
Computer Physics Communications 251 (2020) 107101

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

MGOS: A library formolecular geometry and its operating system✩

Deok-Soo Kim a,b,∗, Joonghyun Ryu a,1, Youngsong Cho a,1, Mokwon Lee b, Jehyun Cha b,
Chanyoung Song b, Sang Wha Kim c, Roman A. Laskowski d, Kokichi Sugihara e, Jong Bhak f,
Seong Eon Ryu g

a Voronoi Diagram Research Center, Hanyang University, Republic of Korea
b School of Mechanical Engineering, Hanyang University, Republic of Korea
c College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Republic of Korea
d European Bioinformatics Institute, Wellcome Trust Genome Campus, UK
e Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Japan
f Department of BioMedical Engineering, UNIST, Republic of Korea
g Department of Bioengineering, Hanyang University, Republic of Korea

a r t i c l e i n f o

Article history:
Received 5 July 2019
Received in revised form 22November 2019
Accepted 28 November 2019
Available online 12 December 2019

Keywords:
Atomic arrangement
Structural biology
Material design
Voronoi diagram
Computational geometry
Computational science

a b s t r a c t

The geometry of atomic arrangement underpins the structural understanding of molecules in many
fields. However, no general framework of mathematical/computational theory for the geometry of
atomic arrangement exists. Here we present ‘‘Molecular Geometry (MG)’’ as a theoretical framework
accompanied by ‘‘MG Operating System (MGOS)’’ which consists of callable functions implementing
the MG theory. MG allows researchers to model complicated molecular structure problems in terms of
elementary yet standard notions of volume, area, etc. and MGOS frees them from the hard and tedious
task of developing/implementing geometric algorithms so that they can focus more on their primary
research issues. MG facilitates simpler modeling of molecular structure problems; MGOS functions can
be conveniently embedded in application programs for the efficient and accurate solution of geometric
queries involving atomic arrangements. The use of MGOS in problems involving spherical entities is
akin to the use of math libraries in general purpose programming languages in science and engineering.
Program summary
Program Title: Molecular Geometry Operating System (MGOS)
Program Files doi: http://dx.doi.org/10.17632/hp2wmvxsfz.1
Licensing provisions: CC By 4.0
Programming language: C++
Supplementary material: (1) Supplementary Video 1, (2) Supplementary Video 2, (3) Supplementary
Video 3, (4) Supplementary Video 4, (5) MGOS manual, and (6) 300 test PDB structure files
Nature of problem: For both organic and inorganic molecules, structure determines molecular function
and molecular structure is highly correlated with molecular shape or geometry. Hence, many studies
were conducted for the analysis and evaluation of the geometry of atomic arrangement. However,
most studies were based on Monte Carlo, grid-counting, or approximation methods and a high-quality
solution requires heavy computational resources, not to mention its dependency on computation
environment. In this paper, we introduce a unified framework of computational library, Molecular
Geometry Operating System (MGOS), based on an analytic method for the molecular geometry of
atomic arrangements. We believe that the powerful MGOS application programming interface (API)
functions will free scientists from developing and implementing complicated geometric algorithms
and let them focus on more important scientific problems.
Solution method: Molecular Geometry (MG) is a general framework of mathematical/computational
methods for solving molecular structure problems using a geometry-priority philosophy and is
implemented by MGOS which is a library of callable C++ API functions. MGOS is developed based
on the Voronoi diagram of three-dimensional spheres and its two derivative constructs called the
quasi-triangulation and beta-complex. Note that this Voronoi diagram is different from the ordinary

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

∗ Corresponding author at: Voronoi Diagram Research Center, Hanyang University, Republic of Korea.
E-mail address: dskim@hanyang.ac.kr (D.-S. Kim).

1 J. Ryu and Y. Cho have equally contributed.

https://doi.org/10.1016/j.cpc.2019.107101
0010-4655/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2019.107101
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.107101&domain=pdf
http://dx.doi.org/10.17632/hp2wmvxsfz.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:dskim@hanyang.ac.kr
https://doi.org/10.1016/j.cpc.2019.107101
http://creativecommons.org/licenses/by/4.0/

2 D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101

Voronoi diagram of points where the points are atom centers. Being an analytic method, the solutions
of many geometric queries on atomic arrangement, if not all, are obtained correctly and quickly. The
MGOS architecture is carefully designed in a three-tier architecture so that future modifications and/or
improvements can be reflected in the application programs with no additional programming by users.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In physics, chemistry, and materials science, the properties
of inorganic molecules result from the arrangement of their
atoms [1–3]. In biology, the structure of biomolecules determines
their function [4–9]. A molecule’s properties and interactions
with its environment depend on the geometrical arrangement of
its atoms, and geometry has long been one of key issues in the
study of atomic arrangements. In physics and materials science,
examples include the diffusion of lithium ions through paths
closely correlated with geometric channels [1]; the porosity and
surface area of metal organic framework (MOF) for hydrogen
storage [2,3], water content regulation in polymer membranes
through nanocracks which work as nanoscale valves [10], to name
a few. In biology, classic examples are the shape complementarity
of the double-helix structure of DNA [11,12], and the lock-and-
key [13] and induced-fit theories [14] of small-molecule binding
to proteins. There are many other examples: the linear rela-
tionship between hydrophobic energy and the loss of solvent
accessible surface area [4]; the effect of voids on the solvation and
hydration of proteins [6]; the channel structure of ion channels
and pumps across cell membranes [7] and in the ribosome for
protein synthesis [8]; ferritin as a protein nanocage for iron stor-
age [9]; the Connolly surface of proteins [5]. The examples assert
that accurate and efficient geometric computation is critical for
understanding and designing molecules.

However, many studies to date on molecular geometry prob-
lems have mostly been based on Monte Carlo simulation, count-
ing grid points, or approximations. For instance, molecular
volume is commonly estimated by counting the numbers of
random points or grid points contained in the molecule [15];
conversely, molecular voids are recognized by removing these
grid points [16]. Another example is the imprecise estimation
of solvent accessible surfaces [17], which is critical for solvation
models used in the calculation of electrostatic energy.

Fig. 1 shows the comparison between an analytic [18,19] and
a grid-counting [16] method for computing molecular voids us-
ing a test data set consisting of 300 biomolecular structures
from the Protein Data Bank (PDB [20]). See Appendix A for the
300 PDB codes. In Fig. 1(a), the horizontal axis denotes the size
(i.e. the number of atoms) of each molecule of the test set and
the vertical axis denotes the number of computed voids in the
molecular boundary in which at least one water molecule can
be placed. Water molecules are modeled as spherical probes
of radius 1.4 Å. The red filled circle corresponds to the output
from the BetaVoid program [18] which implements an analytic
method using the Voronoi diagram of three-dimensional spher-
ical atoms. The other three types of mark denote the results
computed by the VOIDOO program (http://xray.bmc.uu.se/usf/
voidoo.html) [16] corresponding to the grid resolutions of 0.1,
0.5, and 1.0. Fig. 1(b) is a zoom-in of the red rectangular box of
Fig. 1(a). Note that VOIDOO finds fewer voids than BetaVoid does.
Fig. 1(c) and (d) show the total volume of all the computed voids
and Fig. 1(e) and (f) show the computation time taken by the pro-
grams. The following observations were made. Compared to the
correct solutions computed by the BetaVoid program, VOIDOO
finds fewer voids (i.e., it misses many small voids) but signifi-
cantly overestimates void volumes (despite missing many voids)
while it takes significantly more computation time than BetaVoid.

VOIDOO, at 0.1 Å grid-resolution, crashes on many moderately
sized molecules due to memory shortage. This experiment clearly
shows how an analytic approach compares with an inaccurate
and inefficient approach using grid points. The experiment was
performed on a personal computer with Intel Core i5-4670 CPU
(3.4 GHz), 8 GB RAM, and Windows 7 Enterprise K (64 bit).

The use of such resolution-dependent approaches is common
despite their unreliable, inconsistent, and sometimes conflicting
results [21]. We observe that VOIDOO is still popular in diverse
disciplines [22–32] and studies of grid-based algorithms con-
tinues [33]. The absence of an overarching analytical theory is
because individual researchers have focused on problem-specific,
local aspects of geometry problems, concentrating on isolated
issues such as surfaces, voids, channels, volumes, areas, and so
on. With so many independently developed methods, it has been
hard to build a general computational framework for accurately
and efficiently solving all these types of geometrical problems.

Here we introduce ‘‘Molecular Geometry (MG)’’ as a general
framework of mathematical/computational methods for solving
molecular structure problems in geometry-priority approaches,
and describe the ‘‘MG Operating System (MGOS)’’ which is a li-
brary of callable C++ routines for implementing the MG approach
in analytical methods. The proposed analytical methods are based
on the Voronoi diagram of three-dimensional spheres [34], the
quasi-triangulation [35,36], and the beta-complex [37]. The
MG/MGOS method has three primary advantages: application
independence, researcher productivity, and solution correctness/
accuracy. In other words, equipped with MG/MGOS, researchers
from diverse disciplines can conveniently and easily build com-
putational models to solve molecular geometry problems and
quickly obtain correct (or accurate) solutions.

Section 2 briefly reviews the evolution of the geometry con-
cepts applied to atomic arrangements for materials and
biomolecules. Section 3 introduces Molecular Geometry as a
new computational discipline for studying atomic arrangements.
Section 4 introduces the Molecular Geometry Operating System
as a tool for implementing MG. Section 5 presents two exam-
ple molecular geometry problems solved by MGOS. Section 6
presents the application-neutral architecture of MGOS. Section 7
concludes.

2. How the geometry concept has evolved in the molecular
world

Johannes Kepler’s treatise The Six-cornered Snowflake in 1611
and Robert Hooke’s book Micrographia in 1665 might be the
earliest observations of crystallization as a sphere packing pro-
cess. In Cristallographie in 1783, Rome de L’Isle treated geometry
and chemical composition with an equal importance to charac-
terize mineral properties and found ‘‘the law of the constancy
of interfacial angles’’ which became the foundation of crystal-
lography. Before the advent of X-ray crystallography, crystals
were primarily studied from a geometry perspective. In 1805,
John Dalton introduced the concept of the spherical atom as the
indivisible unit of matter and in 1874, Le Bel and Van’t Hoff in-
dependently introduced the concept of tetrahedrally coordinated
carbon atoms [38,39]. This became the foundation of modern
stereochemistry which is the basis of the study of molecular

http://creativecommons.org/licenses/by/4.0/
http://xray.bmc.uu.se/usf/voidoo.html
http://xray.bmc.uu.se/usf/voidoo.html
http://xray.bmc.uu.se/usf/voidoo.html

D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101 3

Fig. 1. Lee–Richards voids corresponding to a water molecule probe (i.e. 1.4 Å radius) computed by BetaVoid [18] and VOIDOO [16]. The test set consists of 300
PDB structures (Table 1 in Appendix A lists the PDB codes). The red circles correspond to BetaVoid results; VOIDOO-1.0, VOIDOO-0.5, and VOIDOO-0.1 corresponds
to grid resolutions of 1.0, 0.5, and 0.1 Å in VOIDOO, respectively. The right column is a zoom-in of the left column. (a) and (b) The number of recognized voids; (c)
and (d) The total volume of the recognized voids; (e) and (f) Computation time.

structures [40]. Understanding steric effects (i.e. each atom occu-
pies a certain amount of space) is the basis of the stereochemistry
of atoms and provides a geometric understanding of the molec-
ular world. The coordination number of an atom, defined by
Werner in 1893, is still a commonly used geometric measure of
atomic arrangement.

In 1940, Sidgwick and Powell proposed that molecular struc-
ture is determined by the electron pairs in the valence shell
[41,42]. This idea was developed in 1957 by Gillespie and Ny-
holm [43] into what is now known as the valence shell electron
pair repulsion (VSEPR) model, the name proposed in 1963 [44],
which has been used for predicting molecular structure using the
Pauli Exclusion Principle, but without solving any explicit equa-
tion. VSEPR is one of the simplest and most successful models of
molecular structure [44,45], and remains popular. VSEPR can be

viewed as a geometric approach to understanding the molecular
world.

Molecular biology is the molecular world where geometry
has arguably received the most attention. In 1890, Emil Fischer
proposed the well-known lock-and-key theory to explain the
interactions between biomolecules. This is an excellent example
of modeling biomolecular phenomena through geometry [13,46].
In 1953, the year that the double-helix structure of DNA was
discovered, Francis Crick suggested the idea of a computational
approach to the binding between two small molecules through
their surfaces [47]. Crick posited that shape complementarity in
the helical coiled coil could be modeled as knobs fitting into
holes. This could be the first proposal of explicitly using geometry
to understand molecular phenomena, and became the basis of

4 D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101

molecular docking. In 1958, Koshland extended the lock-and-key
theory to propose the induced-fit theory [14,48,49].

The first determination of the three-dimensional structure of a
protein was performed by John Kendrew and Perutz in 1960 [50]
when they solved the structure of myoglobin. Since then, protein
structure determination has become almost routine work; and
the PDB contains 152,500 biomolecular structures as of June 8,
2019 [20]. Given atomic arrangement databases, such as the PDB,
geometry analysis becomes one of the most important research
topics for researchers. Cavities in biomolecules are fundamental
for function, stability, dynamics, ligand binding, etc. The first
computational study of cavities in proteins was reported by Lee
and Richards in 1971 [51]. Chothia in 1974 found that the hy-
drophobic energies in proteins are directly related to the solvent
accessible surface area of both polar and non-polar groups, and
reported the linear relationship between the hydrophobic energy
of proteins and the loss of solvent accessible surface area dur-
ing folding [4,52]. This demonstrates that the atoms in folded
globular proteins tend to be tightly packed. Thus a large residue
volume, and consequently a low overall density, suggests the
model of the protein is a poor one and, conversely, a small
volume, and high density, suggests it is more likely to be a good
one [52]. A protein’s interior is closely packed, with few cavities,
so that no water molecules are trapped in non-polar cavities
[52,53]. The dense packing is critical in stable folding, and residue
volumes are directly related to packing energies and conforma-
tional entropies. The stable aggregation of secondary structures
increases their interaction area to achieve a high hydrophobicity
and results in an increased molecular density.

In the case of enzymes, which are globular proteins, the op-
timal way of minimizing the volume and the solvent accessible
surface area while keeping a constant potential energy is to
make the shape as spherical as possible with as few cavities
as possible. Due to the potential energy constraint, the overlap
between atoms is limited at a certain level. Therefore, this is a
geometric optimization problem of packing spherical atoms in
a spherical container of an appropriate size. However, certain
geometric features need to be conserved for the molecule to
maintain its function. For example, proteasomes require their
channel structures for disassembling proteins, ribosomes need to
conserve their channels for synthesizing proteins, while mem-
brane proteins require channels for the passage of ions. Therefore,
to minimize both volume and accessible surface area under the
potential energy constraint, while preserving their crucial ge-
ometric features, the interior voids of these proteins must be
somehow minimized. Hence, the accurate computation of voids
in a molecular structure is important for assessing the structure.
In this regard, the recognition of molecular cavities, such as
channels and voids, the computation of their global properties,
and understanding their topological structures are fundamental.
As PDB data has been more frequently used, the importance of its
quality has also increased. There are now a number of tools for
assessing structural quality [54–56].

3. Molecular geometry: A new approach to study atomic ar-
rangement

Fig. 2 shows the computational process of solving molecular
problems. In Fig. 2(A), Mapping I depicts the traditional approach
of going directly from a particular molecular problem M to its
solution Sol(M). There are uncountably many molecular prob-
lems and each problem can have alternative mappings because
its modeling is dependent on the nature of the study. This leads
to uncountably many instances of Mapping I. Each mapping
instance usually consists of nontrivial computational steps and al-
most always contains a geometry subproblem involving spherical

objects, which in many cases are van der Waals atoms. Earlier
studies [1–9,57] show this issue is real and highly common.
Surprisingly, many seemingly easy geometry problems among
spheres remain challenging, if not computationally hard to solve,
because of a lack of a suitable mathematical/computational frame-
work. Therefore, researchers often spend a significant amount of
time and effort, in the course of solving their geometry problems,
developing and implementing their own algorithms. Further-
more, due to the complexity of the geometry problems, re-
searchers usually employ Monte Carlo simulation, grid counting,
or other approximate methods.

MG provides an alternative, orthogonal method to this tradi-
tional approach. It bypasses the time-consuming and error-prone
Mapping I by taking the walk-around path consisting of Mappings
II, III, and IV. First, the problem M is modeled as a geometry prob-
lem G involving spherical atoms (Mapping II). Then, G is solved
via geometric theorems to give the solution Sol(G) (Mapping III)
which is back-transformed to Ŝol(M) in the original molecular
space (Mapping IV). The thesis is that Ŝol(M) ≈ Sol(M), possibly
with some preconditions. The forward and backward transforma-
tions of Mappings II and IV are together called the geometrization
while the computational methods for Mapping III form the ge-
ometry kernel. The geometrization and geometry kernel together
form the basis of the discipline MG (which is different from the
earlier notion [42]).

Ŝol(M) is either close enough to, or a good approximation of,
Sol(M) to allow a more intensive computational process such
as a molecular dynamics (MD) simulation to be launched. As
the computational cost of the walk-around path of Mappings II,
III, and IV is significantly cheaper than that of Mapping I, the
path may iterate as many times as necessary by refining the
geometrization. If the criteria for the convergence of Ŝol(M) can
be defined, the solution process can iterate, possibly without
human intervention. Physicochemical and biological properties
should be carefully reflected during the geometrization. Given a
proper geometrization and a geometry kernel, the path might be
automated to iterate if necessary. Fig. 2(B) depicts the significant
reduction of both human effort and computational requirement
by the MG approach.

Fig. 2(C) through (H) illustrate how a docking simulation pro-
gram can adopt MG/MGOS in its algorithm. Given a receptor
(C) and a ligand (D) for docking, it is desirable to identify a
pocket (E) on the receptor surface where the ligand might bind
(Mapping II). Then, the conformation of the ligand within the
pocket can be found by minimizing the distance between the
atom sets of both the ligand and the pocket, where the distance
is defined by a geometric measure that can be easily evaluated (F
and G) (Mapping III) [58]. Multiple conformations can be found
quickly. The ligand conformations can then be used as initial
solutions for a global optimization procedure such as the genetic
algorithm using a fitness function reflecting the physicochemical
and biological measures (H) (Mapping IV). It turns out that the
geometrical best-fit solutions using van der Waals radii for atoms
are often sufficiently close to the global solution. [59] is another
example for side-chain prediction.

The MG approach has two preconditions: a mathematically
and computationally well-established geometry kernel and a
physicochemically and biologically well-defined geometrization.
The MGOS engine’s geometry kernel is written in standard C++
and is based on the Voronoi diagram of three-dimensional spheres
[34] and its two derivative constructs [37]. The geometrization
is inevitably domain-dependent and is somewhat empirical. For
example, different sets of atomic radii may be used for different
problems [60,61]. The effective Born radius [62,63] may be most
appropriate when using the generalized Born approximation of
the Poisson–Boltzmann equation to account for the electrostatic

D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101 5

Fig. 2. The Molecular Geometry (MG) framework. (A) The MG approach (Mappings II, III and IV) vs. the traditional approach (Mapping I). (B) The human effort (for
developing and implementing algorithms) and computational cost of the MG and traditional approaches. (C) Receptor. (D) Ligand. (E) Pocket. (F) and (G) Two initial
docking poses. (H) Optimal docking solution.

contribution to solvation energy. In studying a potassium chan-
nel’s recognition selectivity, its dependence is likely to be on ion
radius rather than charge density [64]. The analysis of protein
packing, protein recognition and ligand design [65], etc will
be governed by the radii of different atomic groups. Previous
studies [1–9] can be interpreted as efforts at applying different
types of geometrization. A set of geometrization primitives and
parameters for each and every application domain should be de-
fined through theoretical studies, experiments, and collaborative
thoughts.

4. MGOS: The engine to implement MG

MGOS implements MG. The usefulness of MGOS is akin to
a math library for general-purpose programming languages in
science and engineering. Imagine the time and effort it would
take a researcher, even with good programming skills, to code
from scratch an algorithm for evaluating, say, sin(1.23) or

√
2,

without a math library. Would the code be accurate and efficient
enough? Any complicated scientific problem is likely to require
calls to many such functions, so could one effectively develop an
effective program without such a math library?

MGOS consists of a set of natural-language-like application
programming interface (API) functions, easily callable from ap-
plication programs (see Appendix B for the list of current MGOS
APIs) and efficiently provides a correct/accurate solution of ge-
ometric queries involving the arrangements of spherical objects
where the objects are frequently van der Waals atoms. For ex-
ample, the compute_volume_and_area_of_van_der_Waals_
model() command computes the volume of the space taken by
the atoms (with the van der Waals radii) of a given molecule.
The name of the command is clear about its function. The com-
pute_voids_of_Lee_Richards_model() command finds all
interior voids where an a priori defined spherical probe can be

placed (e.g. a sphere with 1.4 Å radius for water) and computes
void properties. Computed voids can be further processed. For in-
stance, the voids can be sorted according to volume or boundary
area; the atoms whose boundary contribute to each void can be
reported; the segment of the atom boundary contributing to the
void can be identified and its area computed, etc.

An early attempt at a formal theory to investigate the geom-
etry of atomic arrangement was based on the ordinary Voronoi
diagram of points, originally used by Bernal and Finney in 1967
for analyzing liquid structure composed of monosized atoms [66].
Being the most compact representation of proximity among
points, the ordinary Voronoi diagram, and its dual called the
Delaunay triangulation, has proved the best method for solving
spatial problems for points [67]. To extend the theory from
points to polysized spheres, we use the Voronoi diagram of
spheres [34], also called the additively-weighted Voronoi dia-
gram, which correctly recognizes the Euclidean proximity among
the spherical objects between any pair of nearby spheres. Our
Voronoi diagram of spheres, along with its derivative struc-
tures, the quasi-triangulation [35,36] and the beta-complex [37],
provides a powerful computational platform for mathematically
rigorous, algorithmically correct, computationally efficient, and
physicochemically and biologically significant, and practically
convenient method for any geometry problem involving spherical
atoms.

5. Use cases

We show here how a few simple MGOS APIs can be used to
easily compute otherwise difficult to compute geometric features
such as voids, channels, water-exposed atoms, etc. of a protein
consisting of many atoms.

6 D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101

Fig. 3. Protein structure analysis using Program-Use-Case-I in Fig. 4 (PDB code: 1jd0; 4195 atoms). See Supplementary Video 1. (A) and (B) The space-filling and
quasi-triangulation models of the input structure. (C) The beta-complex for water (i.e. a spherical probe with radius 1.4 Å). (D) and (D’) The atoms exposed to and
buried from bulk water, respectively. (E) The (green) voids for water. (F) The largest void and its contributing atoms. (G) The channels for water. (H) and (I) Two
different visualizations of the biggest channel with its contributing atoms and spine, respectively.

5.1. Case I: Analysis of an atomic arrangement

Fig. 3 shows a protein structure (PDB id: ijd0) with more than
4000 atoms. We want to find the boundary atoms exposed to
water molecules (modeled as spheres of 1.4 Å radius), and buried
atoms. Then, we want to find voids which can contain water
molecules and any channel structures that allow the passage of
water molecule.

Fig. 3(A) shows the space-filling, or CPK-model, of the protein
structure. Observe that there is a tiny hole corresponding to a
channel penetrating the structure. Fig. 3.(B) shows the quasi-
triangulation computed by the MGOS API commands in block

B1. The command MG.preprocess() computes the Voronoi
diagram of the input atoms and transforms it to the quasi-
triangulation. Fig. 3(C) shows the beta-complex corresponding
to water molecules (i.e. spherical probes with 1.4 Å radius).
Fig. 3(D) and (D’) show the atoms exposed to and buried from
bulk water, respectively (computed by block B2). Hence, the
union of the structures in Fig. 3(D) and (D’) is the input struc-
ture in Fig. 3(A). Note that the challenging task of the correct
and efficient computation of these structures can be easily and
conveniently done by calling a fewMGOS APIs. Fig. 3(E) shows the
voids (green) that may host one or more water molecule (from a
geometric point of view) where the molecule is displayed by a

D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101 7

Fig. 4. Program-Use-Case-I: (a) The flowchart of Program-Use-Case-I. (b) The complete code of Program-Use-Case-I which computes the voids, channels,
etc. in Fig. 3.

ball-and-stick model. The voids were computed by the program
segment in B3. Fig. 3(F) shows the largest (by volume) of the
recognized voids, and the atoms whose boundaries contribute to
the boundary of this void. We call these atoms the contributing
atoms. If it is necessary to investigate if a water molecule can
indeed be placed in the void, the biochemical or biophysical
properties of the surface segments of the void boundary can be
further analyzed by computing the precise geometric information
of the patches of atomic boundaries using MGOS APIs. In fact,
the compute_voids_of_Lee_Richards_model(WATER_SIZE
) finds all voids that may contain water molecule(s), computes
the volume of each void, computes the boundary area of each

void, finds the contributing atoms, computes the area of the con-
tributing patch(es) of each contributing atom, etc. The program
segment in B4 simply returns the contributing atom information
already computed by the command above. Fig. 3(G) shows the
channels that may allow a water molecule to move. Like the
voids, the surface properties of these channels can be further
investigated if necessary. These channels were computed by the
program segment in B5. Fig. 3(H) and (I) show two different
visualizations of the biggest channel with its contributing atoms
and spine, respectively. This biggest channel is located by the
program segment in B6. Refer to Supplementary Video 1 for the
three-dimensional animation of this computational process.

8 D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101

Fig. 5. Geometric features in atomic arrangements shown in ball-and-stick diagram. See Supplementary Video 2, 3, and 4. (A) Ferritin (PDB code: 1mfr; 34,320
atoms). The largest void (green) for water (modeled as a sphere of 1.4 Å radius). 492 tiny voids are additionally found but are not shown here because they are
biologically insignificant. (B) Potassium channel protein (PDB code: 2vdd; 9915 atoms) showing a potassium channel (red). (C) Metal organic framework MOF5 [2]
and its Lee–Richards accessible surface (blue) corresponding to a 2.0 Å spherical probe. The geometric properties such as the pore volume, apparent surface area,
etc. are critical for MOF design.

Fig. 4 shows the flowchart and code for an application program
Program-Use-Case-Iwhich embeds the MGOS APIs to perform
the required computation. The first line of the code includes the
MolecularGeometry.h file which defines the MGOS classes to
be used by the program. Line 7 loads an input file of PDB format.
The MG.preprocess() command in line 8 computes the Voronoi
diagram of the input structure and transforms it to its quasi-
triangulation. If the quasi-triangulation file already exists in the
working directory, this command directly loads the file.

The command MG.find_boundary_atoms_in_Lee_
Richards_model() in line 9 finds the set of boundary atoms
of the Lee–Richards solvent accessible model where the solvent
is represented as a spherical probe for water with the radius 1.4
Å, as defined in line 3. Similarly, MG.find_buried_atoms_in_
Lee_Richards_model() finds the set of buried atoms of the
Lee–Richards solvent accessible model. It is worth noting that
without the MGOS engine, it is very difficult to correctly and
efficiently find these sets because it is necessary to distinguish
the atoms exposed to solvent from those that are buried.

The command MG.compute_voids_of_Lee_Richards_
model() in line 11 locates all voids inside the Lee–Richards
solvent accessible model. After finding the voids, this command
computes the geometric properties such as the volume and area
of each void. Then, voids.find_biggest_void() in line 12
finds the void with the biggest volume. The command
biggestVoid.contributing_atoms() in the next line finds
all the atoms contributing to the boundary of the biggest void.

MG.compute_channels() in line 14 computes all of the
channels inside the Lee–Richards solvent accessible model. chan-
nels.find_biggest_channel() in line 15 finds the biggest
channel and the atoms contributing to the boundary of this
biggest channel are given by
biggestChannel.contributing_atoms().
biggestChannel.spine() in line 17 finds the spine of the
biggest channel.

Fig. 5, together with Supplementary Videos 2, 3, and 4, show
other examples of voids and channels that can be recognized
by a slight modification of the Program-Use-Case-I code with
ferritin, a potassium channel, and a metal–organic framework.

5.2. Case II: Analysis of 100 atomic arrangements

Fig. 6 shows the flowchart and code for another application
program Program-Use-Case-II which analyzes multiple PDB
files to compute the volumes, areas, and voids of 100 molec-
ular structures (arbitrarily selected for demonstration purpose)
together with the computation time statistics.

Program-Use-Case-II requires four pieces of input data: (i)
A file containing PDB codes (Fig. 7(a)), (ii) the size of the solvent

probe, (iii) the name of output file to store computed results
(Fig. 7(b)), and (iv) the PDB model files.

The program begins by including MGUtilityFunctions.h
in addition to MolecularGeometry.h because the program
also uses some utility functions related to file I/O. The com-
mand in line 7 opens a file, say FILE_IN, which contains the
100 PDB codes to use. The first line of FILE_IN contains the
number 100 of PDB models. Each of the following lines con-
tains a PDB code as shown in Fig. 7(a). The next command
get_the_number_of_PDB_files() returns ‘‘100’’ by referring
to the first line of FILE_IN. Line 9 sets the size of the solvent probe
from the command line invoking program execution. Line 10
opens a blank output file, say FILE_OUT, for the computed results.
The command write_column_names_of_output_file()
writes the column names to the first line of FILE_OUT as shown
in Fig. 7(b).

The code chunk in lines 12–28 processes each PDB model by
computing geometric features, measuring the elapsed times, and
writing the results to FILE_OUT. Line 15 gets the current PDB code
from FILE_IN and the corresponding PDB model is loaded by line
17. After the model is preprocessed in line 18, the elapsed time
is given by the command MG.elapsed_time() in the next line.
MG.compute_volume_and_area_of_Lee_Richards_model()
in line 21 computes the volume and area for the Lee–Richards
solvent accessible model. The program also counts the elapsed
time in the next line. Similarly, MG.compute_voids_of_Lee_
Richards_model() in line 24 computes the voids for the sol-
vent molecule and then, the elapsed time is counted. The
command write_statistics_for_current_PDB_model() in
lines 26 and 27 writes the statistics for the current PDB model,
such as PDB code, the number of atoms, volume, area, the number
of voids, and time statistics as in Fig. 7(b). The code for MGUtil-
ityFunctions used in Program-Use-Case-II is shown in
Fig. 8.

Fig. 9 shows the graphs produced by using Microsoft Excel
with the output file FILE_OUT for some computed results for the
100 PDB files. Fig. 9(a), (b), and (c) are the volumes, areas, and
the numbers of voids, respectively. Fig. 9(d) shows the time for
computing the Voronoi diagram and quasi-triangulation. Fig. 9(e)
is the time for computing the volume and area, and Fig. 9(f) for
the voids. Note that these graphs can be produced by a few clicks
of the mouse button and column choices.

6. MGOS architecture

The architecture of MGOS has been carefully designed so that
any future modifications will not require rewriting the exist-
ing code of an application program. If a molecular problem can

D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101 9

Fig. 6. Program-Use-Case-II: (a) The flowchart of Program-Use- Case-II. (b) The complete code of Program-Use-Case-II which computes the volumes,
areas, and voids of 100 molecular structures.

be properly geometrized in terms of appropriate-sized spherical
balls, the MG/MGOS framework can quickly provide the best
possible solution. It is expected that the MGOS engine will evolve,
with new functions to be added in the future. One area of interest
is in developing methods for the optimal design of molecules in

the concept of ‘‘operating system’’, e.g. in terms of side chain
conformations, to develop a program to help engineer proteins.

Software architecture: MGOS is middleware, connecting ap-
plication programs with a low-level Geometry Library performing
geometric computations (Fig. 10). It is composed of a set of

10 D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101

Fig. 7. Examples of files for Program-Use-Case-II: (a) The input file storing the 100 PDB codes. (b) The output file for computation result.

API functions callable from application programs; each is im-
plemented by calls to the Geometric Library’s functions which
are application-independent. In addition to geometric properties,
MGOS also makes use of molecular properties such as force-fields,
electrostatics, etc.

The Geometric Library, the application-independent low level
library, performs geometric computations among spherical ob-
jects and is based on three closely related constructs: the Voronoi
diagram of three-dimensional spheres, the quasi-triangulation,
and the beta-complex.

Topology data structure: Fig. 11 shows the design of the fun-
damental data structure for topology in the MGOS library. Three
types of Voronoi diagrams (i.e., the ordinary Voronoi diagram of
points, the power diagram, and the Voronoi diagram of spherical
balls) are all stored in the radial-edge data structure (REDS)
which is appropriate to represent cell-structured non-manifold
objects [68]. ‘‘REDS’’ in the figure is a member data of the Voronoi
diagram itself, which is denoted by VoronoiDiagram. On the
other hand, the dual structure is denoted by Triangulation and
has three instances (i.e., the Delaunay triangulation, the regular
triangulation, and the quasi-triangulation which are respective
dual structures of the three types of Voronoi diagrams above) and
is stored in the inter-world data structure (IWDS) [35]. ‘‘IWDS’’ in
the figure is a member data of the triangulation itself, denoted by
Triangulation.

The dual transformation is implemented between the two
classes of REDS and IWDS. Thus the three dual transformations
(i.e., the dual transformation between the ordinary Voronoi dia-
gram of points and the Delaunay triangulation, that between the
power diagram and the regular triangulation, and that between
the Voronoi diagram of spheres and the quasi-triangulation) are
all implemented through the transformation between REDS and
IWDS. All three transformation instances are facilitated by a sin-
gle transformation as they are all stored in the same topology data
structure.

Fig. 12 shows the details of REDS and IWDS. REDS in Fig. 12(a)
stores the topology of the Voronoi diagram and has the class
definitions of the topological entities of the Voronoi diagram:
cells, faces, edges, and vertices which are denoted by VD_Cell,
VD_Face, VD_Edge, and VD_Vertex. Each cell points to |F | faces
which define its boundary and each face points to two incident
cells. Each vertex points to its four incident edges and each edge
points to its two vertices. In the ordinary Voronoi diagram of
points, or power diagram, a face has only one loop of edges which
defines the boundary of the face (thus called the outer-loop). In
the Voronoi diagram VD of 3D spheres, however, a face may
have an inner-loop(s) in addition to the outer-loop where each
corresponds to an edge-graph disconnected from that of the rest

of the entire Voronoi diagram. This observation is reflected in
the pointer from VD_Face to Loop. In the Voronoi diagram, an
edge has three, and only three, incident faces and in REDS, each
edge has three copies of its replica called partial edges PartialEdge
where each participates in the loop of an incident face. The
three partial edges are connected in a circular manner in the
counterclockwise orientation around the directed VD_Edge and
in our implementation, each VD_Edge points one of the partial
edges.

IWDS in Fig. 12(b) stores the topology of the quasi-
triangulation and has the class definitions of topological entities
of cells, faces, edges, and vertices of the quasi-triangulation which
are denoted by QT_Cell, QT_Face, QT_Edge, and QT_Vertex. Note
that the data structure is designed for the quasi-triangulation
because the other two triangulations are its special cases. In the
quasi-triangulation, a cell has four faces and each face has two
incident cells; A face has three edges and an edge has a set of
1 + Nsmall−world pointers where each of the Nsmall−world pointers
indicates the entrance to a small-world. An edge has two vertices
and a cell has four vertices. A vertex has a pointer to an incident
edge and one to an incident cell.

7. Conclusions

Despite the importance of the geometry of atomic arrange-
ments in many fields, no general framework of mathematical/
computational theory for the geometry of atomic arrangement
exists. In this paper, we introduce ‘‘Molecular Geometry (MG)’’
as a theoretical framework and ‘‘MG Operating System (MGOS)’’
as a middleware to implement the MG theory.

We assert that MG/MGOS will free researchers from time-
consuming and error-prone tasks of developing and implement-
ing highly sophisticated and complex algorithms of a geometrical
nature for molecular structure studies so that they can focus more
on fundamental research issues of their own. We anticipate that
MG/MGOS will facilitate the enhancement of many popular pro-
grams and the development of many new programs from diverse
communities of computational science and engineering working
on the arrangement of spherical objects, including molecules.

The challenge remaining is how to identify the set of primitive
transformations for geometrization so as to cover as diverse a
range of applications and as accurate a set of solutions as possible.
The extensions of MGOS to dynamic situations for moving atoms
and to big models such as geometric cell models are also a chal-
lenge. We envision that MG and MGOS together will eventually
establish a new paradigm for the computational study of atomic
arrangements for both organic and inorganic molecules. MGOS is
freely available at http://voronoi.hanyang.ac.kr/software/mgos/.

http://voronoi.hanyang.ac.kr/software/mgos/

D.-S. Kim, J. Ryu, Y. Choet al. / Computer Physics Communications251 (2020)107101 11

Fig. 8. MGUtilityFunctions which are used in Program-Use-Case-II.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

CRediTauthorshipcontributionstatement

Deok-Soo Kim: Conceptualization, Methodology, Software,
Writing - original draft, Writing - review & editing, Supervi-
sion, Project administration, Funding acquisition. Joonghyun Ryu:

Methodology, Software, Validation, Formal analysis, Investigation,
Data curation, Visualization. Youngsong Cho: Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Data curation,
Visualization. Mokwon Lee: Methodology, Software, Validation,
Formal analysis, Investigation. Jehyun Cha: Methodology, Soft-
ware. Chanyoung Song: Methodology, Software . Sang Wha Kim:
Conceptualization,Visualization .RomanA.Laskowski:Validation,
Writing - review & editing . Kokichi Sugihara: Methodology,
Writing - review & editing. Jong Bhak: Validation, Methodology .
SeongEonRyu:Validation,Methodology.

12 D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101

Fig. 9. Graphs produced by Microsoft Excel using the output file FILE_OUT. Volume, area, the number of voids, and time statistics for the 100 PDB models, ordered
by the total number of atoms: (a) volumes, (b) areas, (c) the numbers of voids, (d) time for computing Voronoi diagram and its quasi-triangulation, (e) time for
volumes and areas, and (f) time for voids.

Acknowledgments

This work was in part supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government
(MSIP, MSIT) [Nos. 2017R1A3B1023591 and 2016K1A4A3914691
to DSK, JHR, YSC, MWL, JHC, and CYS] and was in part supported
by the biomedical technology development project, NRF, Korea
[No. 2015M3A9B5030302 to SER].

Appendix A. 300 test PDB models

See Table 1.

Appendix B. APIs of MGOS

MGOS has several useful API-commands which can be con-
veniently called from user-created application programs. Some
important current APIs are shown below. The name of each
command explains its task.

• Basic API : Five APIs

1. clear()

2. load_atoms(atoms)
3. preprocess()
4. get_all_atoms()
5. number_of_atoms()

• Entity locator API (proximity query I) : Twelve APIs

1. find_boundary_atoms_in_van_der_Waals_model()
2. find_buried_atoms_in_van_der_Waals_model()
3. find_first_order_neighbor_atoms_in_van_der_Waals_

model(atom)
4. find_first_order_neighbor_atoms_in_van_der_Waals_

model(atomArrangement)
5. find_second_order_neighbor_atoms_in_van_der_

Waals_model(atom)
6. find_second_order_neighbor_atoms_in_van_der_

Waals_model(atomArrangement)
7. find_boundary_atoms_in_Lee_Richards_model

(solventProbeRadius)
8. find_buried_atoms_in_Lee_Richards_model(solvent-

ProbeRadius)

D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101 13

Fig. 10. The role of MGOS for creating application programs. MGOS is a middleware engine connecting application programs to a set of appropriate API-functions
where each performs the required geometric computation.

Fig. 11. Class design of the topology structures in MGOS. The dual transformation between REDS and IWDS facilitates those between all three types of Voronoi
diagrams and all three types of triangulations.

9. find_first_order_neighbor_atoms_in_Lee_Richards_
model(solventProbeRadius, atom)

10. find_first_order_neighbor_atoms_in_Lee_Richards_
model(solventProbeRadius, atomArrangement)

11. find_second_order_neighbor_atoms_in_Lee_Richards_
model(solventProbeRadius, atom)

12. find_second_order_neighbor_atoms_in_Lee_Richards_
model(solventProbeRadius, atomArrangement)

• Entity verifier API (proximity query II) : Six APIs

1. is_atom_on_boundary_of_van_der_Waals_model
(atom)

2. is_buried_atom_van_der_Waals_model(atom)
3. are_atoms_adjacent_in_van_der_Waals_model

(atom1, atom2)
4. is_atom_on_boundary_of_Lee_Richards_model

(solventProbeRadius, atom)
5. is_buried_atom_of_Lee_Richards_model

(solventProbeRadius, atom)
6. are_atoms_adjacent_in_Lee_Richards_model(solvent-

ProbeRadius, atom1, atom2)

• Entity counter API : Twelve APIs

1. number_of_boundary_atoms_in_van_der_Waals_
model()

2. number_of_buried_atoms_in_van_der_Waals_model()
3. number_of_first_order_neighbor_atoms_in_van_der_

Waals_model(atom)
4. number_of_second_order_neighbor_atoms_in_van_

der_Waals_model(atom)
5. number_of_first_order_neighbor_atoms_in_van_der_

Waals_model(atomArrangement)
6. number_of_second_order_neighbor_atoms_in_van_

der_Waals_model(atomArrangement)
7. number_of_boundary_atoms_in_Lee_Richards_model

(solventProbeRadius)
8. number_of_buried_atoms_in_Lee_Richards_model

(solventProbeRadius)
9. number_of_first_order_neighbor_atoms_in_Lee_

Richards_model(solventProbeRadius, atom)
10. number_of_second_order_neighbor_atoms_in_Lee_

Richards_model(solventProbeRadius, atom)

14 D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101

Fig. 12. Data structure of REDS and IWDS. (a) REDS, (b) IWDS.

Table 1
The 300 tested PDB models.
1AA2 1ARL 1BWW 1C26 1CEX 1CT4 1D2K 1D4T 1DC9 1DKL
1DQ0 1DQZ 1E2T 1EAI 1EDQ 1EKG 1EQP 1ES9 1EUM 1EY4
1EZG 1F2V 1F41 1F46 1F60 1FA8 1FCQ 1FHL 1FQN 1GCP
1HM5 1I2T 1I8K 1IFV 1ILW 1IOK 1IS5 1IXV 1IZ6 1IZ9
1J27 1J2W 1JEZ 1JLN 1JVW 1JYH 1K1B 1K5A 1KF5 1KPK
1KYF 1KZ1 1L3K 1L7A 1L7J 1LB1 1LBW 1LF1 1LHP 1LN4
1LRZ 1LU9 1LW1 1LZ1 1M0Z 1M4R 1M5S 1M9X 1MHN 1MN6
1MN8 1NKD 1NLB 1NR2 1NWA 1ORJ 1OTV 1P3C 1PM4 1Q5Z
1QB5 1QKD 1QP1 1QQ1 1QXH 1QZN 1R0M 1R0V 1R1R 1R1W
1R29 1R2T 1R3R 1R4B 1R5Z 1R8O 1RAV 1RC9 1RH9 1RL0
1RXZ 1S4F 1SAU 1SH5 1SNZ 1SRV 1SWH 1SYQ 1T45 1T4Q
1T5O 1T6F 1T7N 1TM2 1TP6 1TQG 1TZQ 1U07 1U3Y 1UC7
1UCS 1UGQ 1ULK 1ULN 1ULQ 1VDH 1VDK 1VDQ 1VES 1VFQ
1VRX 1WLG 1WM3 1WU3 1WU9 1WX0 1WYT 1X13 1X25 1X7F
1X91 1XG2 1XH3 1XIX 1XL9 1XMB 1XMP 1XN2 1XO7 1XQO
1XWG 1Y0M 1Y2T 1Y7Y 1Y9U 1YBO 1YCK 1YM5 1YOY 1YP5
1YPF 1YVI 1Z96 1ZCF 1ZEQ 1ZG4 1ZKR 1ZLB 1ZLM 1ZPW
1ZRS 1ZS3 1ZVT 1ZWS 1ZX6 1ZYE 1ZZG 1ZZK 2A28 2A4V
2A8F 2AB0 2AHE 2AQ1 2B0J 2B1K 2B3M 2B43 2BCM 2BMA
2CAR 2CWC 2CWL 2CYG 2D7T 2DEP 2DFU 2DHH 2DPO 2DU7
2E3Z 2ECE 2EKC 2EKY 2EO8 2EP5 2EQ5 2ERF 2ERW 2ESK
2ESN 2ET6 2F51 2F6L 2F82 2FBQ 2FC3 2FHZ 2FIQ 2FN9
2FP8 2FTS 2FU0 2G5X 2G7O 2G85 2GAI 2GAS 2GBJ 2GDG
2GDN 2GE7 2GFB 2GG4 2GGK 2GGV 2GMY 2GOI 2GPO 2GTD
2GUV 2H2R 2H3L 2H8O 2HK2 2HWX 2HWZ 2I1S 2I3F 2I49
2I6V 2IC6 2IG8 2IGD 2IPB 2IPR 2J0N 2J69 2NLS 2NM0
2NVW 2O37 2O70 2O7H 2OBI 2OEB 2OL7 2ON7 2OP6 2P19
2P2C 2PET 2PLQ 2PLU 2PN7 2QDN 2QE7 2QV3 2R57 2R6U
2TMG 2UX2 2V0V 2VHI 2VL0 2YZ1 2Z43 2Z5E 3B7H 3B8N
3BB7 3BG1 3BHS 3BIP 3BJV 3BTU 3BXY 3CB4 3PVA 4EUG

11. number_of_first_order_neighbor_atoms_in_Lee_
Richards_model(solventProbeRadius, atomArrange-
ment)

12. number_of_second_order_neighbor_atoms_in_Lee_
Richards_model(solventProbeRadius, atomArrange-
ment)

• Property evaluator API (geometric computation) : Ten
APIs

1. compute_volume_of_van_der_Waals_model()
2. compute_area_of_van_der_Waals_model()
3. compute_volume_and_area_of_van_der_Waals_

model()
4. compute_voids_of_van_der_Waals_model()
5. compute_volume_of_Lee_Richards_model

(solventProbeRadius)
6. compute_area_of_Lee_Richards_model

(solventProbeRadius)
7. compute_volume_and_area_of_Lee_Richards_model

(solventProbeRadius)
8. compute_voids_of_Lee_Richards_model

(solventProbeRadius)
9. compute_channels(solventProbeRadius, gateSize)

10. compute_pockets(ligandSize, solventProbeRadius)

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cpc.2019.107101.

References

[1] D. Morgan, A.V. der Ven, G. Ceder, Electrochem. Solid-State Lett. 7 (2)
(2004) A30–A32.

[2] H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402 (1999) 276–279.
[3] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A. Yazaydin, R.

Q.Snurr, M. OKeeffe, Science 329 (5990) (2010) 424–428.
[4] C. Chothia, Nature 248 (1974) 338–339.
[5] M.L. Connolly, Science 221 (1983) 709–713.
[6] S.J. Hubbard, K.-H. Gross, P. Argos, Protein Eng. 7 (5) (1994) 613–626.
[7] D.A. Doyle, J.M. Cabral, R.A. Pfuetzer, A. Kuo, J.M. Gulbis, S.L. Cohan, B.T.

Chait, R. Mackinnon, Science 280 (1998) 69–77.
[8] A. Yonath, K.R. Leonard, H.G. Wittmann, Science 236 (4803) (1987)

813–816.
[9] X. Liu, E. C.Theil, Acc. Chem. Res. 38 (3) (2005) 167–175.

[10] C.H. Park, S.Y. Lee, D.S. Hwang, D.W. Shin, D.H. Cho, K.H. Lee, T.-W. Kim,
T.-W. Kim, M. Lee, D.-S. Kim, C.M. Doherty, A.W. Thornton, A.J. Hill, M.D.
Guiver, Y.M. Lee, Nature 532 (7600) (2016) 480–483.

[11] T. Gerling, K.F. Wagenbauer, A.M. Neuner, H. Dietz, Science 347 (6229)
(2015) 1446–1452.

[12] M.N. O’Brien, M.R. Jones, B. Lee, C.A. Mirkin, Nature Mater. 14 (2015)
833–839.

[13] E. Fischer, Ber. Dtsch. Keram. Ges. 23 (2) (1890) 2114–2141.
[14] J. Daniel E. Koshland, Proc. Natl. Acad. Sci. 44 (1958) 98–104.
[15] A. Shrake, J.A. Rupley, J. Mol. Biol. 79 (2) (1973) 351–371.
[16] G.J. Kleywegt, T.A. Jones, Acta Crystallogr. Sect. D 50 (1994) 178–185.
[17] F.M. Richards, Ann. Rev. Biophys. Bioeng. 6 (1977) 151–176.
[18] J.-K. Kim, Y. Cho, R.A. Laskowski, S.E. Ryu, K. Sugihara, D.-S. Kim, Proteins

82 (9) (2014) 1829–1849.
[19] J.-K. Kim, Y. Cho, M. Lee, R.A. Laskowski, S.E. Ryu, K. Sugihara, D.-S. Kim,

Nucleic Acids Res. 43 (W1) (2015) W413–W418.
[20] RCSB Protein Data Bank, http://www.rcsb.org/pdb/.
[21] M. Vlassi, G. Cesareni, M. Kokkinidis, J. Mol. Biol. 285 (2) (1999) 817–827.
[22] S. Horiuchi, H. Tanaka, E. Sakuda, Y. Arikawa, K. Umakoshi, Dalton Trans.

48 (2019) 5156–5160.
[23] A. Shimada, M. Kubo, S. Baba, K. Yamashita, K. Hirata, G. Ueno, T. Nomura,

T. Kimura, K. Shinzawa-Itoh, J. Baba, K. Hatano, Y. Eto, A. Miyamoto, H.
Murakami, T. Kumasaka, S. Owada, K. Tono, M. Yabashi, Y. Yamaguchi, S.
Yanagisawa, M. Sakaguchi, T. Ogura, R. Komiya, J. Yan, E. Yamashita, M.
Yamamoto, H. Ago, S. Yoshikawa, T. Tsukihara, Sci. Adv. 3 (7) (2017) 1–12.

[24] L. Ducassoua, L. Dhers, G. Jonasson, N. Pietrancosta, J.-L. Boucher, D.
Mansuy, F. André, Biochimie 140 (2017) 166–175.

[25] T. Molcan, S. Swigonska, K. Orlowska, K. Myszczynski, A. Nynca, A.
Sadowska, M. Ruszkowska, J.P. Jastrzebski, R.E. Ciereszko, Chemosphere
168 (2017) 205–216.

[26] F.J. Rizzuto, J.R. Nitschke, Nature Chem. 9 (2017) 903–908.

https://doi.org/10.1016/j.cpc.2019.107101
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb1
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb1
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb1
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb2
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb5
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb7
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb7
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb7
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb9
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb10
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb10
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb10
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb10
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb10
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb11
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb11
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb11
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb13
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb14
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb15
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb16
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb17
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb18
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb18
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb18
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb19
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb19
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb19
http://www.rcsb.org/pdb/
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb21
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb22
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb22
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb22
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb24
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb24
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb24
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb25
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb25
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb25
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb25
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb25
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb26

D.-S. Kim, J. Ryu, Y. Cho et al. / Computer Physics Communications 251 (2020) 107101 15

[27] G. Markiewicz, A. Jenczak, M. Kołodziejski, J.J. Holstein, J.K.M. Sanders, A.R.
Stefankiewicz, Nature Commun. 8 (15109) (2017) 1–8.

[28] V. Chaptal, F. Delolme, A. Kilburg, S. Magnard, C. Montigny, M. Picard, C.
Prier, L. Monticelli, O. Bornert, M. Agez, S. Ravaud, C. Orelle, R. Wagner, A.
Jawhari, I. Broutin, E. Pebay-Peyroula, J.-M. Jault, H.R. Kaback, M. le Maire,
P. Falson, Sci. Rep. 7 (41751) (2017) 1–12.

[29] L. Zhang, J.B. Bailey, R.H. Subramanian, A. Groisman, F.A. Tezcan, Nature
557 (2018) 86–91.

[30] S. Kitanovic, C.A. Marks-Fife, Q.A. Parkes, P.R. Wilderman, J.R. Halpert, M.D.
Dearing, J. Mammal. 99 (3) (2018) 578–585.

[31] T. Nagae, H. Yamada, N. Watanabe, Acta Crystallogr. Sect. D 74 (2018)
895–905.

[32] B. Htan, D. Luo, C. Ma, J. Zhang, Q. Gan, Cryst. Growth Des. 19 (5) (2019)
2862–2868.

[33] A. Chakravorty, E. Gallicchio, Comput. Chem. 40 (12) (2019) 1290–1304.
[34] D.-S. Kim, Y. Cho, D. Kim, Comput. Aided Des. 37 (13) (2005) 1412–1424.
[35] D.-S. Kim, D. Kim, Y. Cho, K. Sugihara, Comput. Aided Des. 38 (7) (2006)

808–819.
[36] D.-S. Kim, Y. Cho, K. Sugihara, Comput. Aided Des. 42 (10) (2010) 874–888.
[37] D.-S. Kim, Y. Cho, K. Sugihara, J. Ryu, D. Kim, Comput. Aided Des. 42 (10)

(2010) 911–929.
[38] J.A. Le Bel, in: G. Richardson (Ed.), The Foundations of Stereochemistry,

1901, pp. 47–59, The Richardson translations have been reprinted in
Benfey, O.T., Ed. Classics in the Theory of Chemical Combination; Dover:
New.

[39] J.H. van’t Hoff, in: G. Richardson (Ed.), The Foundations of Stereochemistry,
1901, pp. 66–73.

[40] R.B. Grossman, J. Chem. Educ. 66 (1) (1989) 30–33.
[41] N. Sidgwick, H. Powell, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 176

(1940).
[42] R.J. Gillespie, Molecular Geometry, Van Nostrand Reinhold, 1972.
[43] R.J. Gillespie, R.S. Nyholm, Q. Rev. Chem. Soc. 11 (4) (1957) 339–380.
[44] R.J. Gillespie, J. Chem. Educ. 40 (6) (1963) 295–301.
[45] R. Gillespie, Can. J. Chem. 38 (1960) 818–826.
[46] E. Fischer, Syntheses in the Purine and Sugar Group, Nobel Lectures in

Chemistry 1901–1921, Elsevier, Amsterdam, 1966.

[47] F. Crick, Acta Crystallogr. 6 (1953) 689–697.
[48] J. Daniel E. Koshland, Science 142 (3599) (1963) 1533–1541.
[49] J. Daniel E. Koshland, Angew. Chem., Int. Ed. 33 (1994) 2375–2378.
[50] J.C. Kendrew, R.E. Dickerson, B.E. Strandberg, R.G. Hart, D.R. Davies, Nature

185 (4711) (1960) 422–427.
[51] B. Lee, F.M. Richards, J. Mol. Biol. 55 (1971) 379–400.
[52] C. Chothia, Nature 254 (27) (1975) 304–308.
[53] F.M. Richards, J. Mol. Biol. 82 (1974) 1–14.
[54] R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, J. Appl.

Crystallogr. 26 (1993) 283–291.
[55] V.B. Chen, W.B.A. III, J.J. Headd, D.A. Keedy, R.M. Immormino, G.J. Kapral,

L.W. Murray, J.S. Richardson, D.C. Richardson, Acta Crystallogr. D 66 (1)
(2010) 12–21.

[56] I.W. Davis, A. Leaver-Fay, V.B. Chen, J.N. Block, G.J. Kapral, X. Wang, L.W.
Murray, W.B.A. III, J. Snoeyink, J.S. Richardson, D.C. Richardson, Nucleic
Acids Res. 35 (2007) W375–383.

[57] A.V. Anikeenko, M.G. Alinchenko, V.P. Voloshin, N.N. Medvedev, M.L.
Garvrilova, P. Jedlovszky, International Conference on Computational
Science and Its Applications, 2004, pp. 217–226.

[58] W.-H. Shin, J.-K. Kim, D.-S. Kim, C. Seok, J. Comput. Chem. 34 (30) (2013)
2647–2656.

[59] J. Ryu, M. Lee, J. cha, R.A. Laskowski, S.E. Ryu, D.-S. Kim, Nucleic Acids Res.
44 (W1) (2016) W416–W423.

[60] A. Bondi, J. Phys. Chem. 68 (1964) 441–451.
[61] J.C. Slater, J. Chem. Phys. 41 (10) (1964) 3199–3204.
[62] W.C. Still, A. Tempczyk, R.C. Hawley, T. Hendrickson, J. Am. Chem. Soc. 112

(16) (1990) 6127–6129.
[63] A. Onufriev, D. Bashford, D.A. Case, Proteins 55 (2) (2004) 383–394.
[64] S.W. Lockless, M. Zhou, R. MacKinnon, PLoS Biol. 5 (5) (2007) 1079–1088.
[65] J. Tsai, R. Taylor, C. Chothia, M. Gerstein, J. Mol. Biol. 290 (1999) 253–266.
[66] J.D. Bernal, J.L. Finney, Discuss. Faraday Soc. 43 (1967) 62–69.
[67] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams, second ed., John Wiley & Sons,
Chichester, 1999.

[68] K. Lee, Principles of CAD/CAM/CAE Systems, Addison-Wesley, Boston, 1999.

http://refhub.elsevier.com/S0010-4655(19)30404-7/sb27
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb27
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb27
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb28
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb28
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb28
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb28
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb28
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb28
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb28
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb29
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb29
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb29
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb30
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb30
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb30
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb31
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb31
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb31
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb32
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb32
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb32
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb33
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb34
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb35
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb35
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb35
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb36
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb37
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb37
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb37
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb38
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb38
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb38
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb38
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb38
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb38
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb38
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb39
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb39
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb39
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb40
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb41
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb41
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb41
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb42
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb43
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb44
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb45
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb46
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb46
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb46
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb47
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb48
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb49
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb50
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb50
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb50
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb51
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb52
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb53
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb54
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb54
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb54
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb55
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb55
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb55
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb55
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb55
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb56
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb56
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb56
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb56
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb56
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb58
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb58
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb58
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb59
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb59
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb59
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb60
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb61
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb62
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb62
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb62
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb63
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb64
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb65
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb66
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb67
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb67
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb67
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb67
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb67
http://refhub.elsevier.com/S0010-4655(19)30404-7/sb68

	MGOS: A library for molecular geometry and its operating system
	Introduction
	How the geometry concept has evolved in the molecular world
	Molecular geometry: A new approach to study atomic arrangement
	MGOS: The engine to implement MG
	Use cases
	Case I: Analysis of an atomic arrangement
	Case II: Analysis of 100 atomic arrangements

	MGOS architecture
	Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A. 300 Test PDB Models
	Appendix B. APIs of MGOS
	Appendix C. Supplementary data
	References

