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Abstract: Ultrasound (US) imaging can examine human bodies of various ages; however, in the
process of obtaining a US image, speckle noise is generated. The speckle noise inhibits physicians
from accurately examining lesions; thus, a speckle noise removal method is essential technology.
To enhance speckle noise elimination, we propose a novel algorithm using the characteristics of
speckle noise and filtering methods based on speckle reducing anisotropic diffusion (SRAD) filtering,
discrete wavelet transform (DWT) using symmetry characteristics, weighted guided image filtering
(WGIF), and gradient domain guided image filtering (GDGIF). The SRAD filter is exploited as a
preprocessing filter because it can be directly applied to a medical US image containing speckle noise
without a log-compression. The wavelet domain has the advantage of suppressing the additive noise.
Therefore, a homomorphic transformation is utilized to convert the multiplicative noise into additive
noise. After two-level DWT decomposition is applied, to suppress the residual noise of an SRAD
filtered image, GDGIF and WGIF are exploited to reduce noise from seven high-frequency sub-band
images and one low-frequency sub-band image, respectively. Finally, a noise-free image is attained
through inverse DWT and an exponential transform. The proposed algorithm exhibits excellent
speckle noise elimination and edge conservation as compared with conventional denoising methods.

Keywords: ultrasound imaging; discrete wavelet transform; weighted guided image filtering;
gradient domain guided image filtering; speckle noise

1. Introduction

Ultrasound (US) imaging devices have been exploited to examine human bodies of various ages,
from young to old people; in fact, US imaging is one of the most widely used imaging technologies in the
medical diagnosis field. US imaging devices can be inexpensive, protected from radiation, and portable
compared with other medical imaging devices such as X-ray imaging, computer tomography, magnetic
resonance imaging, and positron emission tomography [1,2]. Another advantage is that it can produce
a real-time image. Based on these merits, US imaging devices are widely utilized to diagnose lesions
in muscles, joints, blood vessels, and internal organs. US imaging is also used to examine fetuses of
pregnant women, which can be viewed safely and in real time.

An inherent characteristic of US images is speckle noise [3]. Speckle noise in medical US images
is caused by backscattered echo signals [4]. Speckle noise has the characteristics of multiplicative
noise and Rayleigh distribution, degrading the image resolution and contrast because of the granular
pattern that appears in the images [5]. Speckle noise in medical US images prevents physicians from
performing accurate lesion diagnosis because they hinder the extraction, analysis, and recognition of
lesion features. To gain a reliable lesion diagnosis and analysis through US imaging, a speckle noise
suppression algorithm is an essential preprocessing technique.
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In the past few years, numerous algorithms have been developed to eliminate speckle noise
from US and digital images. This study presents four categories of speckle noise reduction methods:
single filter, nonlocal means (NLM)-based algorithm, despeckling of sub-band images in the transform
domain, and speckle noise suppression in the transform domain. Among the single filter methods that
made use of eliminating speckle noise from ultrasonography images are the Lee [6], Kuan [7], Frost [8],
modified Lee filter [9], modified Frost filter [9], and anisotropic diffusion filtering [10,11] methods.
Since these filtering methods tend to result in a smoothing phenomenon at the edges, these techniques
are not optimal for removing speckle noise. They also turn up a loss of edge information, such as
texture patterns and other important details.

Despeckling algorithms combining various techniques have been proposed to overcome the
problems of single filtering methods. To suppress speckle noise, an optimized Bayesian-based nonlocal
mean (OBNLM) method was proposed by Coupe et al. [12]. The OBNLM technique was employed
through the block-wise nonlocal means (NLM) approach. Then, the Pearson distance measure was
utilized in the OBNLM method to calculate the similarity between two patches in the image to suppress
speckle noise. Yang et al. [13] developed an algorithm using local statistics based on the NLM filter to
reduce speckle noise. Radlak and Smolka [14] proposed a method based on an adaptive NLM filter.
Sudeep et al. [15] put forward a novel algorithm by considering different parameters of speckle noise
statistics based on the maximum likelihood estimation method. Although NLM-based algorithms have
been developed, these methods tend to generate over-smoothed images, with speckle noise remaining
near the edge regions. Tounsi et al. [16] suggested a method of eliminating speckle noise by exploiting
a variant NLM technique. In their study, NLM-based adaptive patches and a few reprojection (central
reprojection, uniform average of estimators reprojection, and minimizing variance-reprojection etc.)
utilizing the NLM filter were primarily used; however, their method showed a low speckle noise
rejection ability in the non-homogeneous areas. Furthermore, to eliminate speckle noise in digital
images, a despeckling technique using the NLM filter and adaptive mask-based filtering techniques,
similar to the NLM method, was proposed by Tounsi et al. [17]. Although this algorithm conserved the
outstanding feature information, it exhibited low speckle noise rejection ability in the flat areas. Santos
et al. [18] proposed a despeckling method based on block-matching collaborative filtering (BM3D)
and novel stochastic distance techniques. Although this algorithm has superb feature information
conservation ability, speckle noise still remains in the homogeneous areas of US images.

To take advantage of the statistical characteristics of sub-band images in the transform domain,
despeckling algorithms utilize each distribution of sub-band images based on prior knowledge.
Portilla et al. [19] proposed a speckle noise suppression algorithm using Bayesian least squares with
a Gaussian mixture model. In [20], an algorithm exploiting the Gaussian mixture model to suit
coefficients for the distribution of sub-band images in the transform domain was proposed. After
these experiments, a generalized Gaussian distribution [21] made use of suiting a distribution of
the data. To adapt to various statistical model conditions, probability density functions such as the
normal inverse Gaussian [22], Laplace distribution [23], and Cauchy Rayleigh distribution [24] have
been utilized.

In a few experiments, algorithms employing a transform domain have been developed to eliminate
speckle noise from images. Zada et al. [25] proposed a speckle noise reduction algorithm based on
the monogenic wavelet transform in digital images. This algorithm showed an outstanding speckle
noise elimination ability but exhibited artifacts in the non-edge areas. Furthermore, Trusiak et al. [26]
employed a modified fast and adaptive bi-dimensional empirical mode decomposition and the Hilbert
spiral transform for reducing speckle noise. Although this method showed a remarkable speckle
noise elimination ability, there was a loss of edge information in some of the feature regions. In [27],
a despeckling method was proposed using the intra-scale correlation in the wavelet domain. Fathi
and Naghsh [28] developed a despeckling technique utilizing a threshold method in the transform
domain to suppress speckle noise. In wavelet transform, a despeckling algorithm was suggested using
the Bayesian minimum mean square error (MMSE) [29]. Baselice et al. [30] provided a suggestion
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to overcome a limitation of the Wiener filtering method. In [30], various techniques such as the
enhanced Wiener filter, fast Fourier transform (FFT), and Markov random field (MRF) were adopted.
The enhanced Wiener filter tunes the mask size to obtain noise reduction and detail conservation.
The speckle noise removal methodology uses the MRF technique in the FFT domain to reduce the
computational burden of the algorithm. The algorithm of Baselice et al. achieved good filtering
performance but was accompanied by a loss of edge information. However, as mentioned above,
most algorithms for speckle noise reduction in medical US images appear to have low speckle noise
elimination and feature preservation abilities. Therefore, to realize an excellent ability of speckle noise
removal and edge information conservation, we propose an algorithm utilizing a speckle reducing
anisotropic diffusion (SRAD) filter [31], discrete wavelet transform (DWT) employing symmetry
characteristics, gradient domain guided image filtering (GDGIF) [32], and weighted guided image
filtering (WGIF) [33]. Under the condition of multiplicative noise, the SRAD filtering technique can
be directly employed to suppress speckle noise because it can be directly applied to a medical US
image including speckle noise without a log-compression. The wavelet domain has the advantage of
eliminating additive noise (additive white Gaussian noise) [34]. Therefore, we used a homomorphic
transformation to convert the multiplicative noise into additive noise in the SRAD resulting image.
A two-level DWT decomposition, which employs the symmetry characteristics, produces seven
high-frequency sub-band images and a low-frequency sub-band image from the SRAD resultant image
to retain each of the wavelet coefficients and remove the noise. Finally, a noise-free image taking
advantage of DWT reconstruction and exponential transformation is obtained.

This paper is organized as follows. In Section 2, we propose a new method for eliminating speckle
noise and conserving edges based on SRAD, DWT, GDGIF, and WGIF. Experimental results of the
conventional methods and proposed algorithm are analyzed in Section 3. Finally, the conclusion is
presented in Section 4.

2. Proposed Algorithm

A flowchart of the proposed method is shown in Figure 1. The SRAD filtering method has
a superb speckle noise reduction and detail information conservation performance because an
instantaneous coefficient of variation (ICOV) in the SRAD filter can classify feature areas in speckled
imagery [31]. Therefore, the SRAD filter was utilized as a preprocessing filter in the proposed
algorithm. Understanding the statistical model for suppressing noise in the wavelet domain can lead
to improvement in speckle noise removal from US images.
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The additive noise, which possesses the characteristics of additive white Gaussian noise, can be
reduced in the wavelet domain [34]; thus, we utilize a homomorphic transformation to convert the
multiplicative noise into additive noise in the resulting image of the SRAD filter. The two-level wavelet
decomposition can convert a parent image (SRAD resulting image) into seven high-frequency sub-band
images and a low-frequency sub-band image. The wavelet coefficients in the high-frequency sub-band
images are conserved, whereas the additive noise in the high-frequency sub-band images are eliminated
for the GDGIF. Meanwhile, as the low-frequency sub-band image in the wavelet domain includes large
speckle noise [35], the WGIF is exploited to suppress the speckle noise in the low-frequency sub-band
image while conserving the edges. Finally, a despeckled image is gained using wavelet reconstruction
and exponential transformation.

2.1. Speckle Reducing Anisotropic Diffusion Filter

A partial differential equation was exploited for the SRAD filter to eliminate the speckle noise in
medical US images (Equation (1)).

∂I(x,y;t)
∂t = div[c(q)∇I(x, y; t)]

I(x, y; 0) = I0(x, y),
(
∂I(x,y;t)

∂
→
n

)∣∣∣∣∣
∂Ω

= 0
(1)

where I0(x, y) and I(x, y; t) are the initial and output images, respectively, ∇ denotes the gradient
operator, div is a divergence operator, ∂Ω is the boundary of Ω, and

→
n is the outer normal of ∂Ω.

In Equation (1), the diffusion coefficient c(q) determines which diffusion process is exploited to
eliminate speckle noise. The diffusion coefficient c(q) is calculated as follows:

c(q) =
1

1+[q2(x,y;t)−q2
0(t)]

[q2
0(t)(1+q2

0(t))]

(2)

where q(x, y; t) and q0(t) are the instantaneous coefficient of variation (ICOV) and speckle scale
function, respectively. The ICOV is utilized as an edge detector in US images containing speckle noise
(Equation (3)).
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where ∇2 is the Laplacian operator. The ICOV displays high values at the edge areas and low values in
the flat regions. The speckle scale function q0(t) plays a role as the diffusion threshold in Equation (2).
This function is given by

q0(t) =

√
var[z(t)]

z(t)
(4)

where z(t) and var[z(t)] are the mean and variance, respectively, over a flat area at t. The diffusion
threshold can be adjusted according to regions in the image whether to promote or inhibit smoothing.
Therefore, this function can eliminate speckle noise in flat areas and conserve the edge information.
According to the functions mentioned above, the SRAD filtering technique can be directly applied to
medical US images that contain speckle noise to remove the speckle noise and preserve the features.
We make use of the SRAD filter as a pretreatment filtering method.

2.2. A Model of Speckle Noise

The SRAD filtered resulting image consists of two parts: the useful signal and the noise. The noise
consists of multiplicative noise and additive noise. The multiplicative noise is related to the principle
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of medical US imaging [35,36], whereas additive noise is the noise generated by the sensor [10]. The
speckle noise model of the SRAD resulting image can be written as:

F(x, y) = O(x, y) ×W(x, y) + A(x, y) (5)

where O(x, y), W(x, y), and A(x, y) are the original signal, multiplicative noise, and additive noise,
respectively. In Equation (5), the additive noise A(x, y) is omitted because the effect of the additive
noise A(x, y), compared with that of the multiplicative noise W(x, y), is considerably small. Thus,
Equation (5) can be represented by Equation (6).

F(x, y) = O(x, y) ×W(x, y) (6)

Here, multiplicative noise W(x, y) obeys the Rayleigh distribution [34]. In the research field of
noise reduction, DWT using symmetry characteristics is typically utilized to eliminate additive noise.
Therefore, a model of multiplicative noise is converted into a model of additive noise exploiting a
homomorphic transformation (Equation (7)).

log(F(x, y)) = log(O(x, y)) + log(W(x, y)) (7)

where log(F(x, y)) is a medical US image, and log(W(x, y)) follows the characteristics of additive
Gaussian white noise [34].

2.3. Discrete Wavelet Transform

To suppress the additive noise in the high-frequency sub-band images and low-frequency sub-band
image of the wavelet domain, at each step, we can acquire four different sub-band images with different
orientations and components depending on scale and translation parameters. DWT based on symmetry
characteristics decomposes the signal into a set of basis functions to obtain each sub-band image
(Equation (8)). As the scale and translation parameters can be applied in the wavelet decomposition on
the DWT, each sub-band image is obtained exploiting this process. That is, wavelet Ψ j,k(t) is a set of
functions attained by scaling in or out and translating the mother wavelet Ψ(t).

Ψ j,k(t) = 2−
j
2 Ψ

(
2− jt− k

)
(8)

where Ψ(t) is the mother wavelet, j is a component for adjusting the scale parameter, and k is a
translation parameter that represents a constituent frequency moving along the time axis. The scale
parameter can distinguish the local characteristics of a signal at a variety of scales, whereas the
translation parameter can cover the entire region. The signal f (t) is represented by a linear combination
of wavelet coefficients c j,k and wavelet Ψ j,k(t) (Equation (9)).

f (t) =
∑
j,k

c j,kΨ j,k(t) (9)

Figure 2 displays the one-level wavelet decomposition process for two-dimensional (2D) images.
In the one-level wavelet decomposition, a low-pass and a high-pass filter are applied to a 2D image in
the horizontal direction. The result of applying the pass filter in the horizontal direction is to reduce
the size to a half through down sampling. By applying the same process to the vertical direction, four
sub-band images (LL1, LH1, HL1, HH1) are obtained. LH1, HL1, and HH1 are high-frequency sub-band
images in the horizontal, vertical, and diagonal directions, respectively, whereas LL1 is a low-frequency
sub-band image. LL1 is used as the input image of the next wavelet decomposition process to be
divided into high-frequency sub-band images (LH2, HL2, HH2) and a low-frequency sub-band image
(LL2). That is, three high-frequency sub-band images (LH1, HL1, HH1) and a low-frequency sub-band
image (LL1) are acquired utilizing a one-level wavelet decomposition process. In two-level wavelet
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decomposition, the low-frequency sub-band image is divided into three high-frequency sub-band
images (LH2, HL2, HH2) and a low-frequency sub-band image (LL2).
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Figure 2. A one-level decomposition process of the discrete wavelet transform (DWT). Figure 2. A one-level decomposition process of the discrete wavelet transform (DWT).

In this study, wavelet decomposition was performed up to level two, and among the types of bior,
coif, db, dmey, sym, haar, and rbio, sym was used (Figure 3).
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2.4. Gradient Domain Guided Image Filtering in the High-Frequency Sub-Band Images

In the wavelet domain, many studies have used threshold methods based on hard [37], soft [36],
and Bayes [37,38] thresholds to eliminate the noise in high-frequency sub-band images [35,39–41]. The
ability of the GDGIF based on first-order edge-aware to provide detailed information was verified
in [32] through the method of single-image detail enhancement; thus, we make use of the GDGIF to
eliminate noise and conserve edges in the high-frequency sub-band images.

The most important assumption in the guided image filtering (GIF) process is a local linear model
between guidance G and filtering output q. The cost function of the GIF is defined as:

qi = ahGi + bh, ∀i ∈ ωh (10)

where (ah, bh) are linear coefficients in square window ωh, which has mask size h. To determine
the linear coefficients (ah, bh), from the filtering input, noise components were subtracted to acquire
filtering output q (Equation (11)).

qi = pi − ni (11)
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A cost function of GDGIF is defined as

E(ah, bh) =
∑
i∈ωh

[(ahGi + bh − pi)
2 +

λ

τG(h)
(ah − ϑh)

2] (12)

where τG(h) is an edge-aware weight based on first-order of the GDGIF. The first-order edge-aware
weight of the GDGIF is as follows:

τG(h) =
1
N

N∑
h=1

ℵ(h′) + ε

ℵ(h) + ε
(13)

where τG(h) makes use of the local variance of 3× 3 masks and (2h + 1) × (2h + 1) windows. The size
of ℵ(h′) is σG,1(h′)σG,h(h′). The weight of the GDGIF τG(h) plays an analogous role to the weight of
the WGIF [33]. Parameter ϑh is represented as follows.

ϑh = 1−
1

1 + eη(χ(h′)−µχ,∞)
(14)

where µχ,∞ is the mean value of all χ(p) and η is calculated as 4
(µχ,∞−min(χ(p))) . When ϑh is located at the

edge areas, the value of ϑh approximates 1. In the homogeneous regions, the value of ϑh approaches 0.
The optimized values of ah1 and bh1 are expressed as follows.

ah1 =
µG∗q(h) − µG(h)µq(h) + λ

τG(h)
ϑh

σ2
G + λ

τG(h)

(15)

bh1 = µq(h) − ahµG(h) (16)

The final value of p1
i is expressed as follows.

p1
i = ah1Gi + bh1 (17)

where ah1 and bh1 are the mean values of ah1 and bh1 in the window, respectively.

2.5. Weighted Guided Image Filtering in the Low-Frequency Sub-Band Image

In [12], it is confirmed that noise is present in a low-frequency sub-band image in the wavelet
domain. Zhang and Gunturk take advantage of a bilateral filter (BF) [42] to eliminate the noise from
the low-frequency sub-band image. Since BF uses the Gaussian-weighted average, the BF exhibits
artifacts around the edge regions [43]. To overcome this problem, Zhang et al. [35] suppressed noise
without artifacts by applying a GIF [43] to the low-frequency sub-band image. Although the GIF
outperforms the BF, the value of the regularization parameter in the GIF is fixed [33]. It is impossible to
avoid halo artifacts when the GIF is exploited because the GIF serves to smooth edge areas. Therefore,
we make use of a WGIF [33] utilizing zeroth-order edge-aware weight to remove the additive noise
and conserve feature information.

From Equation (10) of the GIF, the values of uh and vh are obtained by minimizing cost function E.
The cost function of the linear coefficients E(uh, vh) is as follows:

E(uh, vh) =
∑
i∈ωh

[(uhGi + vh − pi)
2 +

λ

γG(h)
c2

h] (18)
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where λ is a regularization parameter. From Equation (18), γG(h) is an edge-aware weight exploiting
zeroth-order of the WGIF. The edge-aware weight of the WGIF is defined as

γG(h) =
1
N

N∑
h=1

σ2
G,1(h

′) + ε

σ2
G,1(h) + ε

(19)

where σ2
G,1(h

′) is the variance of the guidance image in the window, ε is a small constant selected as

(0.001× L)2, L is the dynamic range of the input image, and the weight γG(h) compares pixel with the
entire guidance image [33]. The value of γG(h) in the edge areas is larger than 1 but smaller than 1 in
the homogeneous regions.

The optimal values of
(
uh2 , vh2

)
are calculated as

uh2 =
µG∗q(h) − µG(h)µq(h)

σ2
G + λ

γG(h)

(20)

vh2 = µq(h) − uhµG(h) (21)

where ∗ is the element-by-element product of two matrices, and µG∗q(h), µG(h), and µq(h) are the mean
values G ∗ q, G, and q, respectively.

The final value of p2
ii is computed by

p2
ii = uh2Gi + vh2 (22)

where uh2 and vh2 are the mean values of uh2 and vh2 in the window.

2.6. Evaluation Metrics

In this experiment, three evaluation metrics are utilized to assess the abilities of speckle noise
elimination and edge conservation in standard and real US images. The peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) are exploited to measure the performances of speckle noise
suppression and feature conservation in standard images [44]. To measure the ability of speckle noise
suppression in the flat areas of real US images, we use an equivalent number of looks (ENL) metric [44].
A speckle suppression and mean preservation index (SMPI) is utilized to evaluate the despeckling
performance [18]. The PSNR is calculated as

PSNR = 20 log10

(
255
√

MSE

)
. (23)

where the mean square error (MSE) is defined by

MSE =
1

MN

M−1∑
x=0

N−1∑
y=0

{
f (M, N) − g(M, N)

}2 (24)

where M and N are the number of rows and columns, respectively, f is the original image, and g is the
result image obtained from the noisy image, applying the filtering method. The MSE represents the
similarity between the original image and resulting image. A low MSE value denotes that the resulting
image is close to the original image. The PSNR is utilized to evaluate the performance of speckle noise
elimination. A high PSNR value indicates excellent speckle noise suppression ability. The SSIM value
measures the similarity between the original image and resulting image. The SSIM is defined as:

SSIM(x, y) =

(
2µxµy + c1

)(
2covxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (25)
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where µx, µy, σ2
x, and σ2

y are the means of the original image and resulting image and variances of the
original image and resulting image, respectively, covxy represents the covariance of x and y, and c1 and
c2 are two positive values used to prevent the denominator from going to zero. The value range of
SSIM is from 0 to 1, and the higher the SSIM value, the more optimal the result. To assess the speckle
noise suppression in the homogeneous regions, ENL is used and is computed as follows,

ENL =
µ2

ROI

σ2
ROI

. (26)

Here, µ2
ROI and σ2

ROI denote the mean and standard deviation in the region of interest (ROI) of the US
images, respectively. A high value represents excellent speckle noise suppression ability in the flat
areas. A speckle suppression index (SSI) is not reliable, as the mean value of SSI is overestimated in the
filtered image. Therefore, the SMPI is used to accurately measure the despeckling performance. An
equation of SMPI is represented as

SMPI = (Q + |mean(E[n] − E[g]|)


√

var[g]√
var[n]

. (27)

Here,

Q =

(
max(E[g] −min(E[g]))

E[n]

)
(28)

where E [] and var[] denote the expected and variance values, respectively. n indicates the noise image.
A lower value of SMPI represents a higher despeckling ability [45].

3. Experimental Results

3.1. Experimental Environments of Standard Images and US Images

To appraise the performance of speckle noise elimination with the conventional methods and
proposed algorithm, six standard images, namely, Airplane (512 × 512), Boat (512 × 512), Cameraman
(256 × 256), Man (1024 × 1024), Lena (512 × 512), and Peppers (512 × 512) were selected, and five US
images (US images of malignant breast lesions (300 × 225) [46] and an US phantom image (257 × 257)
were selected (Figures 4 and 5). Real US images of malignant breast lesions were obtained using a
Hitachi Ultrasound System [46]. To assess the performance of speckle noise removal, we added speckle
noise with variance (σ = 0.04) to the standard images, as shown in Figure 4.

Figure 5 designates two ROIs in the US images to measure the speckle noise suppression ability in
the homogeneous areas. The speckle noise elimination and feature preservation performances of the
conventional methods (Gaussian [31], Lee [6], Frost [8], anisotropic diffusion filter with memory based
on speckle statistics (ADMSS) [47], SRAD [31], weighted least squares (WLS) [48], GIF [43], Bitonic [49],
SRAD-Bayes algorithm [44], and synthetic aperture radar block matching 3-D (SAR-BM3D) [50]),
and the proposed algorithm were compared. All experiments related to image processing were
conducted using MATLAB R2018b (MathWorks, Natick, MA) on an Intel(R) Core(TM) i5-8500 CPU @
3.0 GHz, 16 GB RAM, and 64-bit operating system.

Tables 1–3 indicate the optimal parameters of the existing denoising techniques and the proposed
algorithm for standard and US images. In the standard and US images, the optimal parameter of the
SRAD filtering method in the SRAD-Bayes algorithm [44] and the SRAD filtering technique are the
same as the parameters of the SRAD filter in Tables 1 and 2. The best parameters for the conventional
methods are listed in Table 3.
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Table 1. Optimal parameters for the proposed algorithm in the standard images. GDGIF: gradient
domain guided image filtering, SRAD: speckle reducing anisotropic diffusion, WGIF: weighted guided
image filtering.

SRAD GDGIF WGIF

Airplane
Time step = 0.01

Exponential rate = 1
Number of iterations = 130

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

Boat
Time step = 0.01

Exponential rate = 1
Number of iterations = 100

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

Cameraman
Time step = 0.01

Exponential rate = 1
Number of iterations = 180

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

Man
Time step = 0.01

Exponential rate = 1
Number of iterations = 120

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

Lena
Time step = 0.01

Exponential rate = 1
Number of iterations = 150

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

Peppers
Time step = 0.01

Exponential rate = 1
Number of iterations = 150

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

Table 2. Optimal parameters for the proposed algorithm in the US images.

SRAD GDGIF WGIF

US image 1
Time step = 0.01

Exponential rate = 1
Number of iterations = 130

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

US image 2
Time step = 0.01

Exponential rate = 1
Number of iterations = 80

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

US image 3
Time step = 0.01

Exponential rate = 1
Number of iterations = 140

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

US image 4
Time step = 0.01

Exponential rate = 1
Number of iterations = 90

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

US image 5
Time step = 0.01

Exponential rate = 1
Number of iterations = 60

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

US image 6
Time step = 0.01

Exponential rate = 1
Number of iterations = 100

Mask size = 9 × 9
Regularization parameter = 0.01

Mask size = 9 × 9
Regularization parameter = 1 × 10−6

3.1.1. Experiments on Standard Images

The PSNR and SSIM values of the conventional noise elimination techniques and proposed
algorithm are computed for comparison (Tables 4 and 5). Table 4 lists the PSNR values for the six
standard images. The best PSNR value is represented in bold. In the Airplane, Boat, Man, Lena, and
Peppers images, the GIF method achieves the lowest speckle noise suppression ability. In the five
standard images, the speckle noise elimination performances of the Lee, Frost, Gaussian, Bitonic, WLS,
ADMSS, SRAD, and SRAD-Bayes methods are better than that of the GIF technique. The SAR-BM3D
method has the best despeckling efficiency for the Airplane image (PSNR = 32.9288 dB), whereas the
PSNR value (27.4755 dB) of the proposed technique is ranked second. The Frost filter has the lowest
speckle noise removal ability in the Cameraman image. The existing noise reduction methods (GIF,
Lee, Gaussian, Bitonic, WLS, SRAD, SRAD-Bayes) are depicted from the high PSNR values in Table 4
compared with the Frost filtering method. The proposed method surpasses the second-best performing
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method, SAR-BM3D, among the existing speckle noise elimination techniques, achieving better PSNR
results for the Boat (PSNR = 0.5538 dB), Cameraman (PSNR = 0.1227 dB), Man (PSNR = 0.7806 dB),
Lena (PSNR = 0.0065dB), and Peppers (PSNR = 0.0837 dB) images, and worse results only for the
Airplane image (PSNR = –5.4533 dB). In other words, the proposed algorithm achieves the maximum
PSNR values for five standard images, which indicates that the proposed method typically has the best
speckle noise elimination performance in terms of PSNR index.

Table 3. Optimal parameters for the conventional methods in the standard and US images. ADMSS:
anisotropic diffusion filter with memory based on speckle statistics, BM3D: block-matching collaborative
filtering, WLS: weighted least squares.

Six Standard Images Six US Images

Guided Mask size = 3 × 3
Regularization parameter = 0.001

Mask size = 3 × 3
Regularization parameter = 0.001

Lee Mask size = 3 × 3 Mask size = 3 × 3

Frost Mask size = 3 × 3 Mask size = 3 × 3

Gaussian Mask size = 5 × 5
σ2 = 2

Mask size = 5 × 5
σ2 = 2

Bitonic Mask size = 3 × 3 Mask size = 3 × 3

WLS λ = 0.5 λ = 0.5

ADMSS ∆t = 0.5, σ = ρ = 0.1, niter = 15 ∆t = 0.5, σ = ρ = 0.1, niter = 15

SAR-BM3D

Number of rows/cols of block = 9,
Maximum size of the 3rd dimension of a stack = 16,

Diameter of search area = 39,
Dimension of step = 3,

Parameter of the 2D Kaiser window = 2,
Transform: undecimated wavelet transform (UDWT) = daub4

Number of rows/cols of block = 9,
Maximum size of the 3rd dimension of a stack = 16,

Diameter of search area = 39,
Dimension of step = 3,

Parameter of the 2D Kaiser window = 2,
Transform: UDWT = daub4

Table 4. Comparison of peak signal-to-noise ratio (PSNR) values of the conventional methods and the
proposed algorithm.

Airplane Boat Cameraman Man Lena Peppers

Noisy 16.5259 18.4571 18.6368 20.6950 18.8416 18.5572

GIF 19.1425 18.4571 24.3955 24.1908 22.3112 20.7189

Lee 23.7811 24.9209 23.0668 27.4333 25.8835 25.5090

Frost 22.0637 23.3875 22.3281 25.5420 24.2903 23.3401

Gaussian 25.1845 25.3322 22.5199 27.5073 27.4245 27.6756

Bitonic 26.1829 26.4246 24.3955 26.7991 28.5419 28.2365

WLS 25.6469 26.3535 25.9689 28.4255 28.0356 28.7923

ADMSS 23.4343 20.1359 17.5853 23.6321 21.8759 18.2932

SRAD 26.5703 27.4141 26.3295 29.2499 29.6899 30.4284

SRAD-Bayes 27.0275 27.4154 26.4097 29.5813 29.6899 30.4284

SAR-BM3D 32.9288 27.2015 26.3454 28.8885 29.9061 29.7615

Proposed 27.4755 27.7553 26.4681 29.6691 29.9126 30.5983

Table 5 lists the SSIM values for the six standard images, and the maximum SSIM value is
indicated in bold. The edge conservation ability of the GIF technique is lower than that of the
other methods for the Airplane, Boat, Cameraman, Man, and Lena images. In the Peppers image,
the ADMSS technique has the lowest feature conservation ability. Similar to the PSNR results, feature
preservation using the Lee, Frost, Gaussian, Bitonic, WLS, SRAD and SRAD-Bayes techniques achieve
better results than that using the GIF method for the Airplane, Boat, Cameraman, Man, and Lena
images. Further, for the Cameraman and Peppers images, the Frost filter and ADMSS technique obtain
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the lowest edge information conservation performance, respectively. For the Airplane, Cameraman,
and Lena images, the SAR-BM3D method exhibits the highest feature preservation ability, achieving
SSIM values of 0.0922, 0.0117, and 0.0133, respectively. In contrast, the proposed method has the
second-best edge conservation performance, with better SSIM values for the Boat (SSIM = 0.0141),
Man (SSIM = 0.0155), and Peppers (SSIM = 0.0034) images. That is, in terms of edge-preserving
capability, the SAR-BM3D method is the best for the Airplane, Cameraman, and Lena images, whereas
the proposed algorithm achieves the best SSIM for the Boat, Man, and Peppers images.

Table 5. Comparison of structural similarity (SSIM) values of the conventional methods and the
proposed algorithm.

Airplane Boat Cameraman Man Lena Peppers

Noisy 0.2141 0.3358 0.4173 0.4978 0.2870 0.2886

GIF 0.2835 0.3358 0.6702 0.5986 0.4309 0.4220

Lee 0.4961 0.5972 0.5638 0.7132 0.5995 0.6351

Frost 0.3653 0.4738 0.4710 0.6085 0.4549 0.4464

Gaussian 0.6560 0.6532 0.6160 0.7330 0.7141 0.7598

Bitonic 0.6557 0.6783 0.6702 0.7041 0.7261 0.8164

WLS 0.6159 0.6657 0.6851 0.7553 0.6963 0.7526

ADMSS 0.7254 0.3865 0.3579 0.5492 0.4726 0.2911

SRAD 0.8043 0.7103 0.7840 0.7872 0.8093 0.7723

SRAD-Bayes 0.7587 0.7104 0.7824 0.7986 0.8093 0.8445

SAR-BM3D 0.9193 0.7236 0.8027 0.7864 0.8393 0.8559

Proposed 0.8271 0.7377 0.7910 0.8019 0.8260 0.8593

Figures 6, 7, 8, 9, 10 and 11b–l illustrates the resulting images of the GIF, Lee filter, Frost filter,
Gaussian filter, WLS filter, ADMSS method, SRAD filter, SRAD-Bayes method, SAR-BM3D technique,
and the proposed algorithm in the Lena, Man, and Peppers images. The GIF, Lee Filter, Frost filter,
and ADMSS method retain considerable amounts of speckle noise in the Lena image (Figure 6b–d,h).
In Figure 6e–g, Gaussian, Bitonic, and WLS filtering methods display better speckle noise suppression
ability in comparison, as mentioned above. The resultant images in Figure 6i,j are slightly better than
those obtained using the Gaussian, Bitonic, and WLS filters in terms of despeckling performance.
Even though the SAR-BM3D technique removes speckle noise very well, it causes over-smoothing
in the flat areas (Figure 6k). It is confirmed that the proposed algorithm achieves the best speckle
noise elimination performance and can better preserve edge information. From Figure 7b,d,h, the GIF,
Frost filter, and ADMSS technique have the lowest speckle noise elimination ability in the Man
image. The Lee, Gaussian, Bitonic, WLS, SRAD, and SRAD-Bayes techniques, compared with the
GIF, Frost filter, and ADMSS method have better speckle noise reduction performance but still appear
some speckle noise in the flat area (Figure 7c–g,i,j). The SAR-BM3D has the best despeckling and
detail conservation performance, but it exhibits over-smoothing at some edge regions (Figure 7k).
In Figure 7l, the proposed method turns up a significant removal of speckle noise while retaining
detailed information. In the Peppers image, the GIF, Lee filter, Frost filter, and ADMSS method appear
low despeckling performance (Figure 8b–d,h). In Figure 8e–g,i,j, the speckle noise suppression ability
of the Gaussian, Bitonic, WLS, SRAD, and SRAD-Bayes techniques is better than the GIF, Lee, Frost,
and ADMSS methods. The SAR-BM3D and proposed methods show decent results in terms of speckle
reduction and detail preservation abilities; however, the SAR-BM3D technique causes over-smoothing
in some regions (Figure 8k). The performance of the proposed algorithm in terms of speckle noise
elimination and feature conservation is far better than the existing noise removal methods (Figure 8l).
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(j) SRAD-Bayes method; (k) SAR-BM3D; (l) Proposed algorithm.
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(c) Lee filter; (d) Frost filter; (e) Gaussian filter; (f) Bitonic filter; (g) WLS filter; (h) ADMSS; (i) SRAD
filter; (j) SRAD-Bayes method; (k) SAR-BM3D; (l) Proposed algorithm.
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Figure 9. Despeckled results of US image 1: (a) Noisy image; (b) GIF; (c) Lee filter; (d) Frost filter;
(e) Gaussian filter; (f) Bitonic filter; (g) WLS filter; (h) ADMSS; (i) SRAD filter; (j) SRAD-Bayes method;
(k) SAR-BM3D; (l) Proposed algorithm.

3.1.2. Experiments on Real US Images

To compare the despeckling performance of the conventional noise removal techniques and
proposed method, Table 6 lists the ENL values acquired in two ROIs of five malignant breast US images
and a US phantom image. According to Tables 6 and 7, the WLS filter attains the highest ENL values
of ROI-1 and ROI-2 in US images (1, 2, 4–6). This means that the resulting image has excellent speckle
noise suppression ability in the homogenous regions. In the ROIs in US image 1, the proposed method
obtains the second highest ENL values. The next sentences present the rank of proposed method
among all the examined speckle noise rejection techniques for the ROIs of each US image. ROI-1 and
ROI-2 of US images 2 and 5 are third in terms of ENL index. ROI-1 and ROI-2 of US image-3 achieved
second and fifth, respectively. ROI-1 and ROI-2 in US images 4 and 6 achieved third and second.
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(k) SAR-BM3D; (l) Proposed algorithm.

The despeckling and feature conservation abilities of speckle noise removal methods were
evaluated using the SMPI index (Table 8). In US images 2, 3, and 5, the WLS filtering technique
outperforms the other conventional denoising methodologies and the proposed algorithm with a
competitive result. The proposed method achieves the fourth, second, and second ranks for US images
2, 3, and 5, respectively. In terms of SMPI, the GIF outperforms the other methods (US image 1),
whereas the proposed technique achieves the fourth rank. The SRAD-Bayes method in US image 4 is
first, whereas the proposed technique is fourth. The proposed algorithm achieves the highest SMPI
result for US image 6.
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Figure 11. Despeckled results of US image 3: (a) Noisy image; (b) GIF; (c) Lee filter; (d) Frost filter;
(e) Gaussian filter; (f) Bitonic filter; (g) WLS filter; (h) ADMSS; (i) SRAD filter; (j) SRAD-Bayes method;
(k) SAR-BM3D; (l) Proposed algorithm.
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Table 6. Equivalent number of looks (ENL) results for real US images depending on each region of
interest (ROI).

US Image 1 US Image 2 US Image 3

ROI-1 ROI-2 ROI-1 ROI-2 ROI-1 ROI-2
(71 × 41) (51 × 61) (51 × 51) (51 × 51) (61 × 71) (81 × 81)

GIF 21.4976 9.2061 10.8467 13.0614 35.9332 5.9912
Lee 29.2625 10.4813 14.4238 15.9266 64.1074 12.0654

Frost 27.8564 10.2496 13.8844 15.5675 57.7815 10.8900
Gaussian 29.1324 10.4348 14.2828 15.7657 100.7314 18.0757
Bitonic 33.0059 10.9510 15.8999 16.9290 93.1637 17.1567
WLS 43.3577 13.4256 18.7544 19.8149 223.7867 16.4700

ADMSS 21.5470 9.0889 15.2790 11.9555 34.6900 34.5554
SRAD 34.6307 11.2436 14.9490 16.5835 142.7407 14.8044

SRAD-Bayes 34.5921 11.5086 14.9769 16.5751 142.7472 14.8048
SAR-BM3D 29.5615 10.4383 14.8830 16.6464 77.9813 14.2999
Proposed 36.7761 11.8523 15.2899 16.8020 199.1937 14.9264

Table 7. ENL results for real US images depending on each ROI.

US Image 4 US Image 5 US Image 6

ROI-1 ROI-2 ROI-1 ROI-2 ROI-1 ROI-2
(51 × 51) (51 × 51) (71 × 71) (51 × 51) (41 × 41) (41 × 41)

GIF 10.2034 14.9478 50.4453 37.1283 18.7762 28.4937
Lee 12.1528 18.4038 40.1959 31.6776 15.0236 22.5928

Frost 11.8881 17.6928 38.4305 30.5600 14.5445 21.8719
Gaussian 13.7501 20.9189 39.5283 31.3656 16.9306 25.8945
Bitonic 12.4643 20.1317 45.3041 33.4917 15.5404 25.1755
WLS 17.7059 29.5167 67.1322 51.5178 26.3737 38.0826

ADMSS 10.8299 15.8205 47.8042 34.3954 15.2125 23.7334
SRAD 12.8285 19.8875 40.4638 31.8749 16.8350 25.5281

SRAD-Bayes 12.9219 19.8853 40.5353 31.9014 16.8584 25.4082
SAR-BM3D 11.7274 18.5588 42.4447 32.6953 14.7869 23.8162
Proposed 13.6607 22.2331 48.3190 35.7300 18.2626 29.0689

Table 8. Suppression and mean preservation index (SMPI) result values from real US images.

US Image 1 US Image 2 US Image 3 US Image 4 US Image 5 US Image 6

GIF 0.0039 0.0021 0.0045 0.0034 0.0546 0.0345
Lee 1.0557 1.0321 0.3894 0.8698 1.0687 1.0694

Frost 0.7264 0.9332 0.1239 0.9067 0.7383 0.8171
Gaussian 1.0205 0.9743 0.8490 0.9846 1.0789 1.2483
Bitonic 0.0136 0.1484 0.1609 0.0774 0.0668 0.0431
WLS 0.0121 0.0012 9.4080 × 10−4 0.0125 6.4136 × 10−4 0.0030

ADMSS 0.4380 3.1276 0.9641 1.5678 0.4402 2.0410
SRAD 0.0332 0.0065 0.0028 0.0132 0.0080 0.0027

SRAD-Bayes 0.0301 0.0107 0.0024 5.5133 × 10−4 0.0014 0.0016
SAR-BM3D 0.2348 0.4185 0.9725 0.4167 0.1717 0.2409
Proposed 0.0293 0.0097 0.0019 0.0115 0.0010 0.0015

To compare the speckle noise removal ability of the existing denoising techniques and the proposed
algorithm in the non-homogenous areas of US images 1, 2, and 3, the resulting images for the existing
noise suppression methods and proposed algorithm are shown in Figures 9–11.

The order of the filtering techniques is the same as in Section 3.1.2. In Figure 9b, GIF exhibits
artifacts around some regions. The Lee filter, Frost filter, and ADMSS method cannot reduce speckle
noise (Figure 9c,d,h). The Gaussian, Bitonic, SRAD, and SRAD-Bayes methods can eliminate the
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speckle noise but exhibit a blurring phenomenon in some regions (Figure 9e,f,h,i). In Figure 9g,j,l,
the results of the WLS filter, SAR-BM3D technique, and proposed method indicate quite satisfactory
speckle suppression performance. The image obtained using the WLS filtering method shows blurring
in some edge regions; however, the SAR-BM3D and proposed methods can produce excellent speckle
suppression performance without blurring or artifacts. From Figure 10b,h, the GIF and ADMSS seem
to have poor despeckling ability.

The WLS filter results in a blurring of the entire image (Figure 10g). In Figure 10c–f,i,j, the Lee,
Frost, Gaussian, Bitonic, SRAD, and SRAD-Bayes techniques display good speckle noise suppression
results but still demonstrate speckle noise in the corresponding images. The SAR-BM3D and proposed
methods are effective speckle noise removal and non-homogeneous region preservation abilities
(Figure 10j,l). The SAR-BM3D method is superior in terms of speckle noise elimination ability, but
it loses feature information (Figure 10j). In contrast, in terms of despeckling and edge preservation,
the proposed method outperforms the SAR-BM3D method (Figure 10l). The comparative image quality
of all denoising methods is shown in Figure 11. The GIF, Lee filter, Frost filter, and SAR-BM3D method
show poor results in terms of despeckling ability (Figure 11b–d,k). In Figure 11e,f, the Gaussian and
Bitonic filtering techniques remove speckle noise better than the former mentioned denoising methods.
An output image of the WLS filtering technique does show blurring throughout the entire image
(Figure 11g). Using the ADMSS method, the best speckle noise reduction result is denoted within
the circle regions, but the outside regions of the circle exhibit low despeckling ability (Figure 11h).
The restored results using the SRAD filter, SRAD-Bayes, and proposed methods demonstrate visually
satisfactory images, as shown in Figure 11i,j and l. Although the SRAD filter and SRAD-Bayes
technique have excellent speckle noise elimination and detailed information conservation abilities,
when reducing speckle noise in the flat areas, the proposed method obtains much better results.

3.2. Computational Cost of Standard Images and US Images

The amount of computation of the existing denoising methods and proposed algorithm is
compared in Tables 9 and 10. Tables 9 and 10 list the computational costs (in seconds) of different
noise elimination methods when reducing speckle noise in the standard images (256 × 256, 512 × 512,
1024 × 2014) and real US images (257 × 257, 300 × 225). To compare the execution times of the existing
denoising techniques and proposed algorithm on the same condition, the computational costs of all
noise rejection methods were recorded.

Table 9. Computational cost (in seconds) of the noise removal and proposed methods in the
standard images.

Airplane Boat Camera-Man Man Lena Peppers Avg.

GIF 0.1920 0.5129 0.1908 0.1401 0.5927 0.0882 0.2861

Lee 7.4367 7.2911 3.9978 7.9348 7.8594 1.9135 6.0722

Frost 2.8992 2.8982 1.9820 7.9381 2.8543 1.9149 3.4145

Gaussian 0.1451 0.0084 0.0068 0.0180 0.0041 0.0036 0.0310

Bitonic 0.3478 0.2759 0.2985 0.3058 0.2746 0.1210 0.2706

WLS 4.6115 1.5751 0.8674 3.3873 1.9842 0.7238 2.1915

ADMSS 196.8743 174.2224 21.6495 776.3370 171.9674 180.7599 253.6351

SRAD 7.5007 5.0790 1.2836 26.1363 8.0667 7.9028 9.3282

SRAD-Bayes 7.6464 5.1421 1.5484 27.3693 8.1877 8.1928 9.6811

SAR-BM3D 61.4958 61.0734 14.4467 247.0835 60.1611 180.2394 104.0833

Proposed 7.6866 5.5351 2.0058 27.9753 8.1832 8.5619 9.9913
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Table 10. Computational cost (in seconds) of the noise removal and proposed methods in the real
US images.

US Image1 US Image2 US Image3 US Image4 US Image5 US Image6 Avg.

Guided 0.0517 0.4765 0.0577 0.0966 0.0766 0.0994 01431
Lee 1.9322 1.8176 1.8549 2.5629 2.5800 2.6019 2.2249

Frost 0.5220 0.4761 0.4718 0.7371 0.7583 0.7560 0.6202
Gaussian 0.0605 0.0589 0.0350 0.0431 0.0492 0.0434 0.0484
Bitonic 1.1764 0.0925 0.0697 0.0760 0.1336 0.1409 0.2815
WLS 0.2254 0.2138 0.1892 0.1810 0.1712 0.1924 0.1955

ADMSS 30.5155 28.3062 31.9945 28.9282 28.6991 30.0238 29.7446
SRAD 0.5224 0.8178 1.4117 0.9247 0.8791 1.1196 0.9459

SRAD-Bayes 1.4276 0.8238 1.4502 0.8411 0.9827 1.0840 1.1016
SAR-BM3D 44.3160 44.4698 42.8047 44.1249 45.0229 45.4545 44.3655
Proposed 1.4505 0.9163 1.4982 1.1999 1.0002 1.1718 1.2061

In the standard images, the proposed algorithm has lower a computational cost than the ADMSS
and SAR-BM3D methods. The proposed method requires only 3.9392% (Avg.) and 9.9913% (Avg.) of
the time used by the ADMSS and SAR-BM3D techniques, respectively. Compared to the time taken by
the proposed technique, the SRAD filter requires an average of 93.3632%, and speckle noise reduction
methods in the wavelet domain only use an average of 6.6368% (Table 9). From Table 10, for the US
images, the proposed method utilizes 4.0548% and 2.7186% of the computational cost of the ADMSS
and SAR-BM3D techniques. The time consumption for speckle noise removal in both weighted and
gradient GIFs in the wavelet domain is 0.2602% of that of the proposed algorithm.

4. Conclusions

In this study, we proposed a despeckling algorithm to eliminate speckle noise and conserve feature
information in US images. To propose an algorithm for performing this task, we utilized the SRAD
filter, DWT exhibiting symmetry characteristics, GDGIF, and WGIF.

The speckle noise in the US images has two characteristics—multiplicative noise and Rayleigh
distribution. Although most denoising methods cannot handle speckle noise, the SRAD filtering method
can be directly applied to US images that contain speckle noise (multiplicative noise) because it can
suppress the speckle noise and classify non-homogeneous regions [31]. The SRAD filter was exploited
as a preprocessing filter in the proposed algorithm. Several experiments were performed for removing
additive noise making use of a homomorphic transformation [51,52]. To suppress the additive noise in
the wavelet domain efficiently, we utilized a homomorphic transformation to convert the multiplicative
noise in the resulting image of the SRAD filter into additive noise. Then, two-level DWT based on
symmetry characteristics was employed to decompose the resulting image into seven high-frequency
sub-band images and one low-frequency sub-band image. A number of researchers have utilized
threshold methods based on hard [36], soft [10], and Bayesian [36,38] techniques [25,39,44,53]. In these
threshold methods, a wavelet threshold value reflects the total information of the wavelet coefficients
of each high-frequency sub-band image. Since the wavelet threshold value cannot eliminate noise
components and conserve features in the high-frequency sub-band images, the techniques based on
thresholding can retain noise and lose important information, similar to edge components. In contrast,
the GDGIF utilizing local information in the mask size can remove the noise and preserve feature
information because it can distinguish edge information in the mask by exploiting the first-order
edge-aware weight. It has already been shown that the first-order edge-aware weight of GDGIF can
preserve feature information in images such as high-frequency sub-band images [32]. Therefore, to
acquire noise-free images in the high-frequency sub-band images, the GDGIF was utilized to reduce
the additive noise and retain edges.

In [35], Zhang et al. proposed an algorithm and applied an improved threshold method in the
high-frequency sub-band images and GIF in the low-frequency sub-band image; however, as the value
of the regularization parameter of the GIF is fixed, artifacts appear in the image around the edges.
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To overcome this problem and suppress the noise in the low-frequency sub-band image, we applied the
WGIF to a low-frequency sub-band image. As the zeroth-order (intensity domain) edge-aware weight
of the WGIF can adaptively be applied to the edge areas, the WGIF can improve the performance of
edge conservation over the feature preservation performance of the GIF [32]. To attain a despeckled
image, wavelet reconstruction and exponential transformation was finally employed.

In this paper, we proposed a novel despeckling algorithm for US images using the above-mentioned
methods. In the PSNR results of Table 4, speckle noise removal exploiting GDGIF and WGIF methods
in the wavelet domain of the proposed algorithm results in higher values compared with the SRAD
filtering method for the Airplane (0.9052 dB), Boat (0.3412 dB), Cameraman (0.1386 dB), Man (0.4192 dB),
Lena (0.2227 dB), and Peppers (0.1699 dB) images. From Table 5, the feature information preservation
ability in the wavelet domain is improved utilizing the GDGIF in the high-frequency sub-band
images and WGIF in the low-frequency sub-band image, as demonstrated in the following examples:
Airplane (0.0228), Boat (0.0274), Cameraman (0.0070), Man (0.0147), Lena (0.0167), and Peppers (0.0870).
When compared with the SRAD-Bayes method only using the Bayes threshold in the high-frequency
sub-band images, the proposed algorithm displays much better speckle noise elimination and edge
information conservation abilities through this experiment. As mentioned in [12], we reconfirmed that
the low-frequency sub-band image in the wavelet domain contains noise from the experimental results.

In real US images, the proposed method is compared with existing noise reduction methods, and
the ENL value of the proposed algorithm ranks second (ROI-1 and ROI-2) in US image 1. The proposed
algorithm was ranked third for ROI-1 and ROI-2 of US images 2 and 5. For real US image 3, the
proposed technique recorded the second ROI-1 and the fifth ROI-2. We can confirm that ROI-1 and
ROI-2 in the US images (4 and 6) achieve the third and second ranks, respectively (Tables 6 and 7).
In [53], Prabusankarlal et al. insisted that a high ENL value corresponds to a smoothing phenomenon
in the flat areas. Based on the result of that experiment, it is confirmed that the good ENL results of
the proposed algorithm are not related to the blurring phenomenon. In addition, the WLS filter in
Figures 9, 10 and 11g exhibits blurring at some edge regions and throughout the entire image in the US
images. In Figures 9–11, the experimental results have shown that the proposed algorithm provides
better qualitative results compared with other despeckling methods, which confirms that the proposed
algorithm achieves excellent speckle noise elimination and edge information preservation abilities.

In Table 8, the WLS filter surpasses the other methods employed in this study in terms of noise
elimination performance in US images 2, 3, and 5, whereas the proposed method achieved the fourth,
second, and second rankings, respectively. In terms of the SMPI index, the GIF method achieved
the best result in US image 1, whereas the proposed algorithm was fourth. In US image 4, the
SRAD-Bayes and proposed methods do respectively have the first and third ranks. The proposed
algorithm could only achieve first for the SMPI result in US image 6. From Figures 9–11, the GIF
technique has low speckle noise elimination and feature preservation performance (Figures 9, 10 and
11b). In Figures 9, 10 and 11g, the output from the WLS filter exhibits blurring at some edge areas or
throughout the entire image. From the differences between the results of quantitative observations and
image quality, we cannot conclude that the results showing the highest SMPI values indicate the best
speckle noise removal and feature information preservation performance.

From Tables 4 and 5, the best despeckling and edge conservation abilities among the conventional
noise suppression methods were achieved by the SAR-BM3D technique. In the PSNR results of Table 4,
speckle noise removal exploiting GDGIF and WGIF methods in the wavelet domain of the proposed
algorithm results in higher values compared with the SAR-BM3D method for the Boat (0.5538 dB),
Cameraman (0.1227 dB), Man (0.7806 dB), Lena (0.0065 dB), and Peppers (0.8368 dB) images. For the
Airplane image, the SAR-BM3D method achieves a superb result (5.4533 dB). From Table 5, in terms of
non-homogeneous regions, the SAR-BM3D algorithm obtains the best results for the Airplane (0.9193),
Cameraman (0.8027), and Lena (0.8393) images; the proposed method achieves the highest SSIM values
for the Boat (0.7377), Man (0.8019), and Peppers (0.8593) images. However, the proposed method, in
comparison to the SAR-BM3D technique, employs low computational cost on average in both standard
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images (9.9913%) and US images (2.7186%) (Tables 9 and 10). From the above results, we can infer that
the proposed algorithm has superb despeckling performance, feature information conservation, and
low computational cost.

In this study, a novel speckle noise elimination algorithm was proposed for US images exploiting
the SRAD filter, DWT employing symmetry characteristics, GDGIF, and WGIF. The SRAD filtering
method was utilized as a preprocessing filtering technique that can immediately suppress speckle noise
in US images. Then, a homomorphic transformation was employed to transform the multiplicative noise
into additive noise in the resulting image. To additionally reduce the additive noise from each sub-band
image, seven high-frequency sub-band images and a low-frequency sub-band image were produced
from the SRAD resultant image, making use of a two-level DWT that utilizes the property of symmetry.
The GDGIF and WGIF methods suppressed the additive noise in the seven high-frequency sub-band
images and a low-frequency image, respectively. Inverse DWT and exponential transformation
are utilized to attain a despeckled image. The experimental results indicate that the proposed
algorithm displays excellent despeckling ability as well as feature preservation ability as compared
with conventional noise suppression methods. Since the proposed algorithm can obtain a despeckled
image and conserve detailed information from US images, including speckle noise, radiologists can
accurately perform the diagnosis and analysis of lesions, such as malignant and benign breast lesions,
because of the excellent image quality. Therefore, we expect that there is potential for the proposed
method to be adopted in the fields of image enhancement and lesion diagnosis employing US image
devices. In the future, we will apply a combination of image processing and deep learning to enhance
the performance of speckle noise suppression and edge conservation.
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