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ABSTRACT Due to an increasing need for face recognition under poor lighting conditions, near infrared
(NIR) face recognition based on deep convolutional neural networks (DCNN) has become an active area of
research. However, in NIR face images of eyeglasses wearers, reflected light is generated around the eyes
due to active NIR light sources, and it is one of the main contributors to performance degradation in NIR
face recognition. In addition, there have to date been no attempts to lighten DCNN models for NIR face
recognition. To solve these problems, we propose a DCNN-based fast NIR face recognition system which
is robust to reflected light. This work has two main contributions: 1) We generated synthetic face images
of individuals with and without eyeglasses using our proposed CycleGAN-based Glasses2Non-glasses
(G2NG) data augmentation. We then constructed an augmented training database by adding the synthetic
images, and the database helps to make the NIR face recognition system robust against reflected light.
2) A lightweight NIR FaceNet (LiNFNet) architecturewas developed to reduce the computational complexity
of the proposed system by adapting the depthwise separable convolutions and linear bottlenecks to VGGNet
16. The proposed architecture reduces the computation required, while improving the performance of NIR
face recognition. Through the experiments reported in this paper, we verified that the proposed G2NG data
augmentation improved the face recognition validation rate by 99.09% for NIR face images which have the
reflected light from eyeglasses. Also, LiNFNet reduces the number of multiplication operations by 4.4×109

compared with VGGNet 16.

INDEX TERMS Biometrics, deep learning, NIR face identification, fine-tuning, lightweight deep CNN.

I. INTRODUCTION
Most deep convolutional neural networks (DCNN)-based
face recognition (FR) studies have been conducted using
RGB face images [1]-[8]. However, Kim et al. [9] showed that
the validation rate of RGB FR decreases significantly under
poor lighting conditions. In these environments, the valida-
tion rate of Kim’s near infrared (NIR) FR method [9] was
40% or more higher than that of RGB FR. Since such envi-
ronments are common in FR scenarios, such as unlocking a
cell phone with FR in a dark room, it is important to research
the field of NIR FR. Even though the Kim’s method [9] has
significantly improved the accuracy by introducing the fine-
tuning approach into NIR FR, DCNN-based NIR FR still has
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considerable room for improvement with respect to accuracy
and computational complexity.

One of the main issues with the existing NIR FR
studies [9]–[11] is that their performances with respect to
accuracy and validation rates are significantly reduced in
Glasses and Non-glasses (G-NG) positive NIR FR scenarios.
As shown in Fig. 1 (a), the scenario means that the system
conducts the NIR FR for the face image pair of a person with
and without eyeglasses. In this scenario, the validation rate is
decreased because the gallery and probe images have large
intensity differences around the eye regions due to reflected
light. The validation rates of the Kim’s method [9] are less
than 93% in the scenario, as shown in Fig. 1 (b). Performance
at this level cannot guarantee sufficient security to justify the
use of NIR FR in the real world. Since G-NG positive NIR
FR scenarios are very common in real-world applications,
improving the performance of FR in such scenarios is crucial.
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FIGURE 1. (a) The G-NG positive NIR FR scenarios. (b) The validation rates of the Kim’s method [9] and proposed method in the G-NG positive NIR
FR scenarios. ‘‘Existing method-I’’ and ‘‘Existing method-V’’ are the Inception ResNet v1 and VGGNet 16 versions of the Kim’s method [9],
respectively. (c) and (d) show deep features of the Kim’s method [9] and the proposed method for same person’s face images with and without
eyeglasses. These deep features are represented using t-SNE [12].

Another issue with the existing approaches is computa-
tional complexity. Despite recent advances in
NIR FR [9]–[11], there are very few studies related to
reducing the computational costs of NIR FR. Since recently-
produced smartphones provide a feature that enables the
unlocking of a phone using a face, it would be beneficial to
make a lightweight and fast DCNN architecture for NIR FR.

In consideration of the above-mentioned issues, our goal
was to develop a fast DCNN-based NIR FR system robust
to reflected light. To achieve this objective, we utilized two
contributions to construct the proposed NIR FR system:

1) CycleGAN-based Glasses2Non-glasses (G2NG) data
augmentation

2) Lightweight NIR FaceNet (LiNFNet) architecture

The first contribution makes the DCNN architecture for
NIR FR be trained robust against reflected light. The second
contribution not only effectively reduces the computational
cost of NIR FR, but also models human faces well even
if reflected light is present. The detail explanations of the
contributions are as follows.

A. CycleGAN-BASED G2NG DATA AUGMENTATION
When using publicly available NIR face databases to
train DCNN architectures, we cannot adequately cover

G-NG positive FR scenarios. This is because the num-
bers of face images both with and without eyeglasses are
not balanced in most face labels of the public NIR face
training databases. To solve an unbalanced data problem,
threemethods are frequently used: under-sampling [13]–[15],
over-sampling [15], and synthetic over-sampling [16], [17].
If synthetic over-sampling methods can generate images
close to real ones, we can increase a proportion of minorities
in the database better than other sampling methods. In this
point of view, we adapted CycleGAN to implement synthetic
over-sampling, and generated realistic face images of individ-
uals with and without eyeglasses.

B. LiNFNet ARCHITECTURE
Recently, several architectures [18]–[24] have been devel-
oped to reduce the computational cost of problems such
as classification and detection, while maintaining accuracy.
However, it is not clear that such architectures can achieve
state-of-the-art performance in NIR FR. Instead of using the
successful architectures [18]–[24] in classification or detec-
tion, we aimed to improve VGGNet 16 [25] and Inception
ResNet v1 [26] known to have good performances in NIR FR.
By adapting the depthwise separable convolutions [18] and
linear bottlenecks [21] that efficiently reduce the number of
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FIGURE 2. The training process of the proposed NIR FR system.

FIGURE 3. The types of input pairs according to the combination of face
images with and without eyeglasses. (a) Glasses positive pair.
(b) Non-glasses positive pair. (c) Mixed positive pair. (d) Glasses negative
pair. (e) Non-glasses negative pair. (f) Mixed negative pair.

parameters and computations of convolution filters, we cre-
ated a lightweight architecture for NIR FR, and we call this
architecture LiNFNet in this paper.

To visualize the effect of two contributions on reflected
light, we investigated the deep features used for NIR FR
in the feature space using t-SNE [12]. The deep features
produced by the proposed method, when applied to images
of the same person wearing or not wearing eyeglasses, have
less variance than those produced by Kim’s method [9] as
shown in Fig 1 (c) and (d). The discriminative ability of Kim’s
method [9] is acceptable for the three identities (Fig 1 (c)).
However, NIR FR was conducted on the database, which
includes more than two hundred identities, and the feature
space is densely filled with the features from the identities.
In this case, even slight distances between the features of
face images of the same person with and without eyeglasses
are likely to reduce the performance of NIR FR. In other
words, the same identity’s concentrated features produced
by the proposed method contribute to improve the NIR FR
performance in the G-NG positive FR scenario, and it can be
found in Fig. 1 (b).

The rest parts of this paper are organized as follows.
In Section II, related works of the proposed system are
explained. Section III elaborates training and inference pro-

cesses of the proposed system. CycleGAN-based G2NG
data augmentation and LiNFNet are described in Section IV
and V, respectively. In Section VI, the experimental results
are presented. In Section VII, we conclude our work by
summarizing the pros and cons of the proposed NIR FR
system, and discussing the future works.

II. RELATED WORK
In this section, we summarize work related to the proposed
NIR FR system’s two contributions, the CycleGAN-based
data augmentation and LiNFNet.

A. GAN-BASED DATA AUGMENTATION
Following the pioneering work of LeCun et al. [27]
and Krizhevsky et al. [28], DCNN [25], [26], [29]–[31]
became a main-stream approach to research into well-
known computer vision problems such as recognition,
classification, and segmentation. Using powerful deep
models [25]–[31], performance on these problems has been
drastically improved. However, such deep networks require
numerous well-annotated databases to achieve state-of-the-
art performance. Since obtaining such high-quality databases
is time-consuming and expensive, data augmentation meth-
ods which generate synthetic training images have been
actively researched. Recently, several studies [32]–[35] have
utilized GAN [36]–[41] for data augmentation, and have
succeeded in generating realistic synthetic training images.

DA-GAN [32] introduced the GAN architecture for
instance-level image translation. In one example, synthetic
bird images involving various poses were generated, and
these images were used as training data for fine-grained
classification.

Antoniou et al. [33] introduced a conditional GAN for
data augmentation. From the encoder of the conditional
GAN, a representation of the input image was acquired.
The representation and a random vector were then con-
catenated, and the decoder generated a synthetic image
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TABLE 1. The details of the G-NG mixed face classes and NIR face images in the public NIR face databases.

FIGURE 4. The accuracies of NIR FR for the input pair types (using CASIA
VIS-NIR 2.0 [48] database for training). GP, NP, and MP are abbreviations
for glasses, non-glasses, and mixed positive pairs, respectively. GN, NN,
and MN also mean glasses, non-glasses, and mixed negative pairs.

from the concatenated vector. Using the conditional GAN,
Antoniou et al. [33] constructed augmented databases for the
Omniglot [42], EMNIST [43], and VGG-Face [1] databases.
Antoniou et al. [33] showed that recognition accuracy was
improved on these databases.

AugGAN [34] added a segmentation network to GAN to
maintain the structures of the input images in the synthetic
images.

FaceID-GAN [35] introduced the concept of three players:
a generator, a classifier for identity classification, and a dis-
criminator.With the training of the three players, the classifier
for identity classification achieved high performance. Due
to the classifier, the generator generated synthetic images
while preserving the identities of the faces in the input
images. Using the Shen’s method [35], synthetic frontal face
images were generated from face images which had various
poses, and face verificationwas conducted using the synthetic
images. Shen et al. [35] improved the verification accuracy.

To prevent degradation of the NIR FR performance
due to reflected light, Jo and Kim [58] added the simple
reflected light patterns, such as rectangle, circle, or ellipse
shapes, to the parts of the NIR face images near the eyes.
Although their data augmentation method improved the
NIR FR performance, this approach did not generate the
sufficiently realistic reflected light patterns in the NIR face
images.

After reviewing the existing methods [32]–[35], [58], we
postulated that there could be a performance improvement
in NIR FR in G-NG positive FR scenarios when G2NG
data augmentation was well conducted using GAN. In this

FIGURE 5. The accuracies of NIR FR for the input pair types (using
PolyU-NIRFD [47] database for training).

work, since G2NG data augmentation can be represented as
an unpaired image-to-image translation problem, we utilized
CycleGAN [44] to generate synthetic images. We demon-
strated that the NIR FR accuracy in the G-NG positive FR
scenarios was improved using CycleGAN-based G2NG data
augmentation, as shown in Section VI.

B. LIGHTWEIGHT DCNN MODELS
Despite the high accuracy of most DCNN-based applications,
they cannot be applied in most smartphones or embedded
environments, due to limited computing resources. To extend
deep learning applications to mobile environments, it is nec-
essary to conduct studies into the reduction of computational
cost, by making the DCNN models lightweight. Also, there
have been several studies [18], [19], [21]–[23] addressing this
problem.

MobileNet v1 [18] introduced depthwise separable con-
volution to lighten the DCNN architecture. In the work of
Howard et al. [18], ImageNet classification accuracy did
not decrease significantly, while the computational burden
was considerably reduced. Chollet [19] demonstrated that
depthwise separable convolutions could be adapted to the
inception modules [30]. The training speed of the Chol-
let’s lightweight architecture [19] was increased compared to
Inception v3 [30]. ShuffleNet v1 [23] utilized pointwise
group convolutions to reduce the computational cost of
pointwise convolutions and developed channel shuffle to
overcome the side effect of pointwise group convolutions.
Channel shuffle made it possible to transfer information
between groups of activation channels. MobileNet v2 [21]
developed a DCNN architecture with linear bottlenecks. Lin-
ear bottlenecks helped the efficient reduction of the channels
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FIGURE 6. The output activations extracted from the first convolution layers of VGGNet 16 [25] for a NIR
face image. (a) An input NIR face image. (b) shows the output activations of the first convolution layer.
We normalized the intensity values of the output activations to be between 0 and 255.

TABLE 2. The NIR FR performance of Inception_Resnet_v1 [26] and
VGGNet 16 [25]. CASIA VIS-NIR 2.0 [48] is utilized as the training database
for fine-tuning, and the validation database is same as the test pairs
in Fig. 4 and 5. The NIR FR was conducted on NVIDIA GTX 1080ti GPU.
‘‘Time’’ means the average time which is taken to extract features
for NIR FR

of the output activation, by estimating the manifold of the
activation while retaining the information in the activation.
In ShuffleNet v2 [22], channel split was introduced into the
architecture that was introduced in ShuffleNet v1, to effi-
ciently use the architecture.

Wu et al. [56] developed a light DCNN architecture for
FR. They introduced max-feature-map (MFM) into each
convolution layer, which helped their DCNN architecture
to extract a compact face representation while reducing the
number of parameters, and the computational costs. How-
ever, Wu’s architecture [56] was not designed for NIR FR,
and Wu et al. [56] did not sufficiently analyze the effects
of reflected light in NIR face images on the performance
of NIR FR. Zheng and Zu [57] developed a light DCNN
architecture for RGB FR by adding a normalized layer to
Wu’s architecture [56]. Zheng’s architecture [57], therefore,
was also not designed for NIR FR.

Since the need to use FR in smartphones and embed-
ded environments is increasing, DCNN models for NIR FR
should be lightened, as has previously been demonstrated for
existing methods [18], [19], [21]–[23], [56], [57].

In the work reported in this paper, we lightened
one of the powerful off-the-shelf DCNN architectures,
VGGNet 16 [25]; this architecture was shown to have high
performance for NIR FR in the literature [9]. The reason for

TABLE 3. The NIR FR accuracy of VGGNet 16 and VGGNet 16_light.
VGGNet 16_light is the lightweight version of VGGNet 16. The number of
filters in the first convolution layer of VGGNet 16_light is half of that of
VGGNet 16. We constructed training databases for VGGNet 16 and VGGNet
16_light by integrating CASIA VIS-NIR 2.0 [48] and PolyU-NIRFD [47].

using VGGNet 16 as a backbone network is that, in our toy
experiment, VGGNet 16 is about twice as fast as another
powerful architecture, Inception ResNet v1 [26]. In addi-
tion, the NIR FR accuracy of VGGNet 16 in G-NG positive
FR scenarios is higher than that of Inception ResNet v1.
The results of the toy experiment can be found in Section V.
We lightened VGGNet 16 by simultaneously adapting depth-
wise separable convolutions [18] and linear bottlenecks [21];
the proposed lightweight model is called LiNFNet. Depth-
wise separable convolutions and linear bottlenecks signif-
icantly reduced the computational complexity of VGGNet
16. Especially, linear bottlenecks considerably improved the
accuracy of NIR FR by efficiently increasing the number of
channels of the input activations using pointwise convolu-
tions.

III. PROPOSED NIR FR SYSTEM
An overview of the proposed system is presented in this
section. The proposed system was designed as an end-to-
end framework which includes the LiNFNet architecture.
The inference process of the proposed system is same as
FaceNet [2]:

1) A face image pair is inserted to our NIR FR system,
and two deep features are extracted from the LiNFNet
architecture.

2) Euclidean distance between the two features is calcu-
lated.
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FIGURE 7. The flow chart of the three convolution modules. D is the dimension of the activations. N, P , and M are the number of the channels of the
input, expanded, and output activation, respectively. In the linear bottlenecks of LiNFNet, ‘‘Add’’ operator is conducted for the residual connection.
When the number of channels of the input and output activations is different, a full convolution is used for residual connection.

3) If the distance is less than a predefined threshold,
the system considers that the two face images are from
the same identity; otherwise, the images are from dif-
ferent identities.

In Fig. 2, the training process of the proposed NIR FR
system is depicted. Before training the LiNFNet architec-
ture, G2NG data augmentation is conducted to robustly train
LiNFNet against reflected light from eyeglasses. During the
data augmentation, CycleGAN [44] generates synthetic NIR
face images of individuals with and without eyeglasses. Then,
we construct the augmented training database by merging the
real and synthetic images. The numbers of the face images
with and without eyeglasses in the augmented database
are balanced. According to Kim et al. [9], the fine-tuning
approach to NIR FR achieved a better validation rate than
the learning from scratch approach. As with the fine-tuning
approach of Kim et al. [9], we utilized a pretrained model
of LiNFNet on CASIA WebFace [45] and, conducted fine-
tuning on the augmented training database.

IV. CYCLEGAN-BASED G2NG DATA AUGMENTATION
A. MOTIVATION
After reviewing publicly available NIR face images, we pre-
dicted that the accuracy of NIR FR would be decreased
in the G-NG positive FR scenarios due to reflected light.

To investigate this hypothesis, we defined six types of input
pairs as shown in Fig. 3, and conducted two toy experiments.

In Fig. 3, the input pairs containing 0, 1, and 2 eye-
glasses wearers are denoted as ‘‘non-glasses’’, ‘‘mixed’’, and
‘‘glasses’’, respectively. If the input pair was taken from one
person, we denoted it as a ‘‘positive’’ pair; otherwise, it is a
‘‘negative’’ pair. Therefore, mixed positive pairs are identical
to the G-NG positive FR scenarios.

Through the two toy experiments, we evaluated the NIR
FR accuracies of the six types of input pairs. For each type of
input pair, we extracted 2,000 pairs from the CASIANIR [46]
database, producing a total of 12,000 pairs for evaluation. The
first and second experiments used CASIA VIS-NIR 2.0 [48]
and PolyU-NIRFD [47], respectively, as training databases
for the fine-tuning approach. In both experiments, we utilized
Inception ResNet v1 and VGGNet 16 as backbone networks
for the NIR FR system. The results of the experiments are
summarized in Fig. 4 and Fig. 5.

As shown in Fig. 4, all types of input pairs except for
the mixed positive pairs achieved an accuracy of more than
97%. On the other hand, the mixed positive pair achieved an
accuracy of about 80%. This phenomenon can also be seen
in Fig. 5. From these observations, we can say that the G-NG
positive FR scenarios caused a number of failure cases in NIR
FR due to the reflected lights from eyeglasses.
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FIGURE 8. The success cases of the proposed CycleGAN-based G2NG data augmentation. The first and third rows show real NIR face
images without and with eyeglasses, respectively. In the second and fourth rows, the synthetic NIR face images with and without
eyeglasses are shown, respectively. (a) The result images of CASIA VIS-NIR 2.0 [48] database. (b) The result images of PolyU-NIRFD [47]
database.

TABLE 4. The architecture of LiNFNet. d and c is the number of the
channels in the expanded and output activation in Fig. 7. r and s are the
number of the repeated times and strides.

To reduce the number of failure cases, each face label in
the training NIR face databases should include a number of
face image pairs with and without eyeglasses, and the number
of these two types of face images should be similar. In other
words, the databases should have a number of Glasses and
Non-glasses (G-NG) mixed face classes; the G-NG mixed
face classes denotes face classes that contain both face images
with and without eyeglasses. In Table 1, information about
G-NG mixed face classes and total face images in several
public NIR databases [46][48] is presented. The CASIA
VIS-NIR 2.0 [48] database has 86 G-NG mixed face
classes. However, in this database, the ratio of G-NG mixed
face classes to all face classes is low, at 11.9%. The
PolyU-NIRFD [47] database has only two G-NG mixed face
classes. Therefore, we expect that a DCNN model trained

TABLE 5. The number of the training data for the CycleGAN-based G2NG
data augmentation. ‘‘Glasses’’ and ‘‘Non-glasses’’ means the NIR face
images with and without eyeglasses for training, respectively.

using the PolyU-NIRFD [47] and CASIA VIS-NIR 2.0 [48]
databases will not be robust to G-NG positive FR scenarios.
As shown in Table 1, the ratio of G-NG mixed face classes
to all face classes is 32.5% in the CASIA NIR database [46].
Although this ratio is the highest among the databases sum-
marized in Table 1, the CASIA NIR database is unsuitable
for training DCNN models for NIR FR because there are
only about 4,000 face images in the database. Therefore,
G2NG data augmentation should be carried out to increase
the number of G-NG mixed face classes in the CASIA
VIS-NIR 2.0 and PolyU-NIFRD databases.

B. CYCLEGAN FOR G2NG DATA AUGMENTATION
The objective of the G2NG data augmentation is to pro-
duce both synthetic face images with and without eyeglasses.
To make synthetic face images with eyeglasses, reflected
light should be added; otherwise, reflected light should be
removed. This objective can be achieved by solving an image-
to-image translation problem.

As compared to the well-known Pix2Pix [49] which
solves the paired image-to-image translation problem, Cycle-
GAN [44] has two advantages. Firstly, it does not require
paired annotations; it only requires images from two domains.
Secondly, it can learn to produce outputs from both domains
(A2B and B2A). These two advantages are crucial for our
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FIGURE 9. The pseudo color images and 3D intensity profiles of the real image with eyeglasses and the synthetic image without
eyeglasses.

FIGURE 10. The failure cases of the proposed CycleGAN-based G2NG
data augmentation. The first row shows the real NIR face images, and
the second row shows the synthetic NIR face images. (a) The failed
examples of the synthetic NIR face images without eyeglasses (b) The
failed examples of the synthetic NIR face images with eyeglasses.

application, because it is very difficult to acquire paired NIR
face images with and without eyeglasses. Therefore, we used
CycleGAN [44] rather than Pix2Pix [49] for the G2NG data
augmentation.

To train CycleGAN for G2NG data augmentation, we used
the same architecture and loss as in Zhu et al. [44], and
identity loss [44] was also utilized to preserve the identities
while generating the synthetic face images with and without
eyeglasses. The images resulting from the CycleGAN-based
G2NG data augmentation are shown in Fig. 8 and Fig. 10 in
Section VI.

V. LINFNET ARCHITECTURE
In Kim et al. [9], it was shown that Inception ResNet v1 [26]
and VGGNet 16 [25] achieved a high validation rate for
NIR FR. Therefore, we expected that making lightweight
versions of Inception ResNet v1 or VGGNet 16 would be
effective. As shown in Table 2, VGGNet 16 is about 2.5 times
faster than Inception ResNet v1; hence, VGGNet 16 is a
more suitable architecture than Inception ResNet v1 for the
proposed NIR FR system. In addition, VGGNet 16 has an
advantage that its accuracy is higher than that of Inception
ResNet v1 in the G-NG positive FR scenarios. Because of the

TABLE 6. The number of the NIR face images in the training databases
for the quantitative evaluation of the CycleGAN-based G2NG data
augmentation. ‘‘AUG’’ means that the corresponding database is the
augmented database which is constructed by the proposed data
augmentation.

NIR FR accuracy and speed, we chose VGGNet 16 to make
a lightweight DCNN architecture for NIR FR.

In this study, we produced LiNFNet by lightening
VGGNet 16 [25] using depthwise separable convolutions [18]
and linear bottlenecks [21]. When constructing the LiNFNet
architecture, we decreased the number of filters in the first
convolution layer of the network by half. Fig. 6 shows several
output activations extracted from the first convolution layers
of VGGNet 16 for an NIR face image. These activations
have similar patterns and structures of the intensity values.
From this observation, we conclude that the activations con-
tain redundant information. Thus, decreasing the number of
convolution filters in the first layer does not significantly
decrease the NIR FR accuracy. The result of such reduction
is shown in Table 3.

We made the initial convolution layers of LiNFNet by
adapting the depthwise separable convolutions [18] to the 2nd,
3rd, and 4th convolutions of VGGNet 16. We expected that
the NIR FR accuracy would not significantly decrease upon
replacing the full convolutions of the initial convolution lay-
ers with the depthwise separable convolutions [18], which are
the lightweight version of full convolutions. This is because
the initial convolution layers are simpler functions for
extracting the output activations than the rest of the
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FIGURE 11. The validation rate of NIR FR on the original and augmented
training databases.

convolution layers; the initial convolutions extract the low-
level information, such as the edges and the combination of
the edges, for the input NIR face images. From the experiment
reported in this paper, we found that such replacement effec-
tively reduces the computational complexity while improving
the NIR FR accuracy in the G-NG positive FR scenarios.

It is necessary that the layers following the initial convolu-
tion layers extract rich feature information for NIR FR from
the input activation. To produce output activations including
this rich information, we should expand the input activation
by increasing the number of channels, and extract the output
activation by combining many channels of the expanded
input activation. However, as the number of channels of
the input activation increases, the computational complex-
ity also increases. Therefore, we should efficiently extract
the rich information for NIR FR from the input activation
while preserving a low computational complexity. To do this,
we adapted linear bottlenecks [21] to the last three convolu-
tion layers of VGGNet 16 to make the LiNFNet architecture.

In Fig. 7 (c), the expansion pointwise convolution of the
linear bottleneck increases the number of channels of an
input activation to extract the rich information for NIR FR.
The depthwise convolution of the linear bottleneck extracts
the rich information for each channel of the input activa-
tion. Pointwise convolution linearly decreases the number of
channels of the output activation to reduce the computational
cost of the next convolution layer. This approach helped
us to efficiently extract more rich information for NIR FR
than full convolution or depthwise separable convolution.
As explained in Sandler et al. [21], the information in the
intermediate activation in Fig. 7 (c) is considerably redundant
for NIR FR. Therefore, the number of channels of inter-
mediate activation can be linearly reduced using pointwise
convolution. To prevent information loss, we did not use
ReLU6 after the pointwise convolution in the samemanner as
Sandler et al. [21]. Since the manifold of the output activation
can be well acquired by linearly reducing the number of chan-
nels of output activation, additional information loss from
ReLU6, which is a nonlinear function, causes a considerable
drop in the NIR FR accuracy. The LiNFNet architecture is
summarized in Table 4.

TABLE 7. The accuracy of NIR FR for the mixed positive pairs in
Fig. 3 according to the original and augmented training databases.

It is necessary to compare the computational complexity of
a full convolution, depthwise separable convolution [18], and
linear bottleneck [21] to verify the extent to which LiNFNet
reduces the number of computations compared with VGGNet
16 [25]. In this paper, only the multiply operation is con-
sidered. The equations to compute the number of multiply
operations in the convolution modules are as follows:

CF = 9ND2M , (1)

CD = 9ND2
+ ND2M , (2)

CL = ND2P+ 9D2P+ PD2M , (3)

where these equations can be derived from Fig. 7. CF , CD,
and CL are the numbers of multiply operations of a full
convolution, depthwise separable convolution, and linear bot-
tleneck, respectively. The meanings of the other notations are
shown in Fig. 7. Equations (1) and (2) were formulated in the
literature [18].

To quantitatively verify how much lighter LiNFNet is than
VGGNet 16 [25], we calculated the differences (DD) between
the number of the multiply operations of the full convolution
and depthwise separable convolution. For the linear bottle-
neck, we calculated DL in the same manner as the linear
bottleneck.

DD = CD−CF = ND2(9− 8M ), (4)

DL = CL−CF = D2(NP+ 9P+ PM − 9NM ), (5)

If DD or DL have negative values, the number of multiply
operations of the depthwise separable convolution or linear
bottleneck will be lower than that of the full convolution, and
vice versa. From equations (4) and (5), the number of the
multiply operations of LiNFNet is about 4.4×109 lower than
that of VGGNet 16.

VI. EXPERIMENTS
In this section, we evaluated performance of LiNFNet
regarding robustness against reflected light and performance
versus computational complexity trade-off. In addition, com-
petitive analysis of the proposed system with existing
systems [9]–[11] was conducted. For the two main experi-
ments, the augmented database, which was constructed by
CycleGAN-based G2NG data augmentation, should be uti-
lized. Therefore, before the main experiments, we conducted
the qualitative and quantitative evaluations of the proposed
data augmentation.
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TABLE 8. The database configuration according to the experiments.

In Section IV-A, the qualitative and quantitative eval-
uations of the proposed data augmentation are described.
Databases and training setup for the two main experi-
ments are present from Section IV-B and IV-C, respectively.
In Section IV-D and IV-E, the descriptions of the main exper-
iments are provided.

A. CYCLEGAN-BASED G2NG DATA AUGMENTATION
In these experiments, qualitative and quantitative perfor-
mance evaluations were conducted for the CycleGAN-based
G2NG data augmentation.

1) QUALITATIVE EVALUATION
Through the performance evaluation, we investigated how
realistically the proposed G2NG data augmentation gener-
ates the synthetic NIR face images with and without eye-
glasses from real images. We split the CASIA VIS-NIR
2.0 [48] and PolyU-NIRFD [47] databases into training and
test databases. Table 5 shows the number of training face
images with and without eyeglasses. For testing, we used
all of the NIR face images in the CASIA VIS-NIR 2.0 and
PolyU-NIRFD databases. In Fig. 8 and 10, the results of
the proposed CycleGAN-based G2NG data augmentation are
shown.

In Fig. 8, the synthetic images with and without eyeglasses
are very similar to real images. In the synthetic images with
eyeglasses, the reflected lights, which are generated around
the eyes, appear in various patterns. Therefore, the general-
ization ability of CycleGAN is good with respect to the gen-
eration of various reflected lights. Even though the average
intensity values of the synthetic images without eyeglasses
were higher than those of the real images, the reflected lights
of the real images with eyeglasses were successfully removed
in the synthetic images, and the identities of the real images
are well preserved in the synthetic images. To analyze the

phenomenon in which synthetic images without eyeglasses
are brighter than real images with eyeglasses, we compared
the 3D profiles of a real and synthetic image pair (Fig. 9).
In the profile of the real image, the intensities of reflected
light around the eyes were almost 255, and the rest of the
image had intensities near 150. On the other hand, in the
profile of the synthetic image, most parts of the face had
intensities near 255. From this observation, we expected
that CycleGAN for our augmentation method was trained to
remove the reflected light around eyes by increasing the over-
all intensities of the face rather than by adding information
about the face to the areas of the reflected light.

Fig. 10 shows the failure cases of the proposed G2NG data
augmentation. In the synthetic images without eyeglasses,
black noise occurs around the eyes, and the eyes which are
covered with the reflected lights are not realistically synthe-
sized. However, the number of failure cases is much lower
than that of the success cases. The numbers of the success and
failed synthetic images are 32,992 and 4,191, respectively.
Therefore, we can justify using CycleGAN for the proposed
G2NG data augmentation.

2) QUANTITATIVE EVALUATION
Because it is not straightforward to quantitatively evaluate
synthetically generated images, we assumed that if the syn-
thetic images are realistic, the accuracy and validation rates
of NIR FR would be increased in the G-NG positive FR sce-
narios after data augmentation. Therefore, as a quantitative
evaluation of the proposed data augmentation, we compared
the NIR FR validation rates with or without the use of the
proposed data augmentation.

For this evaluation, instead of using LiNFNet, we utilized
off-the-shelf DCNN architectures (Inception ResNet v1 [26]
and VGGNet 16 [25]) to investigate the effects of the pro-
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TABLE 9. The performance of NIR FR according to combinations of VGGNet 16_light, the depthwise separable convolution [18], and the linear
bottleneck [21]. The details of the VGGNet 16_light architecture were already explained in Table 3. ‘‘DSC’’ and ‘‘LB’’ mean the depth separable convolution
and linear bottleneck, respectively. The architectures are trained using Integrated NIR Face database.

FIGURE 12. The NIR FR accuracy of the architectures in Table 9 according
to the types of the input pair in Fig. 3. The abbreviations of the input pair
types in X-axis have the same meanings as those in Fig. 4 and 5.

posed data augmentation. The results of the data augmenta-
tion in LiNFNet are discussed in Section VI-D.

We prepared several databases to train DCNN architec-
tures (Table 6). The validation database was generated from
CASIA NIR [46], and contains 2,000 pairs for each input pair
type described in Fig. 3. The architectures were trained using
fine-tuning [9], and the pretrained models were trained with
data from the CASIA WebFace database [45].

The results of this experiment are shown in Fig. 11.
For Inception ResNet v1 and VGGNet 16, the aug-
mented training databases (CASIA VIS-NIR 2.0_AUG and
PolyU-NIRFD_AUG) helped these architectures achieve
higher validation rates of NIR FR than the original train-
ing databases (CASIA VIS-NIR 2.0 and PolyU-NIRFD).
The augmented training databases considerably improved the
accuracy of NIR FR for the mixed positive pairs (see Table 7).
For Inception ResNet v1, the CASIA VIS-NIR 2.0_AUG
and PolyU-NIRFD_AUG databases increased the NIR FR
accuracy for the mixed positive pairs by 17.25% and 40.15%,
respectively. In the case of VGGNet 16, the NIR FR accuracy
for the mixed positive pairs increased by 16.25% and 30%,
respectively. The use of the augmented training databases sig-
nificantly improved the validation rate of the DCNN models
for NIR FR in the G-NG positive FR scenarios.

B. DATABASES
In this section, we will explain the details of the training, vali-
dation, and test databases which were used in the experiments

TABLE 10. The RGB FR accuracy and validation rate for pretrained models
of LiNFNet and the existing architectures [18], [19], [21], [22], [25], [26].
We use LFW database [52] as the validation database.

described in the next sections. As explained in Section III, the
training stage consists of two steps: obtaining the pretrained
model and fine-tuning.

1) DATABASE FOR THE PRETRAINED MODEL
To obtain the pretrained models of LiNFNet and existing
architectures [9], [18], [19], [21], [22], [25], [26], we utilized
the CASIA WebFace database [45]. This database includes
453,414 RGB face images of 10,575 identities.

2) FINE-TUNING DATABASES FOR NIR FR
We prepared two fine-tuning databases for NIR FR: the Inte-
grated NIR Face database and the Integrated NIR Face_AUG
database. The Integrated NIR Face database was con-
structed by combining the CASIA VIS-NIR 2.0 [48] and
PolyU-NIRFD [47] databases. This database includes
37,183 NIR face images for 948 identities. The Integrated
NIR Face_AUG database is an augmented version of the
Integrated NIR Face database; the database was constructed
by CycleGAN-based G2NG data augmentation. When aug-
menting the database, we excluded the failure cases of the
synthetic images shown in Fig. 10. This database contains
70,175 NIR face images for 948 identities. We did not follow
the performance evaluation protocols of CASIA VIS-NIR
2.0, because these protocols are designed for heterogeneous
FR (using both RGB and NIR face images).

Both databases were used to fine-tune LiNFNet and the
existing architectures [9], [18], [19], [21], [22], [25], [26] in
the experiments described in the following sections. These
databases were used to show how the proposed data augmen-
tation improves the accuracy and validation rate of NIR FR
in the G-NG positive FR scenarios.

80958 VOLUME 8, 2020



J. Kim et al.: DCNN-Based Fast NIR Face Recognition System Robust to Reflected Light From Eyeglasses

TABLE 11. The performances of LiNFNet and the existing architectures [18], [19], [21], [22], [25], [26] trained using Integrated NIR Face database.

FIGURE 13. The NIR FR accuracy of LiNFNet and the existing architectures
[18], [19], [21], [22], [25], [26] for the mixed positive pairs in Fig. 3 When
the architectures are trained using the Integrated NIR Face database.
Incept-Res v1 is an abbreviation of Inception ResNet v1.

3) VALIDATION / TEST DATABASE
For the experiments described in the following sections,
we used the CASIA NIR database [46] as the validation and
test database, because this database has a number of G-NG
mixed face classes including face images both with and with-
out eyeglasses. By using the CASIA NIR database, we could
construct a number of mixed positive pairs (Fig. 3 (c)) to
evaluate the performance of the G-NG positive FR scenarios.
The CASIA NIR database includes 3,938 NIR face images
of 197 identities.

4) DATABASE CONFIGURATION
In the following sections, we report two experiments: the
performance evaluation of LiNFNet, and the performance
comparison of the proposed NIR FR system and existing NIR
FR methods. We describe the database configuration for both
experiments in Table 8. In these experiments, both the Inte-
grated NIR Face and Integrated NIR Face_AUG databases
were used as the training databases.

The CASIA NIR database [46], however, was utilized dif-
ferently for two experiments. For the performance evaluation
of LiNFNet, we acquired 12,000 pairs from the CASIA NIR
database for validation; there are 2,000 pairs for each type of
input pair (Fig. 3).

For the performance comparison of the proposed and exist-
ing NIR FR system, we assumed the identification scenarios.
Therefore, we prepared the gallery and probe images using

TABLE 12. The NIR FR accuracy and validation rate of LiNFNet and the
existing architectures [18], [19], [21], [22], [25], [26] trained using
Integrated NIR Face_AUG database.

the CASIA NIR database. For the identification scenarios,
we grouped the problems into two types: open-set and closed-
set. The proposed system andKim et al. [9] solve the open-set
problem, and Zhang et al. [10] and Peng et al. [11] solve the
closed-set problem.

C. TRAINING SETUP
In this section, we explain the detailed training set-
tings for LiNFNet. The size of the NIR face images is
160 × 160 pixels. We conducted random crop and flip as the
basic data augmentation apart from the proposed CycleGAN-
based G2NG data augmentation. We set the iteration, batch
size, and learning rate as 90,000, 32, and 0.001, respectively.
Following the literature [2], we set the embedding size as
128. For all of the experiments in the following section,
keep probability of dropout and weight decay were 0.8 and
0.00005, respectively, andwe set center loss factor to 0.01 and
center loss alpha to 0.9. When training LiNFNet, we used
RMSProp, which is one of the gradient descent methods, and
the fine-tuning method [9] was used as the training method.
Ruder [53] has stated that RMSProp, Adadelt, and Adam are
good gradient descent methods. Wilson et al. [54] also found
that the image classification loss of RMSProp on the CIFAR
dataset [55] was slightly lower than that of Adam. Since NIR
FR is strongly associated with image classification, we chose
RMSProp as the gradient descent method with which to train
the DCNN architecture for NIR FR. We trained the LiNFNet
architecture on a NVIDIA GTX 1080ti.

D. PERFORMANCE EVALUATION OF LINFNET
To evaluate the performance of the LiNFNet architecture in
the G-NG positive FR scenarios, we conducted two exper-
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FIGURE 14. The NIR FR accuracy of LiNFNet and the existing
archite-ctures [18], [19], [21], [22], [25], [26] for the mixed positive pairs
according to the training databases.

iments. The first experiment was an ablation study of the
LiNFNet architecture. We compared the performance of
LiNFNet with existing DCNN architectures [18], [19], [21],
[22], [25], [26] as the second experiment. As the performance
metrics, we used accuracy, validation rate, the number of
parameters, and FLOPs.

1) ABLATION STUDY
We conducted an ablation study to investigate the effect of
the depthwise separable convolutions [18] and linear bot-
tlenecks [21] in LiNFNet. For the baseline, we utilized
VGGNet 16_light, a lightweight version of VGGNet 16.
Using this baseline, we compared the performance of the
following architectures: Baseline+DSC, Baseline+LB, and
Baseline+DSC+LB (LiNFNet). The results of the experi-
ment are summarized in Table 9.

The accuracy and validation rate of the Baseline+DSC
were 0.8% and 1.2% higher than those of the baseline, respec-
tively. Although the Baseline+DSC does not contribute much
to the reduction of the number of parameters, this archi-
tecture reduces about 1.82 × 106 FLOPs over the baseline
with respect to computational cost. Depth-wise separable
convolution thus appears to be more suitable for the initial
convolution layers of the VGGNet 16 architecture in NIR FR
than the full convolution.

As shown in Table 9, the NIR FR accuracy and
validation rate of the Baseline+LB increased by 1.3%
and 5.8% over the baseline. This is because the linear
bottlenecks extract better features for NIR FR by using a
number of channels of the input activation than the full convo-
lutions. In addition, the number of parameters and FLOPs of
the Baseline+LB are about twice those of the baseline. There-
fore, the linear bottleneck is the main factor in improving the
performance of NIR FR in terms of accuracy, validation rate,
memory, and computational complexity.

As shown in Table 9, the validation rate of LiNFNet
increased over the baseline as much as the total increases
of the Baseline+DSC and Baseline+LB. This means that
the contributions of the two lightweight convolution modules

TABLE 13. The identification rate of LiNFNet and the existing NIR FR
methods [9]–[11] on G2NG test database in Table 8. ‘‘CDA’’ means the
proposed CycleGAN-based G2NG data augmentation.

(the depthwise separable convolution [18] and linear bottle-
neck [21]) to the improvement of the NIR FR validation rate
do not overlap. Therefore, in order to construct the LiNFNet
architecture, utilizing the lightweight convolution modules to
VGGNet 16_light is extremely effective for improving the
accuracy and validation rate of NIR FR. As shown in Fig. 12,
LiNFNet showed considerable increase in NIR FR accu-
racy for the mixed positive pairs over other architectures.
We demonstrated that LiNFNet is an efficient lightweight
version of the VGGNet 16 architecture in the G-NG positive
FR scenarios with respect to memory usage, computational
complexity, and NIR FR accuracy.

2) COMPARISON WITH EXISTING DCNN ARCHITEC-TURES
In this section, we describe the performances of the
following architectures as compared with LiNFNet:
Inception ResNet v1 [26], VGGNet 16 [25], and the existing
lightweight DCNN architectures [18], [19], [21], [22].

For Inception ResNet v1 [26], VGGNet 16 [25],MobileNet
v1 [18], and MobileNet v2 [21], we used TensorFlow imple-
mentations. To evaluate the performance of Xception [19] and
ShuffleNet v2 [22], we used the implementations reported
in [50] and [51], respectively. For fair comparison, all of the
architectures [18], [19], [21], [22], [25], [26] weremodified to
have a deep feature of 128 dimension. To do this, we replaced
the fully connected layers of the existing architectures with
that of the LiNFNet architecture shown in Table 4.

The first experiment was designed to evaluate the per-
formances of the pretrained models of LiNFNet and other
DCNN architectures [18], [19], [21], [22], [25], [26] in the
RGB domain. The LFW database [52] was used as a valida-
tion database. The results of the experiment are summarized
in Table 10. In general, the performance of a DCNN archi-
tecture decreased as the architecture became lighter. How-
ever, although LiNFNet is a lightweight version of VGGNet
16, LiNFNet had higher accuracy and validation rate than
VGGNet 16, and also achieved the best performance amongst
all architectures for the performance comparison.

For the second experiment, the performances of the archi-
tectures without the proposed G2NG data augmentation are
summarized in Table 11. LiNFNet achieved the highest NIR
FR accuracy and validation rate among all architectures
described in Table 11. As shown in Fig. 13, LiNFNet had the
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best FR accuracy of the mixed positive pairs. Even though
LiNFNet was trained without the proposed G2NG data aug-
mentation, it could achieve a high accuracy of 94% in the
G-NG positive FR scenario.

As shown in Table 10 and Fig. 13, The LiNFNet archi-
tecture is more effective at recognizing the mixed pos-
itive pairs in the NIR domain and the challenging face
image pairs in the RGB domain than the existing DCNN
architectures [18], [19], [21], [22], [25], [26]. In addition,
LiNFNet has considerably fewer parameters and FLOPs than
VGGNet 16. Although LiNFNet is slightly heavier than the
existing lightweight architectures [18], [21], [22] described
in Table 11, the accuracy and validation rate of LiNFNet are
considerably higher than those of the competitors. Therefore,
LiNFNet achieves a good balance between accuracy and
computational complexity.

To explore the performance improvements achieved
through the proposed data augmentation, all architectures
[18], [19], [21], [22], [25], [26] were fine-tuned using the
Integrated NIR Face_AUG database. The results of the per-
formance evaluation are summarized in Table 12. After
the proposed data augmentation, all of the architectures
in Table 12 performed better than the no-augmentation ver-
sions shown in Table 11. From the results shown in Fig. 14,
it is apparent that the proposed data augmentation is effec-
tive in improving accuracy for the mixed positive pairs.
By integrating CycleGAN-based G2NG data augmentation
and LiNFNet, the proposed NIR FR system achieved an
accuracy and validation rate of more than 99%, and the pro-
posed system also had a better ability to recognize the mixed
positive pairs than the off-the-shelf DCNN architectures [18],
[19], [21], [22], [25], [26].

E. PERFORMANCE COMPARISON OF THE PROPOSED
NIR FR SYSTEM AND EXISTING METHODS
We compared the proposed system with the existing DCNN-
based NIR FR methods [9]–[11], [58]. For this experiment,
we reproduced the Zhang’s method [10] and the Peng’s
method [11] known to have the NIR FR accuracies of
around 98%. We verified that the two implemented methods
achieved identification rates of 97.92% and 97.4%, respec-
tively. These values are similar to those which are reported
in [10] and [11]. Therefore, we verified that the implemen-
tations of [10] and [11] were correct. The work of Kim’s
method [9] and Jo’s method [58] was also reproduced. Kim’s
method [9] achieved an identification rate of over 99%. The
NIR FR method developed by Kim et al. [9] had a better
ability to recognize the pairs that included only NIR face
images without eyeglasses than the Zhang’s method [10] and
the Peng’s method [11].

Despite the high reported accuracy of the existing NIR FR
methods [9]–[11], [58], these results did not consider mixed
positive pairs. Peng et al. [11] excluded NIR face images
with eyeglasses in the training and test processes of FR, and
Zhang et al. [10] utilized the PolyU-NIRFD database [47]
as training and test databases to conduct performance eval-

uation; as shown in Table 1, there are few mixed positive
pairs in the PolyU-NIRFD database. In the literature [9],
an analysis of the G-NG positive FR scenarios was lacking.
Jo and Kim [58] added simple reflected light patterns to
the areas of the NIR face image around the eyes. However,
the patterns did not prove to be the sufficiently realistic.

To compare the proposed NIR FR system with existing
NIR FR methods [9]–[11], [58] in G-NG positive FR sce-
narios, we constructed a G2NG test database, as described
in Table 8, and conducted performance evaluation of iden-
tification on the G2NG test database. The results of this
experiment are presented in Table 13.

When using the proposed CycleGAN-based G2NG data
augmentation to train the LiNFNet architecture, the iden-
tification rate of the architecture increased. The proposed
data augmentation therefore contributes to an improvement
in the identification rates on the G2NG test database. In
addition, LiNFNet trained without CycleGAN-based data
augmentation achieved 4% and 0.6% higher identification
rates than Kim’s method [9] and Jo’s method [58], respec-
tively. Therefore, the LiNFNet architecture itself is robust
against reflected light in the G-NG positive FR scenarios. The
proposed NIR FR system (LiNFNet+CDA) has the best NIR
FR ability to recognize the mixed positive pairs among the
NIR FR methods, as shown in Table 13.

VII. CONCLUSION
In this paper, we propose a DCNN-based fast NIR FR sys-
tem robust to reflected light. The proposed system has two
contributions: one is the CycleGAN-based G2NG data aug-
mentation, and the other is LiNFNet. Through these two
contributions, the performance of the proposed NIR FR sys-
tem is improved with respect to accuracy and computational
complexity. Especially, the proposed NIR FR system con-
siderably improves the accuracy of DCNN-based NIR FR
in G-NG positive FR scenarios. We showed that the pro-
posed system has advantages in terms of striking a balance
between accuracy and the computational complexity of NIR
FR over existing lightweight architectures [18], [19], [21],
[22] as well as off-the-shelf DCNN architectures [25], [26].
The proposed system also has the best identification rate,
compared to the existing NIR FR methods [9]-[11], on the
G2NG test database, which includes mixed positive pairs,
as shown in Fig. 3. The system achieved an identification rate
of 100% on the G2NG test database.

Before discussing future works, it is worth mentioning the
pros and cons of our NIR FR system compared to existing
methods [56]–[58]. Based on the experiment of [9], the pro-
posed NIR FR method is expected to have an advantage over
existing RGB FR methods [56], [57] regarding FR validation
rate under poor lighting condition. However, the architec-
ture of Wu et al. [56] can be more versatile than LiNFNet
for different modalities of FR, because it was designed to
solve not only RGB FR scenarios, but also infrared-visible
heterogeneous FR scenarios. As compared to the method of
Jo et al. [58], the proposed system has a better FR validation
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rate than the competitor; however, DCNN architecture used
in [58] is less complex than LiNFNet.

Based on the pros and cons of the proposed system, we can
set two possible future directions of research: 1. Improving
LiNFNet to handle various modalities of FR, 2. Developing a
DCNN architecture which can produce more efficient facial
representations than LiNFNet.

Also, the accuracy and validation rate of NIR FR depend
upon the contents and characteristics of the training and val-
idation databases. To address this problem, we will research
methods that reduce the sensor dependency of NIR FR.
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