disks for a shrunken container.

We would like to emphasize that the idea of the proposed algorithm for DPP using Voronoi diagram can be used to solve

other NP-hard problems whose solutions are related with empty Euclidean spaces. This geometry-priority approach based

on Voronoi diagram might introduce a new paradigm for designing heuristic algorithms of hard problems, particularly for

large problem instances related with empty space in 2- and 3-dimensional Euclidean spaces.

The contributions of this paper are as follows.

• Introduction of a realtime disk packing algorithm VOROPACK-D.

• Introduction of Voronoi diagram to optimization problems which are related with empty space among particles.

• VOROPACK-D program which implements the proposed algorithm: It is freely available at the Voronoi Diagram Research

Center (http://voronoi.hanyang.ac.kr/software/voropack-d).

All discussions are in the plane and all time complexities are in the worst case sense unless otherwise stated. We dis-

tinguish “disk” from “circle”. “Disk” is an input circular object to pack whereas “circle” is a derived object to be used for

designing algorithm. Note. In literature, there exists another context of “circle packing problem” different from the problem

http://voronoi.hanyang.ac.kr/software/voropack-d

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 3

we discuss in this paper. In [3–5] , a circle packing is a configuration of circles realizing a specified pattern of tangencies:

E.g. Apollonian circle packing [6–8] . In this regard, we strictly distinguish the use of “disk” from “circle” in this paper.

The organization of this paper is as follows. Section 2 presents a literature review. Section 3 briefly presents the Voronoi

diagram which is the most fundamental computational tool for the proposed algorithm. Section 4 presents the computa-

tional building blocks to design the proposed algorithm for solving disk packing problems. Section 5 presents the big-disk-

first realtime disk packing algorithm, together with two others, for finding the solution of DPP in realtime. Section 6 presents

the enhancement of the packing solution obtained by the big-disk-first realtime algorithm using the 2004 Shrink-and-Shake

algorithm, together with its acceleration using the Voronoi diagram. Section 7 presents the experimental result with discus-

sions. Then, the paper concludes.

2. Literature review

The disk packing problem is an old, important and hard problem, and derives its roots perhaps from the Tenth Problem

of Apollonius of Perga. There are abundant prior works for packing disks. We recommend the following for information

sources: (i) Good reviews [9,10] ; (ii) The Packomania web site for benchmark problems with the best-known results (http:

//www.packomania.com); (iii) Al Zimmermann’s programming contest in 2005 for best disk packing in a circular container

(See http://recmath.com/contest/CirclePacking/index.php).

Two fundamental considerations in packing problems are the profile of disk sizes and the shape of the target container.

For example, all disks can be of an equal radii, some may have equal radii but others unequal radii, all disks have distinct

radii, the disk set consists of a mixture of only two (or three, four, etc.) different radii, etc. The target container shape may

be a circle, a rectangle, an ellipse, a convex polygon (such as square, rectangle, or triangle), or a non-convex polygon.

To the best of our knowledge, the disk packing problem began with a convex polygonal container by Segre and Mahler

in 1944 [11] . Even if we are interested in packing disks in a circular container, we also briefly review articles addressing

relaxed problems.

Suppose that we want to place p > 0 congruent disks in a container of a unit square without any overlap between disks.

What is the maximum disk radius r > 0? This problem can be formulated as the following.

Formulation 2 (DPP-Congruent-Square-container (DPP-CSc) Problem) .

Maximize r (5)

Subject to

(x i − x j)
2 + (y i − y j)

2 ≥ 4 r 2 (6)

0 ≤ x i ≤ 1 , 0 ≤ y i ≤ 1 , i = 1 , 2 , . . . , p (7)

If we replace Eq. (7) with Eq. (3) , we have a DPP-Congruent-Circular-container (DPP-CCc) Problem. If we replace

Eq. (7) with

c i ⊂ �, i = 1 , 2 , . . . , p (8)

where � is a polygon (either convex or non-convex) and c i = c i (x i , y i) is the center of a disk d i (c i , r i), we have a DPP-

Congruent-Polygon-container (DPP-CPc) Problem.

2.1. Congruent disks

Disk packing naturally began with congruent disks without any consideration of container. For congruent disks, if no

constraint about container exists, a hexagonal packing with the kissing number six (also called as a honeycomb packing; ev-

ery disk contacts six others of an identical size) is optimal (i.e. , the densest) with the packing density of π/
√

12 = 0 . 9069

This seemingly obvious optimality of congruent disk packing problem was proved by Thue, initially in 1892 and the proof

was later improved in 1910 [12,13] and eventually completed by Toth in 1940 [14] .

With a container, the disk packing problem was first discussed with congruent disks w.r.t. a convex polygon in 1944

(DPP-CPc Problem) [11] and followed by studies w.r.t. a unit square container (DPP-CSc Problem) by Schaer in 1965 [15] and

a circular container (DPP-CCc Problem). Then, discussions have been extended to more generalized models such as DPP-PCc,

DPP-PPc, etc.

There were three major approaches: (i) Analytic approach (to find analytically the optimal or good packing of a small

number of disks); (ii) Simulation approach (to use simulation for a large number of disks). (iii) Nonlinear programming

(NLP) approach (to formulate a NLP optimization problem to find good packing of a large number of disks);

The analytic approach was the first appeared one. To the best of our knowledge, Schaer in 1965 was the first to re-

port packing k congruent disks within a unit square in R

2 , 2 ≤ k ≤ 9 [15] . In 1966, Schaer reported packing k congruent

spheres within a unit cube for k ≤ 9 in R

3 [16] . In 1967, Kravitz reported the problem of finding the smallest possible cir-

cular container (we call it an optimal container) which can contain congruent disks and presented packings up to 19 disks

(without optimality proofs) [17] . Graham in 1968 proved the optimality of the packing of up to 7 disks [18] . Goldberg, in

http://www.packomania.com
http://recmath.com/contest/CirclePacking/index.php

4 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

1971, presented packings of 14, 16, 17, and 20 disks [19] . Reis, in 1975, presented up to 25 disks including an improvement

of Goldberg’s result [20] . Melissen, in 1994, proved the optimality for the case of eleven disks [21] . In 1991, Dowsland re-

ported a study of rules to compactly pack many congruent disks in pallet arrangements [22] . Fraser and George in 1994

[23] discussed packing congruent disks in a container of fixed size. Dowsland addressed the optimal size package [22,24] .

Isermann in 1991 [25] outlined heuristics for packing congruent disks.

The simulation approach began in 1990 by Lubachevsky and Graham, with coworkers, using a bucket-based algorithm

to simulate billiards with hard elastic balls moving on the plane and used to analyze the packing patterns of disk sets of

moderate to big size [26–28] . The idea of the algorithm was to start with a set of random points with random velocities

and to grow them at a uniform rate so that particles eventually jammed. The algorithm was able to solve congruent disk

packing problems for many disks. Graham and Lubachevsky used the billiards algorithm to study packings of congruent

disks in an equilateral triangular container [29,30] , rectangular container [31,32] , and circular container [33,34] . They even

looked at an opposite problem of finding the minimum perimeter rectangles that enclose congruent non-overlapping disks

[35] . The benchmark report by Gavrilova et al. among the algorithms to detect the contacts between polysized disks using

dynamic power diagram and various subdivision methods is noteworthy [36] .

Three important studies of the NLP approach were reported in 1995. First, Maranas, Floudas, and Pardalos reported an

NLP formulation to maximize the minimum distance between all pairs of points within a unit square container [37] . Hence,

this problem is equivalent to maximize the radius of the disks in DPP-CSc Model. They presented the packing results up to

30 disks (with neither optimality claim nor computation time statistics) using GAMS for modeling and the MINOS solver for

computation. They used multiple initial points in order to span most of the parameter space because the solver provided no

theoretical guarantee of the convergence to the global optimum.

Second, Drezner and Erkut introduced the continuous p -dispersion problem in a square and showed its equivalence to

the problem of packing p disks in a square [38] . The problem was formulated to maximize the minimum distance between

pairs of points within a container. They solved this problem for p = 10 , 11 , . . . , 23 and were able to duplicate the best-

known results. They used AMPL for modeling and used MINOS 5.4 as a nonlinear solver and solved each of the problems

10 0 0 times with a different initial solution each time. They reported the time statistic for one case. They also solved the

packing problem in a circular container (DPP-CCc Model) by replacing the constraint in Eq. (7) with

x 2 i + y 2 i ≤ (1 − r) 2 for i = 1 , 2 , . . . , p (9)

Third, George et al. reported the problem of fitting circular pipes of different diameters into a shipping container (i.e. ,

DPP-PSc Problem) [39] . They formulated the problem as a nonlinear mixed integer programming problem and reported the

solutions (without time statistics) by a genetic algorithm based on several heuristic rules. They used two heuristic rules

based on geometric observation to make a room for another disk: “spin-out” (to move existing disks to container boundary

as far as possible) and “shake-down” (to move existing disks downward as much as possible).

Graham and Lubachevsky, together with coworkers in 1998 [34] , presented a nonlinear optimization formulation to

maximize the minimum pairwise distance between the points in the unit circle: Max Min {| c i − c j | : 1 ≤ i < j ≤ n } where

C = { c 1 , c 2 , . . . , c n } is the set of disk centers in the container with a unit radius.

2.2. Polysized disks

From mathematical programming modeling point of view, the difference between packing polysized disks and congruent

ones is to replace Eq. (6) with Eq. (2) (together with a slight variation of container constraint). We believe that the first

explicit NLP formulation of a polysized disk packing problem was, as explained above, by George et al. in 1995 for a square

container (i.e. , DPP-PSc) [39] . Huang in 1999 presented an NLP formulation of a polysized disk packing problem w.r.t. a

circular container (i.e. , DPP-PCc) [40] . They looked at the same problem from the opposite viewpoint of the earlier works

by attempting to minimize the total overlapping regions among disks and container using the gradient-based local search

to reduce the overlap to zero. A rule for escaping from a local minimum was to choose a disk with the most overlapped

distance and to move that to some other region within the container. Since then, Huang’s group reported several heuristic

observations such as corner placement, maximal hold degree, the self look-ahead strategy, and vacant degree [41–46] . Other

studies followed: Simulated annealing with tabu search [47] , NLP formulations [4 8,4 9] , etc.

In 2007, Hifi and M’Hallah [50] presented an incremental algorithm that increments a new disk d i , i ≤ n , in a greedy

manner to an arrangement of already packed i − 1 disks so that d i kept tangency with at least two disks. Before the actual

placement of i th disk, all candidate two-tangency locations are identified and for each candidate location, the minimal

container was found by solving another nonlinear minimization problem. Among the containers, the minimal one is selected.

The minimum enclosing circle for n disks with a fixed arrangement needs to be mentioned. There are O (n 3) enclosing

circles because three disks may define a unique enclosing circle. As the inclusion test should be done for each of the n − 3

disks, the time complexity is O (n 4) without a clever method such as [51,52] . This group extended the incremental algorithm

by exploring different ways to increment each disk so that more solution space can be searched, of course finding better

solution in the cost of computation time [53] and further studied the influence of limiting the number of children of each

node in the search tree [54] .

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 5

2.3. Explicit modeling of empty space in container

In 2004, Sugihara and Kim, together with coworkers, introduced the idea of using Voronoi diagrams for an explicit mod-

eling of empty space in container to efficiently pack disks (We skip its detail as it is explained in Section 5). Wormser in

2008 used power diagram for an application of packing polysized disks [55] . Lu and coworkers in 2011 used power di-

agram in a similar effort f or packing disks [56] . Specht in 2016 used the geometric property of the interstitial region in

disk arrangement which is conceptually similar to the Voronoi diagram [57] . At each iteration, the algorithm generates a

contact graph where a vertex corresponds to a disk and an edge corresponds to either two disks or a disk and container.

The contact graph is used to determine the structure of interstitial region and to calculate the clearance of the interstitial

regions. The contact information was modeled as a planar graph which was represented by the half-edge data structure that

allows an efficient query. In the higher level, the algorithm adopted an iterative improvement based on a method similar

to the billiards simulation algorithm [26] . The iterations were repeated until the temperature gradually cools down to a

given numerical tolerance. When a jamming occurs during the process, annealing methods such as jumping disks, swap-

ping two disks, or rotating three or more disks were attempted. The algorithm was efficient, largely due to the active use

of geometric properties of disk arrangement. The trend of using more geometric properties is clear in several recent stud-

ies [44,46,50,54,58] .

2.4. Generalized packing problems

It is interesting that the first reported study of a disk packing problem with a container was by Segre and Mahler in

1944 about the upper bound of the number of congruent disks in a convex polygon [11] . Since then, many reports followed

on DPP-CSc or DPP-PSc problems [22,39,59–63] . Recent works include more generalized problems: Polysized disk packing

into perimeter-minimizing convex hulls [64] , congruent disk packing within a non-convex container defined by free-form

curves [65] , etc.

The problem has been even more generalized. Packing ellipses of different shapes into a rectangular container of mini-

mal area [66–68] or into a circular container [69,70] and packing ellipsoids into three-dimensional containers of rectilinear

or spherical shapes [71,72] . The packing of ellipses and ellipsoids has important applications in wireless communication,

understanding matter [73–75] , modeling explicit forces among elliptical particles [76] , 3D printing [77] , etc. It is noteworthy

that ellipsoidal particle packing in R

3 has recently significant applications for understanding matter [73,78] , granular mate-

rials [79,80] , geosystems [73] , pore/tunnel analysis for tissue repair and regeneration to study jamming behavior of hydrogel

microparticles [81] .

Interestingly enough, the earliest possible reference to a packing problem is perhaps the Kepler conjecture about the

packing of spherical balls in R

3 stated in 1611 in his “De Nive Sexangula (On the six cornered snowflake)” as follows:

No packing of identically-sized balls in R

3 has density greater than that of the face-centered cubic packing (which is

π/
√

18 = 0 . 74048 . . .). This number occurs in FCC (face-centered cubic) and HCP (hexagonal closed-pack). More than 400

years later, Thomas Hales and coworkers in 2015 reported a proof of Kepler conjecture [82] . To be precise, they proved

π/
√

18 is the highest packing density for congruent 3D spherical balls and in addition to the FCC packing, there are un-

countably many packing configurations with the same density. Hales launched a worldwide cooperative project “Flyspeck,”

which was completed in August 2014, to prove his own proof by himself and Hales and 21 coworkers published “A formal

proof of Kepler conjecture in 2017 [82] .” Packing of higher-dimensional spheres is also being studied [83] .

3. Voronoi diagram

Voronoi diagrams are powerful geometric constructs which are used to solve diverse problems related with spatial rea-

soning. We briefly introduce a necessary minimum of Voronoi diagrams with proper references because they are extensively

used by VOROPACK-D. For Voronoi diagrams in general, we recommend readers to refer to [84,85] . Hereafter “V-” denotes

“Voronoi” for notation simplicity.

Ordinary Voronoi diagram of points . The ordinary Voronoi diagram of a point set P is a tessellation where each V-cell of

the tessellation is a set of locations in the space which is closer to the associated point, called a generator , in P than to the

other generators. Each V-edge is equidistant from two points in P , is a subset of a line, and is the boundary between two

adjacent V-cells; Some V-edges may be unbounded to emanate to infinity while the others are bounded. Each V-vertex is

equidistant from three points.

In the ordinary Voronoi diagram of n point generators in R

2 , there are O (n) V-vertices, O (n) V-edges, and n V-cells and

can be constructed in the optimal O (n log n) time using the divide-and-conquer algorithm with a winged-edge or half-edge

data structure taking O (n) memory [84–87] . However, we prefer to use the topology-oriented incremental algorithm which

was introduced by Sugihara and Iri in 1989 [88] because it guarantees robustness with O (n) time on average (although

O (n 2) time in the worst case). The ordinary Voronoi diagram of approximately 50,0 0 0 points in the plane can be robustly

constructed in a second on an ordinary desktop computer.

The Voronoi diagram of circular disks . The Voronoi diagram VD of a circular disk set D = { d 1 , d 2 , . . . , d n } in the plane is

a tessellation of the plane so that every location in a V-cell is closer to its generating disk than to other disks. Each V-

6 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

Fig. 1. Voronoi diagrams in R 2 . The red dotted circles are the biggest empty circles among generators which are found in O (n) time for n input generators.

(a) The ordinary Voronoi diagram of points. (b) The Voronoi diagram of disks. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

edge is the locus of the center of circular probe that simultaneously contacts the boundaries of two generating disks: If

the generating disks are of different sizes, the V-edge is hyperbolic and if they are of an identical size, it is linear. Some

V-edges may be unbounded to emanate to infinity while the others are bounded. The Voronoi diagram of congruent disks

is identical to the ordinary Voronoi diagram of disk centers. V-edges can be conveniently represented by rational quadratic

Bézier curve because it can define all quadratic polynomial in a unified manner [89] . A V-vertex is the center of circular

probe that simultaneously contacts three generating disks. If two generator disks intersect each other, their V-edge passes

through the two intersection points between the boundaries of the two disks. If they contact each other, the corresponding

V-edge passes through the contact point.

VD has O (n) V-vertices, O (n) V-edges, and n V-cells and can be constructed by an optimal O (n log n) time for n disks

using the plane sweep method [90,91] or the divide-and-conquer method [92,93] . However, we prefer to use the topology-

oriented incremental algorithm [94] (or the edge-flipping algorithm [95,96]) with the winged-edge data structure (taking

O (n) memory) [86,87,97] for its robust construction. Both algorithms take O (n 2) time in the worst case but O (n) time on

average but with guaranteed robustness. VD for approximately 15,0 0 0 disks can be robustly constructed in a second on an

ordinary desktop computer. Hence, we can construct the Voronoi diagram of 100 disks approximately 150 times/sec. Our

experience well confirms this estimation.

Fig. 1 (a) shows an example of the ordinary Voronoi diagram of points and the (red dotted) largest empty circle found

in O (n) time for n input points by scanning the V-vertices. Fig. 1 (b) is an example of the Voronoi diagram of disks and the

biggest empty circle, also found in O (n) time for n input disks.

The Voronoi diagram of disks within a circular container . Let VD be the Voronoi diagram of a set D of non-intersecting

circular disks contained within a circular container d 0 [98] . We define VD only within ∂d 0 , i.e. , the interior of the container.

VD shares many similarities with the Voronoi diagram VD of D but it also has some dissimilarities.

VD is a tessellation of the interior of the container where every location of each V-cell is closer to its generating disk. The

container d 0 itself is regarded as a disk generator but its interior is considered to be the outside of d 0 . In other words, the

interior of ∂d 0 is regarded as the entire Euclidean space of the outside of d 0 . Hence, a V-cell can also be well-defined for the

container as the set of locations closer to ∂d 0 than to any input disks. The V-edge defined between ∂d 0 and an input disk is

elliptic (which is also a quadratic curve). The V-edges between input disks are hyperbolic. So, the rational quadratic Bézier

curve representation of V-edges holds good for all V-edges of VD [89] . Both VD and VD can be constructed with a similar

efficiency. Even if an optimal algorithm is known, we prefer to use a slight variation of the topology-oriented incremental

algorithm (with an average O (n) time and the worst case O (n 2) time) [94] with the winged-edge data structure because of

the guaranteed robustness with a sufficiently good efficiency - actually significantly faster than the optimal algorithm for

large problem instances. The variation is simply to consider the elliptic V-edge between a disk and the container. We skip

the details of the combinatorial properties of VD because they are identical or similar to VD.

Fig. 2 shows examples of VD . Fig. 2 (a) shows VD of six points within a container: The V-edges between the point

generators are linear whereas the V-edges between a point generator and the container is elliptic. Fig. 2 (b) shows VD of

three points and three disks of different sizes within a container: The V-edges between the disks are hyperbolic whereas

the V-edges between the disks and the container are elliptic. Fig. 2 (c) shows VD of six disks with tangential contacts in a

container with three voids: The infinite void defined by the container and the input disks, a second one defined by five

disks, and a third, tiny one defined by three disks. The second and third ones are interstitial voids which are defined by

mutually tangent disks.

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 7

Fig. 2. Examples of the Voronoi diagram VD in a circular container. (a) Voronoi diagram of six points within a container. V-edges between point generators

are linear whereas the V-edges between a point generator and the container is elliptic. (b) Voronoi diagram of three points and three disks within a

container. V-edges between disks are hyperbolic where as the V-edges between the disks and container are elliptic. (c) Voronoi diagram of six disks in a

container with three voids: One infinite void and two interstitial ones.

Y

Lemma 1. Let VD = VD (V, E, C) be the Voronoi diagram of n disks within a container where V, E, and C are the sets of V-vertices,

V-edges, and V-cells, respectively. Then, | V | = | E| = O (n) and | C| = n .

Decrement/increment operations . Removing a disk d ∈ D from one location and inserting it to another location, both within

the container, is essential to the accelerated S&S algorithm. If we reconstruct the entire Voronoi diagram for each removal

of or insertion of d , it takes an optimal O (n log n) time for each reconstruction. As the removal and insertion of disks occur

very frequently in the accelerated S&S algorithm, it is desirable to do it efficiently. We thus developed and implemented an

average O (1)-time decrement and a worst case O (log n)-time increment algorithms. In a conceptual description, removing

a disk from Voronoi diagram is the reverse of inserting a disk to a particular location in a given Voronoi diagram (which

is well-described in [94]), but with a slightly more complicated tasks. Both can be done in O (1) on average. However, in

the increment, identifying the proper location in the Voronoi diagram and the bookkeeping after the insertion requires

O (log n) time with a priority queue. In this paper, we will only provide an overview of the disk incremental algorithm of

the topology-oriented algorithm (We avoid to describe the details because it belongs more to computational geometry). See

[94] for details (The idea was introduced by Sugihara and Iri [88]).

Let VD i −1 be the Voronoi diagram of i − 1 disks. We want to compute VD i including a new disk d i . We try to reuse

the information in VD i −1 as much as possible to save computation. The network of V-edges of VD i −1 (in fact, any Voronoi

diagrams in the plane) forms a planar graph (which can be embedded in the plane without any crossing edge). The basic

idea of the topology-oriented construction is to maintain the planarity of the V-edge graph of VD i after incrementing d i .

Therefore, the topology-oriented incremental construction is to consistently maintain the planarity of VD i by (i) identifying a

tree subset of V-edge graph of VD i −1 contained in the V-cell of the incrementing disk d i , (ii) trimming the tree from VD i −1 ,

(iii) creating new V-vertex(es), V-edge(s), and a new V-face corresponding to d i , and (iv) properly establishing topology

connections among the Voronoi entities remaining in VD i .

While an insertion (and a delete, too) can be done in O (i) time in the worst case for i disks in the container, its average

time complexity is O (1). This average O (1) time holds particularly well during the disk packing process because most disks

are in contact with a constant number of other disks on average.

4. Computational building blocks of Voronoi diagram for disk packing problems

Given the Voronoi diagram VD of disks within a container, we define the concepts of clearance and void as computational

building blocks for disk packing problems.

4.1. Clearances

Let dist (x, y) be the Euclidean distance between two points x , y ∈ R

2 . Let Dist(x, Y) = inf y ∈ Y dist(x, y) where x ∈ R

2 and

 ⊂ R

2 . Given a V-vertex v ∈ R

2 and a disk d ⊂ R

2 , Dist (v, d) is the shortest Euclidean distance between v and d and is

hereafter referred to as distance .

A V-vertex has an identical distance to its three generating disks by definition. Hence, a circular probe of this size can

be placed at the V-vertex while it simultaneously contacts the generating disks.

Definition 1 (V-vertex Clearance) . The distance between a V-vertex v and its generating disks is the clearance ξ of v .

8 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

Fig. 3. Minimum and maximum clearances of a hyperbolic V-edge e defined by d 1 and d 2 . (a) Both occur at the V-vertices of e . (b) While the maximum

clearance occurs at a V-vertex, the minimum clearance occurs at an interior location of e . (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Fig. 4. Minimum and maximum clearances of an elliptic V-edge e defined by d 0 and d 1 (d 0 : the container). (a) Both occurs at V-vertices. (b) The maximum

occurs at a V-vertex but the minimum at an internal location of e . (c) The minimum at a V-vertex but the maximum at an internal location of e . (d) Both

at internal locations of e .

A V-vertex has a clearance ξ ∈ [0, r 0) where r 0 is the radius of the container d 0 (c 0 , r 0). In Fig. 3 (a), the two red dotted

circles centered at V-vertices define the clearances of the V-vertices.

A V-edge e is a locus of the center of the circular probe that simultaneously contacts the boundaries of two generators.

In VD for the accelerated S&S algorithm, two generators may contact but otherwise do not intersect each other.

Definition 2 (V-edge Clearance) . The radius of the minimum (or maximum) circular probe centered on a V-edge e which

simultaneously contacts a pair of generators is the minimum clearance ξmin (or maximum clearance ξmax) of e . The V-edge

e has a clearance interval [ξmin , ξmax).

Lemma 2. A hyperbolic V-edge has a clearance interval [ξmin , ξmax) where 0 ≤ ξmin ≤ ξmax < r 0 for the container radius r 0 .

In Fig. 3 (a), the V-edge between d 1 and d 2 is hyperbolic and both ξmin and ξmax occur at V-vertices. On the other hand,

in Fig. 3 (b), the hyperbolic V-edge between d 1 and d 2 has ξmax at one of its V-vertices but ξmin at an interior location on

the V-edge (i.e. , not at the other V-vertex). The following lemma obviously holds.

Lemma 3. The maximum clearance of a hyperbolic V-edge occurs at one of its V-vertices. The minimum clearance may occur

either at a V-vertex or at an interior location of the V-edge.

Consider the elliptic V-edge defined between d 1 and the container d 0 in Fig. 4 . In Fig. 4 (a), both ξmin and ξmax occur at

the V-vertices. In Fig. 4 (b), ξmax occurs at a V-vertex but ξ occurs at an interior location of the V-edge. In Fig. 4 (c), ξ
min min

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 9

V

occurs at a V-vertex but ξmax occurs at an interior location of the V-edge. In Fig. 4 (d), both ξmin and ξmax occur at interior

locations. The following lemma holds.

Lemma 4. The minimum and maximum clearances of an elliptic V-edge may occur at any locations of the V-edge.

The location where the minimal (or maximal) clearance occurs is called the minimal (or maximal) clearance location .

Lemma 5. An elliptic V-edge has a clearance interval [ξmin , ξmax) where 0 ≤ ξmin ≤ ξmax < r 0 for the container radius r 0 .

Assuming VD = VD (V, E, C) stored in the winged-edge (or half-edge) data structure [86,87] , the clearance of a given V-

vertex or the clearance interval of a given V-edge can be computed in O (1) time because the corresponding generators can

be retrieved in O (1) time. The clearance information does not need to consider V-edge geometry. The following lemma holds

because | V | = | E| = O (n) .

Lemma 6. Given VD for a set D of n disks, the clearances of all V-vertices and the clearance intervals of all V-edges can be

computed in O (n) time.

4.2. Voids

We want to find the interstitial region of free space among disks. Consider d i ∈ D as a set of locations: i.e. , d i =
{ (x, y) | (x − x i)

2 + (y − y i)
2 ≤ r 2

i
} and D = ∪ i d i . Let V = {V 0 , V 1 , . . . } be a set of connected component where V i ⊂ d 0 and

d 0 \ D =

⋃

i V i . Note that we intentionally abuse notation for the sake of presentation convenience.

Each connected component V i ∈ V is called a void . A void which contacts the container boundary is particularly called

an infinite void . Otherwise a void is interstitial . The information about all voids, both interstitial and infinity, is readily

available in VD . A void defined by three disks (when one of which can be the container) is associated with one and only

one V-vertex and is called a triangular void . Fig. 2 (c) shows an infinite void and two interstitial voids where the tiny one

is triangular. Observe that the triangular void has one V-vertex whereas the bigger interstitial void has three V-vertices.

Recall that VD = VD (V, E, C) where V, E , and C are the sets of V-vertices, V-edges, and V-cells in VD for n disks, respec-

tively.

Lemma 7. There are | V | = O (n) voids in the container.

Consider a graph G = G (V, E) . Suppose that we subdivide each V-edge e into two V-edges, say e ′ and e ′′ , at the point

p ∈ e if the generators of e contact to each other at p . In such a case e also contacts both generators at p . To subdivide, we

create and insert a new V-vertex of degree two at p in the winged-ede data structure. Hence, we have an expanded data

structure ̂ VD = ̂

 VD (̂ V , ̂ E , C) where ̂ V and ̂

 E are the expanded sets of V-vertices and V-edges by the subdivision, respectively.

 ⊆ ̂ V and E ⊆ ̂ E . ̂ G = ̂

 G (̂ V , ̂ E) is called an expanded graph by the subdivision.

Lemma 8. | ̂ V | = | ̂ E | = O (n) .

Consider a void V i . Let G

V i = G

V i (V V i , E V i) ⊂ ̂ G where V V i = ̂

 V ∩ V i and E V i = ̂

 E ∩ V i . In other words, G

V i is the subgraph of

the expanded graph which is contained within the void V i . Then, G

V i is a connected graph which can be used to get the

clearance information of V i .

Definition 3 (Void Clearance) . The maximum of the clearances of both all V-vertices and V-edges in a void is called the

(maximal) clearance of a void .

A void clearance defines the maximum possible circular disk/probe that can be placed in the void.

Lemma 9. An interstitial void has the maximum clearance at a V-vertex.

Proof. The V-edges of an interstitial void are hyperbolic and a hyberbolic v-edge has the maximum clearance at a V-vertex

due to Lemma 3 . �

The maximum clearance of the infinite void can occur on a V-vertex or a V-edge.

Definition 4. (Free space in voids; See Fig. 5) Let V be a void with the maximal clearance ξmax . Suppose that a disk d =
d(c, r) is given to insert into V where 0 ≤ r ≤ ξmax . Let P

offset ⊆ V be an offset polygon of V whose boundary is determined

by the enlarged disk generators and by the shrunken container generators with the offset amount r . The vertex of P

offset

is called a 2-contact location, a point on an edge of P

offset is called a 1-contact location, and an interior point of P

offset is

called a 0-contact location. If P

offset degenerates to a point, the point is called a 3-contact location.

If we place the disk d at a k -contact location, d contacts with k generators, k = 0 , 1 , 2 , and 3. Fig. 5 shows the relationship

between the new (white) disk d to insert and the existing (shaded) disks via the Voronoi diagram. ̂ d 0 corresponds to a

0-contact location; ̂ d 1 corresponds to an 1-contact location and its center is on neither V-edge nor V-vertex; ̂ d 2 and

̂ d ′ 2
correspond to 2-contact locations and their centers are located on the V-edges; ̂ d 3 corresponds to a 3-contact location and

its center is located at a V-vertex.

10 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

Fig. 5. Placement of a new disk at different locations. The shaded disks are existing ones and the white ones represent the locations of a new incrementing

disk. ̂ d 0 corresponds to a 0-contact location; ̂ d 1 corresponds to an 1-contact location (Center is not on a V-edge); ̂ d 2 and ̂ d ′ 2 correspond to 2-contact

locations (Centers are on a V-edge); ̂ d 3 corresponds to a 3-contact location (Center coincides with a V-vertex).

Lemma 10. If a disk d is placed at the k-contact location in a void V, k = 0 , 1 , 2 , 3 , V changes its topological state due to the

placement of d as follows:

• 0-contact location: The genus of V changes from g to g + 1 , g = 0 , 1 , 2 ,

• 1-contact location: No change.

• 2-contact location: V with m V-edges subdivides into two smaller voids where one has three V-edges and the other has m + 1

V-edges.

• 3-contact location: V subdivides into three smaller voids.

Given VD , P

offset can be computed in O (n) time [99] . Hence, the following lemma holds.

Lemma 11. Given the VD of a disk set D and a disk d to insert, all 2-contact locations can be computed in O (n) time for n

generators.

Lemma 12. (State transition of voids) Let p be a maximal clearance location of a void V with the clearance ξmax . Placing a

maximal disk d (with the radius r d = ξmax) at p ∈ V causes a state change of V as follows.

(i) If V is an infinite void with a genus g and if p has two generators where one of the two is the container, V changes its

genus from g to g − 1 .

(ii) If V is an infinite void with a genus zero and if p has two generators where one of the two is the container, V subdivides

to two voids.

(iii) Otherwise, V subdivides to three voids.

5. Big-disk-first realtime disk packing algorithm

Here we present a heuristic realtime algorithm, the big-disk-first algorithm, for quickly finding a good solution of DPP

by taking advantage of the Voronoi diagram. Suppose that D = { d 1 , d 2 , . . . , d n } is sorted in the non-increasing order of radii:

i.e., r i ≥ r j if i < j . For notational convenience, we slightly abuse D to denote both a disk set and an arrangement of the disks

in the plane (i.e. , the placement of the disks is determined). Let D

+ = { d 0 } ∪ D be a feasible solution of DPP, i.e. D and d 0
satisfy the inequalities in Eqs. (2–4) . Let D

+ ∗ = { d ∗
0
} ∪ D

∗ be a good solution found by an algorithm as an approximation of

the optimal solution D

+
Opt

= { d Opt
0

} ∪ D

Opt of DPP.

The big-disk-first realtime disk packing algorithm is very simple as follows. We first place the center of d 1 at the origin

of the coordinate system and place the center of d 2 on the positive X-axis so that d 2 has a tangential contact with d 1 . We

assume a sufficiently large container d 0 centered at the origin. Then, we construct the Voronoi diagram of d 1 , d 2 , and d 0 . For

the remaining disks d i ∈ D , i = 3 , 4 , . . . , n, we repeat the following: i) Compute the 2-contact locations (i.e. , corner points) of

d i at all possible V-edges; ii) Choose the one, say λ, nearest to the coordinate origin among all of the 2-contact locations;

iii) Insert d i at λ and update the Voronoi diagram. Step i) and ii) take O (i) time for i th disk. This is because the Voronoi

diagram with i disks is a planar graph with O (i) V-vertices and V-edges and the computation of all 2-contact locations

requires O (i) time by scanning the V-edges once. Step iii) takes O (1) time by employing the topology-oriented incremental

algorithm. Hence, the big-disk-first method takes O (n 2) time for n disks. After all input disks are incremented, we determine

the smallest possible container by finding the minimum enclosing circle of the disks using the O (n) time algorithm in [52] .

Algoirthm 1 shows the pseudocode of the O (n 2) time big-disk-first packing method. This proves the following lemma.

Lemma 13. Big-disk-first packing can be done in O (n 2) time for n disks.

Fig. 6 (a) shows an example of the big-disk-first packing of 100 disks. Observe the three tiny disks in the interstitial voids

around the biggest disk in the center. There can be other heuristic methods: Random-sequence (Fig. 6 (b)), small-disk-first

methods (Fig. 6 (c)), etc. are simple variations of the big-disk-first method with modified ordering of disks. All methods

use the same algorithm, but with different ordering of disks. Other variations can also be easily devised using the Voronoi

diagram.

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 11

Algorithm 1: The O (n 2) big-disk-first disk packing algorithm.

Input : Input disks in a sorted set D

Output : Optimal disk packing D

+ ∗ (D

∗, d ∗
0
)

Step 1. [Initialization] Assume a sufficiently large container d 0 ; Place d 1 and d 2 in the center of d 0 ;

Step 2. [Main Loop: Increment disk] For each d i ∈ D , i = 3 , 4 , . . . , n , do the following;

Step 2.1. Compute all 2-contact locations on Voronoi edges.;

Step 2.2. Find the 2-contact location λ which is nearest to the origin of the coordinate system;

Step 2.3. Place the disk d i at λ and update the Voronoi diagram;

Step 3. [Packing completed] Compute the minimum enclosing circle as d ∗
0

and report the packing D

+ ∗ .Terminate.;

(a) (b) (c)
Fig. 6. The packings of a set of 100 disks. r i = i −

1
2 . (a) Big-disk-first packing (Container radius: 2.506). (b) Random-sequence packing (Container radius:

3.149). (c) Small-disk-first packing (Container radius: 3.217).

We improve the quadratic time complexity by using two priority queues as follows. When a disk d is to be placed in the

container, d can be placed either in an interstitial void or in the infinite void (which we also call a free space). Once the

placement of d is made, the information of the clearances of influenced V-vertices, V-edges, and voids must be updated. We

observe that the placement of d causes changes which are local in a particular void and such changes can be best maintained

by two priority queues: Q

V
interstice

for the interstitial voids and Q

V E
in f inite

for the V-edges in the infinite void. Q

V
interstice

maintains

the interstitial voids in the non-increasing order of clearance: i.e. , the void of the root node has the biggest clearance. Q

V E
in f inite

maintains the V-edges in the infinite void in the non-decreasing order of the distance from the container center: i.e. , the

V-edge of the root node is closest from the center.

The idea of the big-disk-first packing is to place d as near the coordinate center as possible. The algorithm first checks

Q

V
interstice

if d can be placed in an interstitial void v root corresponding to the root node. If it can be placed, the algorithm

finds a 2-contact location λ in v root . The rationale is that the bigger an interstitial void is in the big-disk-first method, the

closer it is located ot the coordinate center. The increment of d at λ divides v root into two smaller voids. Then, we insert or

relocate each of the subdivided voids in Q

V
interstice

with a modified key value of the void clearance. The insertion or relocation

can be done in O (log n) time because there can be at most O (n) nodes in Q

V
interstice

. The search for all voids in Q

V
interstice

with

a particular range of key values can be done in O (log n + k) time for k found results. Hence, variations of the big-disk-first

method can be devised depending on which one of the searched void is used for the placement of d . In this paper, we insert

d in the void with the biggest clearance, thus the biggest void, which can be found in O (1) time from the root of Q

V
interstice

.

There can be different strategies to place d which eventually lead to different packing methods.

Suppose that d cannot be placed in the void corresponding to the root node of Q

V
interstice

. Then, d needs to be placed in the

infinite void. In this case, the algorithm places d at a 2-contact location in the infinite void which is closest to the container

center. This can be done by checking if the center of d can be placed at a location λ on the V-edge e which corresponds

to the root node of Q

V E
in f inite

. If e has such a λ, d is placed there. Otherwise, we traverse Q

V E
in f inite

downward to find a V-edge

which provides a 2-contact location. As there are at most O (n) V-edges, the search takes O (log n) time. Algoirthm 2 shows

the pseudocode of the O (n log n) time big-disk-first packing method. This proves the following theorem.

Theorem 14. The big-disk-first packing algorithm takes O (n log n) time using a priority queue of an O (n) memory where n is the
number of disks.

12 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

Algorithm 2: The O (n log n) big-disk-first disk packing algorithm.

Input : A set D of ordered disks

Output : A good disk packing solution D

+ ∗ (D

∗, d ∗
0
)

Step 1. [Initialization] Assume a sufficiently large container d 0 .Place d 1 and d 2 in contact around the center of d 0 .Add

d 1 and d 2 in D

∗.Construct the Voronoi diagram VD of d 1 and d 2 in d 0 .Create the priority queue Q interstice and Q in f inite .;

Step 2. [Main Loop: Increment disk] For each d i ∈ D , i = 3 , 4 , . . . , n , do the following.;

Step 2.1. If d i can be placed in the interstitial void v corresponding to the root node of Q interstice , do the following.;

Step 2.1.1. Compute the 2-contact location λ on the corresponding V-edge in v .;
Step 2.1.2. Insert d i at λ and update VD , Q in f inite , and Q interstice .;

Step 2.2. Otherwise, d i has to be placed in the infinite void at a V-edge e corresponding to the root node of

Q in f inite .Do the following.;

Step 2.2.1. Compute the 2-contact location λ on e .;

Step 2.2.2. Insert d i at λ and update VD , Q in f inite , and Q interstice .;

Step 2.3. Add d i in in D

∗.;

Step 3. [Packing completed] Compute the minimum enclosing circle as d ∗0 and report the packing solution

D

+ ∗ .Terminate.;

Fig. 7. Two consecutive strokes of the Shrink-and-Shake algorithm with 10 disks. (a) An initial packing D +
1 st

with the initial container (the blue circle). The

black filled disk is protruding the red shrunken container and will play the role of pivot disk. (b) An improved packing D +
2 nd

. The repositioned disks within

the shrunken container after the first stroke of shrinking and shaking is completed. The pivot disk is also pushed in the shrunken container. (c) The second

shrink operation and the protruding disks. The black circle is the shrunken container and the black filled disk is chosen as the second pivot disk. (d) A

further packing improvement D +
3 rd

after the second stroke is completed. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

6. Enhancement of realtime packing using Shrink-and-Shake

The packing solution D

+ ∗ (D

∗, d ∗0) produced by the big-disk-first realtime algorithm can be enhanced by using the Shrink-

and-Shake (S&S) algorithm [2] . Fig. 7 shows an example of two consecutive strokes where each consists of a shrink followed

by a shake. Suppose that Fig. 7 (a) shows an initial packing D

+
1 st

= { d 0 } ∪ D where D = { d 1 , d 2 , . . . , d 10 } and d 0 shown as the

biggest blue circle containing the disks in D . Given D

+
1 st

, the SHRINK operation shrinks the container (shown as the red

circle) and recognizes the disks protruding the shrunken container boundary (shown as the black filled disk in Fig. 7 (a)).

Given a shrunken container, the SHAKE operation follows: For each disk d π protruding the shrunken container, S&S tries to

push d π into the shrunken container after repositioning all disks in the shrunken container. Depending on condition, the

push of one protruding disk may resolve the protrusion problem or multiple pushes of more than one protruding disks may

be necessary. If the SHAKE operation fails due to a failure to push a protruding disk, S&S ENLARGE s the container size

followed by another attempt to shake the disks with the enlarged container. Hence, the S&S algorithm consists of the three

operations: Shrink, shake, and enlarge.

The actions related with the push of a protruding disk by repositioning the disks is called a pivoting . All actions re-

lated with disks between two consecutive states of container size is called a shake where the container size state is either

“shrink” or “enlarge.” A pair of shrink and shake or sometimes a pair of enlarge and shake is called a stroke . A shake con-

sists of one or more pivots. Fig. 7 (b) shows an improved packing D

+
2 nd

the disk arrangement after one stroke of shrinking

and shaking is completed. Fig. 7 (c) shows another shrunken container and Fig. 7 (d) shows the next packing improvement

D

+
3 rd

after the second stroke is completed.

Lemma 15 (Quoted from [2]) . For each shrinkage, the 2004 S&S Algorithm takes O (Mn 4) time in the worst case for n disks where

M � n represents the number of protruding disks.

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 13

Table 1

ENTIRESET: Benchmark data set downloaded from Packomania. We used 60 (from 65) files of Group-III whose best-known results are available

from Packomania. Col. A: Group identifier; Col. B: Radius definition rule; Col. C: #Data files; Col. D: Min/max #disks; Col. E: Min/max radii of

disks;

Data group (A) Radius rule (B) #files (C) #disks [min, max] (D) Radius [min, max] (E)

Group-I (CCIN) r i = i 196 [5,200] [1, 200]

Group-II (CCIR) r i = i
1
2 96 [5,100] [1,

√

100] = [1,10]

Group-III (CCIB) r i = i −
1
5 60(65) [5,69] [69 −

1
5 , 1] � [0.429,1]

Group-IV (CCIS) r i = i −
1
2 96 [5,100] [1 √

100
, 1] = [0.1,1]

Group-V (CCIC) r i = i −
2
3 56 [5,60] [60 −

2
3 , 1] � [0.065,1]

Lemma 15 holds because it is sufficient to check, for each of the M ≤ n protruding disks, if a disk d ∈ D in the sorted list

can move to a new location so that it is intersection-free from all triplets of d i , d j , d k in D .

In [2] , Sugihara et al. proposed an idea to accelerate S&S using the Voronoi diagram VD of D ∪ { d 0 }. As VD has complete

information about the vacancy among the disks within the container, the size of the combinatorial search space significantly

reduces from that of the 2004 S&S algorithm. In this paper, we used the same idea employed for the realtime packing

algorithm, each iteration of the S&S enhancement taking an O (Mn 2) time.

7. Experiments and discussion

We have implemented the O (n 2) time version of the proposed realtime packing algorithm VOROPACK-D together with

the accelerated S&S algorithm in C++ and tested using the Packomania data sets and other data sets of large instances up

to 10,0 0 0 disks. Computing platform is as follows. CPU: Intel(R) Xeon(R) W-2133 3.60 GHz (Single core used); RAM: 32GB;

OS: Ubuntu 16.04.4.

Section 7.1 explains the data set used for the experiment; Section 7.2 reports the realtime packing result using the

data sets in the Packomania data; Section 7.3 reports the enhancement of the realtime packing using the S&S algorithm;

Section 7.4 reports the benchmark of the VOROPACK-D result with two well-known algorithms; Section 7.5 reports the ex-

periment result using large problem instances of up to 10,0 0 0 disks.

7.1. Data set

We used ENTIRESET = { Group-I , Group-II , . . . , Group-V } downloaded from Packomania (http://www.packomania.com ;

Downloaded on March 30, 2017). The data set consists of five groups of disk sets according to the way disk radii are defined.

Each disk set consists of ordered disks and is stored in a file. The precision of input real number is up to 30 digits below

the decimal point. See Table 1 .

Group-I (CCIN) consists of 196 data files: Group-I = { G

I
1
, G

I
2
, . . . , G

I
196

} . G

I
i

has i + 4 disks. For example, G

I
1

and G

I
196

have

5 and 200 disks, respectively. The disk radii rule is r i = i implying that disks have integer radii corresponding to their order

in each file. For example, G

I
5

= { d 1 , d 2 , d 3 , d 4 , d 5 } has the corresponding radii set {1, 2, 3, 4, 5}. Group-I represents the disk

sets with a large variation in the disk size.

Group-IV (CCIS) consists of 96 data files: Group-IV = { G

IV
1

, G

IV
2

, . . . , G

IV
96

} . G

IV
i

has i + 4 disks and the disk radii rule is r i =
i −

1
2 . For example, G

IV
1

= { d 1 , d 2 , d 3 , d 4 , d 5 } has the corresponding radii set { 1 − 1
2 , 2 −

1
2 , 3 −

1
2 , 4 −

1
2 , 5 −

1
2 } . Group-IV represents

the disk sets with a small variation in the disk size. Group-III, Group-IV, and Group-V are similarly defined according to the

radii generation rules.

Let BIGSET = { G

I
196

, G

II
96

, G

I I I
60

, G

IV
96

, G

V
56

} ⊂ ENTIRESET be a set consisting of five files where each is the biggest data set in

the group it belongs to: Table 2 shows the statistics of the five files in BIGSET.

Let EXTREMESET-I = { X x ∗100 | x = 1 , 2 , . . . , 10 } and EXTREMESET-II = { X x ∗10 0 0 | x = 1 , 2 , . . . , 10 } for the test of large in-

stances in that X k has k disks where the radius of i th disk in the set is defined by r i = i −
1
2 .

7.2. Realtime packing solutions of the Packmania data set

We tested the quality of the realtime packing results generated by the three methods, namely the big-disk-first, random-

sequence, and small-disk-first methods. Fig. 8 shows the disk packing solutions of all 196 data files of Group-I using the

three packing methods. The horizontal axis denotes the number of disks in data files. Fig. 8 (a) shows the packing quality

measured in terms of the percent deviation (defined by Eq. 10) from the best-known packings. The blue curve corresponds

to the big-disk-first: The average and standard deviation of the 196 percent deviations are 4.88% and 1.41%, respectively.

The green and red correspond to the random-sequence and small-disk-first methods, respectively. We observe the follow-

ings: (i) The big-disk-first method produces significantly better packings (i.e. lower percent deviation) than the other two

methods do; (ii) The solution quality of the big-disk-first method fluctuates less than the other two methods do; (ii) The

larger the problem size is, the better the solution quality tends to be. Fig. 8 (b) shows computation time. Two observa-

tions: (i) No significant difference is found among the three methods; (ii) Computation time seems linear to the problem

http://www.packomania.com

14 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

Table 2

Statistics of BIGSET = { G I 196 , G
II
96 , G

I I I
60 , G

IV
96 , G

V
56 } . (B): The average and standard deviation of the radii of the disks in the set, resp. (C): The container radius

of the best-known packing. (D1): The container radius, percent deviation, and computation time by big-disk-first initial packing, resp. (D2): The container

radius, percent deviation, and computation time by S&S enhancement of big-disk-first initial packing, resp. (E1): The container radius, percent deviation,

and computation time by random-sequence initial packing, resp. (E2): The container radius, percent deviation, and computation time by S&S enhancement

of random-sequence initial packing, resp. (F1): The container radius, percent deviation, and computation time by small-disk-first initial packing, resp. (F2):

The container radius, percent deviation, and computation time by S&S enhancement of small-disk-first initial packing, resp.

id (A) (#disks) radius (B) ˆ μ ˆ σ best (C) known big-disk-first (D) random-sequence (E) small-disk-first (F)

init(D1) S&S(D2) init(E1) S&S(E2) init(F1) S&S(F2)

radius % �

time(s)

radius % �

time(s)

radius % �

time(s)

radius % �

time(s)

radius % �

time(sec)

radius % �

time(s)

G I 196 (200) 100.500

57.879

1726.220 1805.150

4.572

0.058

1802.150

4.399

5.522

1951.680

13.061

0.048

1808.180

4.748

60.292

1972.190

14.249

0.060

1808.690

4.777

57.473

G II 96 (100) 6.715

2.338

75.547 79.357

5.044

0.034

79.107

4.713

2.410

86.533

14.542

0.032

78.783

4.284

6.638

85.489

13.160

0.027

78.481

3.884

10.405

G I I I 60 (64) 0.528

0.111

4.755 5.114

7.553

0.025

4.997

5.087

3.473

5.336

12.226

0.025

4.985

4.852

3.159

5.681

19.470

0.025

4.971

4.557

4.420

G IV 96 (100) 0.186

0.132

2.426 2.506

3.284

0.035

2.480

2.223

9.871

3.149

29.803

0.030

2.490

2.641

2.498

3.217

32.599

0.035

2.479

2.194

6.419

G V 56 (60) 0.155

0.153

1.773 1.975

11.383

0.020

1.795

1.263

8.213

2.170

22.409

0.018

1.804

1.778

5.230

2.254

27.136

0.026

1.797

1.364

9.819

Fig. 8. Comparison of the results of the three realtime packing methods: Big-disk-first, random-sequence, and small-disk-first. Data set: Group-I. ˆ μ: average

of percent deviation. ˆ σ : standard deviation of percent deviation. (a) Solution quality: Big-disk-first (̂ μ/ ̂ σ : 4.88/1.41); Random-sequence (̂ μ/ ̂ σ : 14.54/3.19);

Small-disk-first (̂ μ/ ̂ σ : 17.31/3.55). (b) Computation time.

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 15

Fig. 9. Comparison of the results of the three realtime packing methods: Big-disk-first, random-sequence, and small-disk-first. Data set: Group-IV. ˆ μ:

average of percent deviation. ˆ σ : standard deviation of percent deviation. (a) Solution quality: Big-disk-first (̂ μ/ ̂ σ : 5.97/2.88); Random-sequence (̂ μ/ ̂ σ :

21.59/6.20); Small-disk-first (̂ μ/ ̂ σ : 32.04/6.82). (b) Computation time.

size. The biggest computation time for data up to the size 200 is about 70 msec. Fig. 9 shows a similar analysis using

Group-IV.

We also tested the realtime packing algorithms using the other disk sets in ENTIRESET. Fig. 10 shows the big-disk-first

realtime packing results of Group-II, III, and V. Similar patterns are observed. Table 2 summarizes the experimental result of

the Packomania data using the three packing algorithms.

7.3. Enhancement of the realtime packing results using the S&S algorithm

The packing results from the realtime big-disk-first algorithm might be sufficiently good for some applications. In some

cases, however, an enhancement might be necessary or desirable. In such cases, we can apply the S&S enhancement to

realtime packings. We used εterm

= r min ∗ 10 −3 for the termination tolerance of shrinkage (See Appendix A). We used the S&S

enhancement of realtime packing solutions of ENTIRESET and compared the solution quality with the best-known results

posted in Packomania.

Fig. 11 shows the enhanced packing results of Group-I data using the S&S algorithm with the initial packings produced

by the three realtime packing methods. The horizontal axis denotes the data size; The left and the right vertical axes denote

percent deviation and computation time, respectively. Fig. 11 (a) shows the big-disk-first case: The solid and broken red

curves denote the S&S enhancement result and the initial packing from the big-disk-first method, respectively. The packing

qualities of both the initial packing and the enhanced packing are measured by the percent deviation from the best-known

packings. The blue solid curve denotes the computation time taken by the S&S enhancement. Fig. 11 (b) and (c) show the

random sequence and small-disk-first cases, respectively. Fig. 12 shows a similar analysis using Group-IV data set. We also

performed the same experiment using the other diks sets in ENTIRESET. Fig. 13 shows the S&S enhancement of the big-disk-

first realtime packing for Groups II, III, and V.

16 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

Fig. 10. The results of the big-disk-first realtime packing method for the other three data sets in Packomania. Red: Solution quality (Percentage deviation;

Left vertical axis). Blue: Computation time (Right vertical axis). ˆ μ: average of percent deviation. ˆ σ : standard deviation of percent deviation. (a) Group-II

(̂ μ/ ̂ σ : 6.25/1.86). (b) Group-III (̂ μ/ ̂ σ : 9.55/2.27). (c) Group-V (̂ μ/ ̂ σ : 12.88/2.02). (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

7.4. Benchmark test

We compared the performance of the realtime packing followed by the S&S enhancement with two well-known algo-

rithms. Al-Mudahka, Hifi, and M’Hallah developed an algorithm in 2011, abbreviated here as AMHiMH11, which consists of

a taboo search (to explore the combinatorial nature of DPP) and nested partitioning and nonlinear optimization (to explore

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 17

Fig. 11. Comparison of the results of the S&S algorithm using the initial packings from the three realtime packing methods (Group-I): Big-disk-first,

random-sequence, and small-disk-first. Data set: Group-I. Red curve: Percent deviation (solid: S&S enhanced; Broken: Initial packing). Blue curve: Compu-

tation time. ˆ μ: average of percent deviation. ˆ σ : standard deviation of percent deviation. (a) Big-disk-first method (̂ μ/ ̂ σ : 3.65/0.78). (b) Random-sequence

method (̂ μ/ ̂ σ : 3.95/0.74). (c) Small-disk-first method (̂ μ/ ̂ σ : 3.96/0.82). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

18 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

Fig. 12. Comparison of the results of the S&S algorithm using the initial packings from the three realtime packing methods: Big-disk-first, random-sequence,

and small-disk-first. Data set: Group-IV. Red curve: Percent deviation (solid: S&S enhanced; Broken: Initial packing). Blue curve: Computation time. ˆ μ:

average of percent deviation. ˆ σ : standard deviation of percent deviation. (a) Big-disk-first method (̂ μ/ ̂ σ : 3.22/1.00). (b) Random-sequence method (̂ μ/ ̂ σ :

3.24/1.22). (c) Small-disk-first method (̂ μ/ ̂ σ : 3.26/0.91). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 19

Fig. 13. S&S enhancements of the big-disk-first realtime packing for the data sets in Group-II, Group-III, Group-V. Red curve: Percent deviation (solid: S&S

enhanced; Broken: Initial packing). Blue curve: Computation time. ˆ μ: average of percent deviation. ˆ σ : standard deviation of percent deviation. (a) Group-II.

Big-disk-first: (̂ μ/ ̂ σ : 6.25/1.86); S&S enhanced: (̂ μ/ ̂ σ : 4.27/0.96). (b) Group-III Big-disk-first: (̂ μ/ ̂ σ : 9.55/2.27); S&S enhanced: (̂ μ/ ̂ σ : 5.21/1.72). (c) Group-V

Big-disk-first: (̂ μ/ ̂ σ : 12.88/2.02); S&S enhanced: (̂ μ/ ̂ σ : 2.56/1.77). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

20 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

Fig. 14. Comparison of the S&S-enhanced realtime packing with LopBea13 [58] and AMHiMH11 [100] . Data set: BENCHMARKSET-A = { G I 1 , G I 2 , . . . , G I 28 } . | G I 28 | = 32. Radius generation rule: r i = i . Computing environments used are slightly different. εterm = r min ∗ 10 −3). Blue circle: S&S-enhanced realtime pack-

ing. Red square: LopBea13 [58] . Green triangle: AMHiMH11 [100] . Both reported computation results up to G I 28 . Percentage deviation: average 3.93% and

standard deviation 0.84%. (a) Packing quality (Percentage deviation from the best-known packings). (b) Computation time. (For interpretation of the refer-

ences to color in this figure legend, the reader is referred to the web version of this article.)

the continuous optimization nature of DPP) [100] . They reported computation results of BENCHMARKSET ⊂ ENTIRESET using

the following platform: Pentium IV, 2.66 GHz CPU with 512MB RAM. Program coded in FORTRAN that invokes GAMS which

in turn calls CONOPT3 NLP solver. Lopez and Beasley developed an algorithm in 2013, abbreviated here as LopBea13, which

consists of an optimization phase (based on formulation space search) and an improvement phase (using a perturbation

of a local solution by swapping two disks) [58] . They reported the packing results of BENCHMARKSET using the following

computing platform: Intel(R) Core(TM) i5-2500 3.30 GHz CPU with 4.0GB RAM; Program coded in MatLab 7.9.0 using SNOPT

nonlinear solver.

Fig. 14 (a) and (b) shows the solution quality and the computation time of the three algorithms with BENCHMARKSET-A =
{ G

I
1
, G

I
2
, . . . , G

I
28

} ⊂ Group-I consisting of 28 data files, respectively. AMHiMH11 and LopBea13 reported computation results

only up to G

IV
28 . The blue curve corresponds to the S&S enhancement of the big-disk-first method; the green AMHiMH11;

the red LopBea13. With the tested small models in BENCHMARKSET-A (G

I
28 with 32 disks is the biggest data tested by both

algorithms), LopBea13 is best from solution quality point of view and AMHiMH11 is better than S&S. However, observe in

Fig. 14 (a) that the red and green curves have clearly increasing patterns w.r.t. model size (whereas the blue curve for the

S&S enhancement is beginning to decrease as is clearly shown in the figure). All three algorithms have similar percentage

deviation at the biggest model G

I
28

. More importantly, compare the computation time (Be aware that the computing envi-

ronments are slightly different). The S&S enhancement is several orders of magnitude faster than the others! For example,

LopBea13 took 34,4 4 4.8 s for G

I
28 but the proposed method took only 4.9 s: The proposed method was more than 70 0 0

times faster than LopBea13. We note an interesting pattern of AMHiMH11: The computation time curve has sharp decreases

around 11 and 21 disks but the corresponding packing quality does not deteriorate at all.

Fig. 15 shows a similar benchmark using a subset of Group-IV data. Fig. 15 (a) and (b) shows the compar-

ison of the percentage deviation and computation time among the three algorithms using BENCHMARKSET-B =

{ G

IV
1

, G

IV
2

, . . . , G

IV
6

, G

IV
8

, G

IV
10

, G

IV
12

, G

IV
14

, G

IV
16

, G

IV
21

, G

IV
26

, G

IV
31

} ⊂ Group-IV consisting of 14 data files. AMHiMH11 and LopBea13 re-

ported computation results only up to G

IV
31 . Fig. 15 (a) shows that LopBea13 produces best packings for small models but

deteriorates quickly as model size increases. AMHiMH11 and the proposed method have very similar behavior of packing

quality for small models. All three algorithms produced a similar packing quality for G

IV
31

(with 35 disks). Fig. 15 (b) shows

that the computation time taken by S&S is tiny compared to the other two algorithms. For G

IV
31

, S&S took 2.4,s whereas

LopBea13 took 125,523 s: S&S was more than 50,0 0 0 times faster than LopBea13.

7.5. Expriments with large problem instances

In order to make a proper assessment of the big-disk-first realtime packing algorithm for large problem instances, we

performed experiments using EXTREMESET-I and EXTREMESET-II where each has ten moderate-sized and large-sized data

files, up to 10,0 0 0 disks, respectively. The radius of i th disk is defined by r i = i −
1
2 . Fig. 16 shows the experiment result of

the big-disk-first realtime packing applied to EXTREMESET-I: The red and black curves denote the packing density (the left

vertical axis) and computation time (the right vertical axis), respectively. Fig. 18 shows the result of the big-disk-first packing

of the data set EXTREMESET-I. Figs. 17 and 19 show the same experiment with EXTREMESET-II. Fig. 20 shows the close-ups

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 21

Fig. 15. Comparison of the S&S-enhanced realtime packing with LopBea13 [58] and AMHiMH11 [100] . Data set: BENCHMARKSET-B =

{ G IV 1 , G
IV
2 , . . . , G

IV
6 , G

IV
8 , G

IV
10 , G

IV
12 , G

IV
14 , G

IV
16 , G

IV
21 , G

IV
26 , G

IV
31 } . | G IV 31 | = 35. Radius generation rule: r i = i −

1
2 . Computing environments used are slightly different.

εterm = r min ∗ 10 −3). Blue circle: S&S-enhanced realtime packing. Red square: LopBea13 [58] . Green triangle: AMHiMH11 [100] . Both reported computation

results up to G I 28 . Percentage deviation: average 3.37% and standard deviation 0.85%. (a) Packing quality (Percentage deviation from the best-known

packings). (b) Computation time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 16. Big-disk-first realtime packing method applied to EXTREMESET-I = { X x ∗100 | x = 1 , 2 , . . . , 10 } . X x ∗100 has x ∗100 disks. The radius of i th disk is r i = i −
1
2 .

Red curve: Packing density (Left vertical axis). Black curve: Computation time (Right vertical axis). Horizontal axis: Problem size (# disks). (For interpreta-

tion of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Big-disk-first realtime packing method applied to EXTREMESET = { X x ∗10 0 0 | x = 1 , 2 , . . . , 10 } . X x ∗10 0 0 has x ∗1 0 0 0 disks where the radius of i th disk

is defined by r i = i −
1
2 . Red curve: Packing density (Left vertical axis). Black curve: Computation time (Right vertical axis). Horizontal axis: Problem size (#

disks). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

22 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)
Fig. 18. Big-disk-first packing results of EXTREMESET-I. All containers are normalized. ρ: density. t : computation time. (a) 100 disks (ρ: 0.8272; t : 0.03 s),

(b) 200 disks (ρ: 0.8548; t : 0.08 s), (c) 300 disks (ρ: 0.8652; t : 0.13 s), (d) 400 disks (ρ: 0.8760; t : 0.20 s), (e) 500 disks (ρ: 0.8795; t : 0.28 s), (f) 600 disks

(ρ: 0.8845; t : 0.36 s), (g) 700 disks (ρ: 0.8897; t : 0.44 s), (h) 800 disks (ρ: 0.8883; t : 0.57 s), (i) 900 disks (ρ: 0.8941; t : 0.68 s), (j) 10 0 0 disks (ρ:0.8940;

t : 0.81 s).

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 23

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)
Fig. 19. Big-disk-first packing results of EXTREMESET-II. All containers are normalized. ρ: density. t : computation time. (a) 10 0 0 disks (ρ: 0.8940; t : 0.81 s),

(b) 2,0 0 0 disks (ρ: 0.9044; t : 2.63 s), (c) 30 0 0 disks (ρ: 0.9096; t : 5.79 s), (d) 40 0 0 disks (ρ: 0.9130; t : 9.98 s), (e) 50 0 0 disks (ρ: 0.9164; t : 15.52 s), (f)

60 0 0 disks (ρ: 0.9175; t : 21.12 s), (g) 70 0 0 disks (ρ: 0.9196; t : 33.14 s), (h) 80 0 0 disks (ρ: 0.9208; t : 46.0 0 s), (i) 90 0 0 disks (ρ: 0.9218; t : 55.82 s), (j)

10,0 0 0 disks (ρ: 0.9228; t : 74.08 s).

24 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

Fig. 20. Close-ups of the big-disk-first realtime packing of the 10,0 0 0 disks. (a) The big-disk-first realtime packing of the 10,0 0 0 disks in Fig. 19 (j). The

rectangles are the locations for zoom-up. (b–c) Consecutive zoom-ups of the blue rectangle in (a). (d–e) Consecutive zoom-ups of the red rectangle in (a).

(f) Zoom-up of the green box in (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 25

(a) (b) (c)

(d) (e) (f)
Fig. 21. The three realtime packings of X 10 0 0 disk set with 1,0 0 0 disks and its enhancement using S&S. All containers are normalized. Radius rule:

r i = i −
1
2 εterm = r min ∗ 10 −3 . (a -b) Big-disk-first. (a) Initial packing: Container radius: 2.894; Packing density: 0.894; Computation time: 0.674 s. (b) S&S-

enhancement: Container radius: 2.893; Packing density: 0.895; Computation time: 78.669 s. (c–d) Random-sequence. (c) Initial packing: Container ra-

dius: 3.496; Packing density: 0.612; Computation time: 0.399 s. (d) S&S-enhancement: Container radius: 2.909; Packing density: 0.885; Computation time:

224.887 s. (e–f) Small-disk-first. (e) Initial packing: Container radius: 3.985; Packing density: 0.471; Computation time: 0.564 s. (f) S&S-enhancement:

Container radius: 2.907; Packing density: 0.886; Computation time: 274.073 s.

of the big-disk-first realtime packing of the 10,0 0 0 disks in Fig. 19 (j). Note that the interstitial areas among big disks are

packed by several smaller disks as much as possible.

We performed another experiment as follows. We selected two problem instances from EXTREMESET-II: The smallest

X 10 0 0 with 10 0 0 disks and the largest X 10,0 0 0 with 10,0 0 0 disks. Fig. 21 (a) shows the big-disk-first packing of the 10 0 0 disks

in X 10 0 0 in the container radius 2.894 computed in 0.674 s. Fig. 21 (b) shows the S&S-enhanced packing with the container

radius 2.893: The 0.001 radius enhancement is obtained by about 79 s. Fig. 21 (c) and (d) corresponds to the random initial

packing and its S&S-enhancement, respectively. Fig. 21 (e) and (f) corresponds to the small-disk-first initial packing and its

S&S-enhancement, respectively. Observe that the big-disk-first realtime packing without an S&S-enhancement significantly

outperforms the S&S-enhancements of both random and small-disk-first initial packings.

Fig. 22 shows the same experiment with the 10,0 0 0 disks in X 10,0 0 0 . Fig. 22 (a) shows the big-disk-first realtime packing

of the 10,0 0 0 disks in the container radius 3.257 computed in approximately 61 s. Fig. 22 (b) shows the result of the S&S-

enhancement: No enhancement was made even if the S&S was attempted more than 1.5 h. Fig. 22 (c) and (d) corresponds to

the same experiment using the random realtime packing followed by the S&S-enhancement (which took more than 4.5 h).

Observe the big void at Southeash of the container. This void is formed because we make a placement of disk at a 2-

contact point. Fig. 22 (e) and (f) corresponds to the same experiment using the small-disk-first realtime packing followed by

the S&S-enhancement. We again observe that the big-disk-first realtime packing without an S&S-enhancement significantly

outperforms the S&S-enhancements of both random and small-disk-first initial packings. For large problem instances, the

big-disks-first initial packing is already good enough for most applications.

26 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

(a) (b) (c)

(d) (e) (f)
Fig. 22. The three realtime packings of X 10 0 0 0 disk set with 10,0 0 0 disks and its enhancement using S&S. Radius rule: r i = i −

1
2 εterm = r min ∗ 10 −3 . (a–b)

Big-disk-first. Observe that no enhancement is made up to the fifth digit after the decimal point. (a) Initial packing: Container radius: 3.25674; Packing

density: 0.92281; Computation time: 60.903 s. (b) S&S-enhancement: Container radius: 3.25674; Packing density: 0.92281; Computation time: 5599.120 s

(≈ 1.56 h). (c–d) Random-sequence. (c) Initial packing: Container radius: 3.776; Packing density: 0.687; Computation time: 49.371 s. (d) S&S-enhancement:

Container radius: 3.276; Packing density: 0.912; Computation time: 16327.800 s (≈ 4.54 h). (e–f) Small-disk-first. (e) Initial packing: Container radius:

4.549; Packing density: 0.473; Computation time: 51.296 s. (f) S&S-enhancement: Container radius: 3.279; Packing density: 0.910; Computation time:

40122.600 s (≈ 11.15 h).

8. Conclusion

In this paper, we present a realtime algorithm VOROPACK-D for packing disks in a circular container: The algorithm finds

good packing solutions sufficient enough for many applications in realtime, specifically speaking, in less than one second for

moderate to large problem instances. For small to moderate sized problems, the realtime solution can be further enhanced

using the Shrink-and-Shake algorithm in the cost of more computation, For extremely large problem instances, the big-disk-

first method produces sufficiently good packing and the S&S enhancement may not be necessary.

In both the realtime algorithm and the S&S algorithm, we use the vacancy information available from the Voronoi dia-

gram of disks in a circular container. The most critical technical issues are two-fold (We avoid to explain their details in this

paper): The construction of the Voronoi diagram and its maintenance through the decrement of a disk from and the incre-

ment of a disk to the Voronoi diagram, both robustly and efficiently. The topology-oriented incremental algorithm turned

out to be sufficiently good for this purpose [88,94] .

VOROPACK-D is fully implemented (using the O (n 2) time algorithm) and tested with a set of benchmark data available

in Packomania web site. The program is freely available from Voronoi Diagram Research Center (http://voronoi.hanyang.ac.

kr).

Outlook: In this paper, we have not attempted to find the global optimum from the local optimum found by either the

realtime algorithm or the S&S algorithm. As the current packing results have a deviation of approximately 2–4% from the

best-known literature results, it might be necessary for some applications to escape from a local minimum. The vacancy

information in the Voronoi diagram and the computational efficiency and robustness of constructing the Voronoi diagram

http://voronoi.hanyang.ac.kr

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 27

of disks using the topology-oriented incremental algorithm [94] would be critical for this purpose. We expect that an effort

to optimize the code of VOROPACK-D will further improve its performance. We anticipate a significant amount of current

computation time can be saved from code optimization including an efficient priority queue implementation.

We have introduced the Voronoi diagram to the disk packing problem in 2004 [2] and present here its improvement

with a full implementation. We expect the idea of using Voronoi diagram can be adapted to other hard optimization prob-

lems such as cutting stock, nesting, ellipse packing, bin packing, minimal convex hulls, knapsack problems, etc. in relation

with a variety of container shapes. Extending the approach to three-dimensional objects (spheres, ellipsoids, etc.) is another

challenge. We invite suggestions and collaborations for possible applications of Voronoi diagrams.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government

(MSIP, MSIT) (Nos. 2017R1A3B1023591 , 2016K1A4A3914691).

Appendix A. Termination tolerance

Fig. 23 shows the influence of termination tolerance εterm

on the performance of S&S using BIGSET. Let r min be the radius

of the smallest disk in each file. The horizontal axis denotes the six different values of εterm

= r min ∗ 10 −k , k = 1 , 2 , . . . , 6 .

Fig. 23 (a) shows the packing quality (i.e. , the percentage deviation of the container radius) by S&S to the best-known con-

tainer radius according to

(R

∗ − R best−known) /R best−known ∗ 100 (10)

where R ∗ and R best−known are the radii of the container found by the S&S algorithm and that of the best-known packing,

respectively. Fig. 23 (b) and (c) shows the computation time and the number of pivotings, respectively. We observe the

following: The smaller εterm

is, the better the packing quality is, the smaller the computed container is, and therefore the

smaller the percent deviation is. However, the computational requirement increases as εterm

decreases whereas the packing

quality improves marginally beyond k > 3. Hence, we conclude from this experiment that εterm

= r min ∗ 10 −3 is an optimal

choice considering the trade-off between the packing quality and computation time. Note that this value of εterm

was used

by Sugihara and Kim in 2004 [2] .
Fig. 23. The influence of the terminating tolerance on the packing quality and computation time. k = 1 , 2 , . . . , 6 in the horizontal axis denotes εterm =

r min ∗ 10 −k (r min is the radius of the smallest disk in each disk set). (a) Packing quality (measured in the percentage deviation from the best-known packing).

(b) Computation time (s). (c) Total number of pivots (corresponding to protruding disks). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

https://doi.org/10.13039/501100003725

28 J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076

References

[1] R.J. Fowler , M.S. Paterson , S.L. Tanimoto , Optimal packing and covering in the plane are np-complete, Inf. Process. Lett. 12 (3) (1981) 133–137 .

[2] K. Sugihara , M. Sawai , H. Sano , D.-S. Kim , D. Kim , Disk packing for the estimation of the size of a wire bundle, Jpn. J. Ind. Appl. Math. 21 (3) (2004)

259–278 .
[3] C.R. Collins , K. Stephenson , A circle packing algorithm, Comput. Geom. 25 (3) (2003) 233–256 .

[4] B. Mohar , A polynomial time circle packing, Discr. Math. 117 (1993) 257–263 .
[5] G.L. Orick , K. Stephenson , C. Collins , A linearized circle packing algorithm, Comput. Geom. 64 (2017) 13–29 .

[6] R.L. Graham , J.C. Lagarias , C.L. Mallows , A.R. Wilks , C.H. Yan , Apollonian circle packings: number theory, J. Number Theory 100 (1) (2003) 1–45 .
[7] A. Kontorovich , H. Oh , Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. Am. Math. Soc. 24 (3) (2011) 603–648 .

[8] H. Li , T. Li , Recursive sequences in the ford sphere packing, Chaos, Solitons Fract. 106 (2018) 94–106 .

[9] P.G. Szabo , M.C. Makrot , T. Csendes , E. Specht , L.G. Casado , I. Garcia , New Approaches to Circle Packing in a Square: With program codes, Springer,
2007 .

[10] M. Hifi, R. M’Hallah , A literature review on circle and sphere packing problems: models and methodologies, Adv. Oper. Res. 2009 (2009) 1–22 .
[11] B. Segre , K. Mahler , On the densest packing of circles, Am. Math. Mon. 51 (5) (1944) 261–270 .

[12] A. Thue , Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene, Christiania : J. Dybwad, 1910 .
[13] F. Pfender , G.M. Ziegler , Kissing numbers, sphere packings, and some unexpected proofs, Notices-Am. Math. Soc. 51 (8) (2004) 873–883 .

[14] L. Fejes Tóth , Über einen geometrischen Satz, Math. Z. 46 (1) (1940) 83–85 .

[15] J. Schaer , The densest packing of 9 circles in a square, Can. Math. Bull. 8 (3) (1965) 273–277 .
[16] J. Schaer , On the densest packing of spheres in a cube, Can. Math. Bull. 9 (3) (1966) 265–270 .

[17] S. Kravitz , Packing cylinders into cylindrical containters, Math. Mag. 40 (2) (1967) 65–71 .
[18] H.S.M. Coxeter , M.G. Greening , R. Graham , J. Ratz , Sets of points with given minimum separation (solution to problem e1921), Am. Math. Mon. 75 (2)

(1968) 192–193 .
[19] M. Goldberg , Packing of 14, 16, 17 and 20 circles in a circle, Math. Mag. 44 (3) (1971) 134–139 .

[20] G.E. Reis , Dense packing of equal circles within a circle, Math. Mag. 48 (1) (1975) 33–37 .
[21] H. Melissen , Densest packings of eleven congruent circles in a circle, Geom. Dedic. 50 (1) (1994) 15–25 .

[22] K.A. Dowsland , Optimising the palletisation of cylinders in cases, OR Spektrum 13 (4) (1991) 204–212 .

[23] H.J. Fraser , J.A. George , Integrated container loading software for pulp and paper industry, Eur. J. Oper. Res. 77 (3) (1994) 466–474 .
[24] K.A. Dowsland , W.B. Dowsland , Packing problems, Eur. J. Oper. Res. 56 (1) (1992) 2–14 .

[25] H. Isermann , Heuristiken zur lösung des zweidimensionalen packproblems für rundgefäße, Oper.-Res.-Spektrum 13 (4) (1991) 213–223 .
[26] B.D. Lubachevsky , How to simulate billiards and similar systems, J. Comput. Phys. 94 (2) (1991) 255–283 .

[27] B.D. Lubachevsky , F.H. Stillinger , Geometric properties of random disk packing, J. Stat. Phys. 60 (5) (1990) 561–583 .
[28] B.D. Lubachevsky , F.H. Stillinger , E.N. Pinson , Disks vs. spheres: contrastion properties of random packings, J. Stat. Phys. 64 (3) (1991) 501–524 .

[29] R.L. Graham , B.D. Lubachevsky , Dense packings of equal disks in an equilateral triangle, Electron. J. Comb. 2 (1995) 1–39 .

[30] R.L. Graham , B.D. Lubachevsky , Dense packings of equal disks in an equilateral triangle: from 22 to 34 and beyond, Electron. J. Comb. 2 (1995) 1–39 .
[31] R.L. Graham , B.D. Lubachevsky , Repeated patterns of dense packings of equal disks in a square, Electron. J. Comb. 3 (1) (1996) 1–17 .

[32] B.D. Lubachevsky , R. Graham , Dense packings of congruent circles in rectangles with a variable aspect ratio, In: Aronov B., Basu S., Pach J., Sharir M.
(eds). Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25, Springer: Berlin, Heidelberg, 2003 .

[33] B.D. Lubachevsky , R.L. Graham , Curved hexagonal packings of equal disks in a circle, Discr. Comput. Geom. 18 (1997) 179–194 .
[34] R. Graham , B. Lubachevski , K. Nurmela , P. Ostergard , Dense packings of congruent circles in a circle, Discr. Math. 181 (1-3) (1998) 139–154 .

[35] B.D. Lubachevsky , R.L. Graham , Minimum perimeter rectangles that enclose congruent non-overlapping circles, Discr. Math. 309 (8) (2009) 1947–1962 .

[36] M. Gavrilova , J. Rokne , D. Gavrilov , Dynamic collision detection algorithms in computational geometry, in: 12th European Workshop on CG,(1996),
1996, pp. 103–106 .

[37] C.D. Maranas , C.A. Floudas , P.M. Pardalos , New results in the packing of equal circles in a square, Discr. Math. 142 (1-3) (1995) 287–293 .
[38] Z. Drezner , E. Erkut , Solving the continuous p-dispersion problem using non-linear programming, J. Oper. Res. Soc. 46 (4) (1995) 516–520 .

[39] J.A. George , J.M. George , B.W. Lamar , Packing different-sized circles into a rectangular container, Eur. J. Oper. Res. 84 (3) (1995) 693–712 .
[40] W. Huang , R. Xu , Two personification strategies for solving circles packing problem, Sci. China (Series E) 42 (6) (1999) 595–602 .

[41] H.-X. Huang , H.-A. Liang , P.M. Pardalos , Some properties for the euclidean distance matrix and positive semidefinite matrix completion problems, J.

Global Opt. 25 (1) (2003) 3–21 .
[42] W. Huang , K. Yan , A short note on a simple search heuristic for the diskspacking problem, Ann. Oper. Res. 131 (1-4) (2004) 101–108 .

[43] W. Huang , M. Chen , Note on: An improved algorithm for the packing of unequal circles within a larger containing circle, Comput. Ind. Eng. 50 (3)
(2006) 338–344 .

[44] Z. Lu , W. Huang , Perm for solving circle packing problem, Comput. Oper. Res. 35 (5) (2008) 1742–1755 .
[45] T. Ye, W. Huang, Z. Lü, Iterated tabu search algorithm for packing unequal circles in a circle, 2013. arXiv preprint arXiv: 1306.0694 .

[46] Z. Zeng , X. Yu , K. He , W. Huang , Z. Fu , Iterated tabu search and variable neighborhood descent for packing unequal circles into a circular container,

Eur. J. Oper. Res. 250 (2) (2016) 615–627 .
[47] D.-F. Zhang , A.-S. Deng , An effective hybrid algorithm for the problem of packing circles into a larger containing circle, Comput. Oper. Res. 32 (8)

(2005) 1941–1951 .
[48] N. Mladenovi ́c , F. Plastria , D. Uros ̆evi ́c , Reformulation descent applied to circle packing problems, Comput. Oper. Res. 32 (9) (2005) 2419–2434 .

[49] J. Kallrath , Cutting circles and polygons from area-minimizing rectangles, J. Global Opt. 43 (2-3) (2009) 299–328 .
[50] M. Hifi, R. M’Hallah , A dynamic adaptive local search algorithm for the circular packing problem, Eur. J. Oper. Res. 183 (3) (2007) 1280–1294 .

[51] N. Megiddo , Linear-time algorithms for linear programming in r 3 and related problems, SIAM J. Comput. 12 (4) (1983) 759–776 .

[52] E. Welzl , Smallest enclosing disks (balls and ellipsoids), in: Proceedings of the New Results and New Trends in Computer Science, in: Lecture Notes
in Computer Science, 555, 1991, pp. 359–370 .

[53] M. Hifi, R. M’Hallah , Adaptive and restarting techniques-based algorithms for circular packing problems, Comput. Opt. Appl. 39 (2008) 17–35 .
[54] H. Akeb , M. Hifi, R. M’Hallah , A beam search algorithm for the circular packing problem, Comput. Oper. Res. 36 (5) (2009) 1513–1528 .

[55] C. Wormser , Generalized Voronoi Diagrams and Applications, University of Nice-Sophia Antipolis, 2008 Ph.D. thesis .
[56] L. Lu , Y.-K. Choi , F. Sun , W. Wang , Variational Circle Packing based on Power Diagram, 2011 . Technical Report

[57] E. Specht , A precise algorithm to detect voids in polydisperse circle packings, Proc. R. Soc. 471 (2182) (2016) 1–19 .
[58] C. López , J. Beasley , Packing unequal circles using formulation space search, Comput. Oper. Res. 40 (5) (2013) 1276–1288 .

[59] G. Valette , A better packing of ten equal circles in a square, Discr. Math. 76 (1) (1989) 57–59 .

[60] K.J. Nurmela , P.R.J. Östergård , Packing up to 50 equal circles in a square, Discr. Comput. Geom. 18 (1) (1997) 111–120 .
[61] M. Goldberg , The packing of equal circles in a square, Math. Mag. 43 (1) (1970) 24–30 .

[62] M. Mollard , C. Payan , Some progress in the packing of equal circles in a square, Discr. Math. 84 (3) (1990) 303–307 .
[63] E. Specht , High density packings of equal circles in rectangles with variable aspect ratio, Comput. Oper. Res. 40 (1) (2013) 58–69 .

[64] J. Kallrath , M.M. Frey , Packing circles into perimeter-minimizing convex hulls, J. Global Opt. (2018) 1–37 . Doi: 10.1007/s10898-018-0724-0
[65] J. Machchhar , G. Elber , Dense packing of congruent circles in free-form non-convex, Comput. Aided Geom. Des. 52-53 (2017) 13–27 .

[66] J. Kallrath , S. Rebennack , Cutting ellipses from area-minimizing rectangles, J. Global Opt. 59 (2-3) (2014) 405–437 .

[67] Y. Stoyan , A. Pankratov , T. Romanova , Quasi-phi-functions and optimal packing of ellipses, J. Global Opt. 65 (2) (2016) 283–307 .

http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0001
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0001
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0001
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0001
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0002
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0002
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0002
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0002
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0002
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0002
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0003
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0003
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0003
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0007
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0007
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0007
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0008
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0008
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0008
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0009
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0009
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0009
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0009
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0009
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0009
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0009
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0010
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0010
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0010
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0012
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0012
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0013
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0013
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0013
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0014
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0014
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0015
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0015
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0016
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0016
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0017
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0017
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0018
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0018
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0018
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0018
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0018
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0019
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0019
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0020
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0020
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0021
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0021
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0022
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0022
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0023
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0023
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0023
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0024
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0024
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0024
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0025
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0025
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0026
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0026
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0027
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0027
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0027
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0028
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0028
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0028
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0028
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0029
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0029
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0029
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0030
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0030
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0030
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0031
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0031
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0031
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0032
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0032
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0032
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0033
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0033
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0033
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0034
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0034
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0034
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0034
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0034
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0035
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0035
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0035
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0036
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0036
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0036
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0036
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0037
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0037
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0037
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0037
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0038
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0038
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0038
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0039
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0039
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0039
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0039
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0040
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0040
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0040
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0041
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0041
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0041
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0041
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0042
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0042
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0042
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0043
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0043
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0043
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0044
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0044
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0044
http://arxiv.org/abs/1306.0694
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0046
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0046
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0046
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0046
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0046
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0046
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0047
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0047
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0047
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0048
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0048
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0048
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0048
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0049
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0049
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0050
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0050
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0050
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0051
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0051
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0052
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0052
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0053
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0053
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0053
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0054
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0054
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0054
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0054
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0055
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0055
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0056
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0056
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0056
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0056
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0056
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0056
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0057
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0057
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0058
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0058
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0058
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0059
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0059
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0060
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0060
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0060
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0061
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0061
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0062
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0062
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0062
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0063
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0063
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0064
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0064
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0064
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0064
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0065
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0065
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0065
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0066
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0066
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0066
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0067
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0067
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0067
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0067

J. Ryu, M. Lee and D. Kim et al. / Applied Mathematics and Computation 375 (2020) 125076 29

[68] A. Pankratov, T. Romanova, I. Litvinchev, Packing ellipses in an optimized rectangular container, Wirel. Netw. (2018) 1–18, doi: 10.1007/
s11276- 018- 1890- 1 .

[69] F.J. Kampas , J.D. Pinter , I. Castillo , Optimal Packing of General Ellipses in a Circle, Springer, 2016 .
[70] S.I. Galiev , M.S. Lisafina , Linear models for the approximate solution of the problem of packing equal circles into a given domain, Eur. J. Oper. Res.

230 (3) (2013) 505–514 .
[71] E.G. Birgin , R.D. Lobato , A nonlinear programming model with implicit variables for packing ellipsoids, J. Global Opt. 68 (3) (2017) 467–499 .

[72] J. Kallrath , Packing ellipsoids into volume-minimizing rectangular boxes, J. Global Opt. 67 (1-2) (2017) 151–185 .

[73] F.M. Schaller , S.C. Kapfer , J.E. Hilton , P.W. Cleary , K. Mecke , C.D. Michele , T. Schilling , M. Saadatfar , M. Schroter , G.W. Delaney , Non-universal voronoi
cell shapes in amorphous ellipsoid packs, Lett. J. Explor. Front. Phys. 111 (2) (2015) 1–6 .

[74] D.N. Ilin , M. Bernacki , Advancing Layer Algorithm of Dense Ellipse Packing for Generating Statistically Equivalent Polygonal Structures, Springer, 2016 .
[75] J.Q. Gan , Z.Y. Zhou , A.B. Yu , Interparticle force analysis on the packing of fine ellipsoids, Powder Technol. 320 (2017) 610–624 .

[76] K. Kildashti , K. Dong , B. Samali , Explicit force model for discrete modelling of elliptical particles, Comput. Geotech. Vol. Comput. Geotech. 110 (2019)
122–131 .

[77] M. Lee , Q. Fang , Y. Cho , J. Ryu , L. Liu , D.-S. Kim , Support-free hollowing for 3d printing via Voronoi diagram of ellipses, Comput.-Aided Des. 101
(2018) 23–36 .

[78] Y. You , Y. Zhao , Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: a comparative study, Powder Technol.

331 (15) (2018) 179–191 .
[79] S. Zhao , T.M. Evans , X. Zhou , Three-dimensional Voronoi analysis of monodisperse ellipsoids during triaxial shear, Powder Technol. 323 (1) (2018)

323–336 .
[80] S. Zhao , N. Zhang , X. Zhou , L. Zhang , Particle shape effects on fabric of granular random packing, Powder Technol. 310 (2017) 175–186 .

[81] L. Riley , L. Schirmer , T. Segura , Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair
and regeneration, Curr. Opin. Biotechnol. 60 (2019) 1–8 .

[82] T. Hales , M. Adams , G. Bauer , D.T. Dang , J. Harrison , T.L. Hoang , C. Kaliszyk , V. Magron , S. McLaughlin , T.T. Nguyen , T.Q. Nguyen , T. Nipkow , S. Obua ,

J. Pleso , J. Rute , A. Solovyev , A.H.T. Ta , T.N. Tran , D.T. Trieu , J. Urban , K.K. Vu , R. Zumkeller , A formal proof of the kepler conjecture, Forum of
Mathematics, Pi. 5 (2) (2017) 1–21 .

[83] Y. Stoyan , G. Yaskov , Packing equal circles into a circle with circular prohibited areas, Int. J. Comput. Math. 89 (10) (2012) 1355–1369 .
[84] A. Okabe , B. Boots , K. Sugihara , S.N. Chiu , Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd, John Wiley & Sons, Chichester,

1999 .
[85] F. Aurenhammer , R. Klein , D.-T. Lee , Voronoi Diagrams and Delaunay Triangulations, World Scientific, 2013 .

[86] F.P. Preparata , M.I. Shamos , Computational Geometry: An Introduction, Springer-Verlag, 1985 .

[87] M. Mäntylä, An Introduction to Solid Modeling, W.H. Freeman & Company, New York, 1988 .
[88] K. Sugihara , M. Iri , A Solid Modelling System Free from Topological Inconsistency, J. Inf. Process. 12 (4) (1989) 380–393 .

[89] D.-S. Kim , I.-K. Hwang , B.-J. Park , Representing the Voronoi diagram of a simple polygon using rational quadratic B ́e zier curves, Comput.-Aided Des.
27 (8) (1995) 605–614 .

[90] C.-K. Yap , An O (n log n) algorithm for the Voronoi diagram of a set of simple curve segments, Discr. Comput. Geom. 2 (1987) 365–393 .
[91] L. Jin , D. Kim , L. Mu , D.-S. Kim , S.-M. Hu , A sweepline algorithm for Euclidean Voronoi diagram of circles, Comput.-Aided Des. 38 (3) (2006) 260–272 .

[92] D.T. Lee , R.L. Drysdale , Generalization of Voronoi diagrams in the plane, SIAM J. Comput. 10 (1) (1981) 73–87 .

[93] M. Sharir , Intersection and closest-pair problems for a set of planar discs, SIAM J. Comput. 14 (2) (1985) 44 8–46 8 .
[94] M. Lee , K. Sugihara , D.-S. Kim , Topology-oriented incremental algorithm for the robust construction of the Voronoi diagrams of disks, ACM Trans.

Math. Softw. 43 (2) (2016) 14:1–14:23 .
[95] D.-S. Kim , D. Kim , K. Sugihara , Voronoi diagram of a circle set from Voronoi diagram of a point set: I. topology, Comput. Aided Geom. Des. 18 (2001)

541–562 .
[96] D.-S. Kim , D. Kim , K. Sugihara , Voronoi diagram of a circle set from Voronoi diagram of a point set: II. geometry, Comput. Aided Geom. Des. 18 (2001)

563–585 .

[97] K. Lee , Principles of CAD/CAM/CAE Systems, Addison-Wesley, Boston, 1999 .
[98] D. Kim , D.-S. Kim , K. Sugihara , Euclidean Voronoi diagram for circles in a circle, Int. J. Comput. Geom. Appl. 15 (2) (2005) 209–228 .

[99] D.-S. Kim , Polygon offsetting using a Voronoi diagram and two stacks, Comput.-Aided Des. 30 (14) (1998) 1069–1076 .
[100] Al-Mudahka , M. Hifi, R. M’Hallah , Packing circles in the smallest circle: an adaptive hybrid algorithm, J. Oper. Res. Soc. 62 (2011) 1917–1930 .

https://doi.org/10.1007/s11276-018-1890-1
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0069
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0069
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0069
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0069
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0070
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0070
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0070
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0071
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0071
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0071
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0072
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0072
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0073
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0074
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0074
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0074
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0075
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0075
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0075
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0075
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0076
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0076
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0076
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0076
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0077
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0077
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0077
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0077
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0077
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0077
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0077
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0078
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0078
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0078
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0079
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0079
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0079
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0079
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0080
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0080
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0080
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0080
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0080
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0081
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0081
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0081
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0081
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0082
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0083
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0083
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0083
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0084
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0084
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0084
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0084
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0084
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0085
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0085
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0085
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0085
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0086
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0086
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0086
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0087
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0087
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0088
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0088
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0088
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0089
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0089
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0089
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0089
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0090
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0090
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0091
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0091
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0091
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0091
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0091
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0091
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0092
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0092
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0092
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0093
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0093
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0094
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0094
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0094
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0094
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0095
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0095
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0095
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0095
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0096
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0096
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0096
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0096
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0097
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0097
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0098
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0098
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0098
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0098
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0099
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0099
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0100
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0100
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0100
http://refhub.elsevier.com/S0096-3003(20)30045-X/sbref0100

	VOROPACK-D: Real-time disk packing algorithm using Voronoi diagram
	1 Introduction
	2 Literature review
	2.1 Congruent disks
	2.2 Polysized disks
	2.3 Explicit modeling of empty space in container
	2.4 Generalized packing problems

	3 Voronoi diagram
	4 Computational building blocks of Voronoi diagram for disk packing problems
	4.1 Clearances
	4.2 Voids

	5 Big-disk-first realtime disk packing algorithm
	6 Enhancement of realtime packing using Shrink-and-Shake
	7 Experiments and discussion
	7.1 Data set
	7.2 Realtime packing solutions of the Packmania data set
	7.3 Enhancement of the realtime packing results using the S&S algorithm
	7.4 Benchmark test
	7.5 Expriments with large problem instances

	8 Conclusion
	Acknowledgements
	Appendix A Termination tolerance
	References

