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Featured Application: This approach allows vibration analysis of the nuclear rod bundles with
surrounding fluid using the spectral element method.

Abstract: The structural behavior of the nuclear rod bundles that consisted of cylindrical beams
was predicted using the spectral element method (SEM) while considering the interaction with the
surrounding fluid. Viscous fluid behavior was utilized in order to calculate the forces acting on the
nuclear rod bundles from the incident pressure waves. The added mass and fluid coupling on the
nuclear rod bundles were determined for the position patterns and gaps of each of the cylindrical
beams. The pressure field from propagating waves in the surrounding fluid was calculated with
respect to the boundary conditions of the surface of the vibrating structures. With the increasing
number of nuclear rods and decreasing pressure wavelengths, the structural vibration of the nuclear
rod bundles that were induced by the propagating forces affected the scattering events of the pressure
field. The frequency response of the nuclear rod bundles from the pressure waves in the water
exhibited smaller damping, because the incident pressure wave travels without fluid coupling due to
the longer wavelength when compared with distance between rods. The proposed numerical method
can be utilized for the detailed design for effective parameters of a supporting system to reduce the
vibration of nuclear fuel rod bundles for safety control.
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1. Introduction

The structural instability that was induced by pressure pulsation and external force in nuclear
power reactors, fuel pumps, air conditioning systems, and heat exchanger tubes has received increasing
attention in recent years [1–6]. Nuclear fuel rod bundles that were exposed to coolant flow should
be protected from structural failure [7]. The vibrations are affected by the instability of the fluid flow
through the pipe system. It is necessary to analyze the motion of the nuclear rod bundles induced by
fluid flow and design the support system that has large damping and stiffness to protect the nuclear rod
bundles subjected to instability [8]. To simulate the behavior of nuclear rod bundles induced by fluid
flow, coupling of the fluid flow and structural vibration is required. The fluid–structure interaction
analysis was performed while using the following procedures. Structural deformation occurs due to
fluid force; as the structure deforms, the pressure magnitude of the surrounding fluid and its direction
to the flow change, and this induces changes in the pressure fields. Consequently, the changed pressure
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fields act on the structure. A numerical analysis in the time domain was developed to analyze the
interaction between the fluid and structure. The development of a numerical solution in the frequency
domain is required for parametric studies to analyze the damping performance because the transient
analysis requires a significant amount of computation time for accuracy.

Fluid–structure interaction was solved using the finite element method [9–11]. The structural
vibration of a liquid-filled pipe system was analyzed while considering the extended water hammer
equations using a polynomial function [9,10]. The shape function using non-uniform rational B-splines
was used to increase the accuracy of the numerical results [11]. Because conventional finite element
models are expressed by frequency-independent polynomial shape functions, the configuration of the
model influences the accuracy in the high frequency modes of interest [12–14]. SEM using a shape
function was developed to increase the accuracy of the numerical analysis [15–19]. The structural
vibration of the pipelines conveying internal steady flow was simulated after considering the interaction
with longitudinal and flexural vibrations. The momentum conservation for fluid flow in a pipe system
and the governing equation of the vibration for pipelines conveying internal steady flow was analyzed
using SEM [15]. Additionally, the flexural vibration of the pipeline considered the unsteady flow [16].
The behavior of blood flow, such as the viscoelastic nature of blood vessels, was analyzed using
SEM [17]. The blood flow rate and pressure calculated by SEM was accurately more than those of
the finite element method. In petroleum engineering applications, the effects on axial force, annulus
fluid properties, and geometry for a braced well have been thoroughly investigated [18,19]. Viscous
coupling for each structure in the fluid medium was not considered when the structural vibration of
nuclear rod bundles interacting with the surrounding fluid was simulated.

There has been limited research regarding the numerical analysis of the structural behavior of
nuclear rod bundles that were subjected to viscous fluid for the consideration of the supporting system.
It is difficult to consider the viscous fluid coupling effects, because CFD analysis requires a large
amount of computation time for accuracy and difficult numerical methods. Most studies focused
on the simulation without the influence of hydrodynamic fluid coupling of each structure due to
the computation time. The development of a new numerical method for calculating the vibration of
nuclear rod bundles in viscous fluid for the design of support systems is necessary.

This study simulated the flexural vibration of the nuclear rod bundles interacting with viscous
fluid using SEM based on the wave approach. The nuclear rod bundles consisted of 25 cylindrical
beams, as shown in Figure 1. The added mass and viscous damping of the surrounding fluid on
the structure were analyzed by the viscosity theory. The pressure force applied to each cylindrical
beam was calculated while using the scattering wave solution of the surrounding fluid. The flexural
vibration of the single nuclear rod induced by point force was simulated and the transient decay of
displacement was confirmed in order to investigate the viscous damping of the surrounding fluid.
With the plane sound wave incident on the nuclear rod bundles, the flexural displacement and phases
of each cylindrical beam was calculated to investigate the characteristics of viscoelastic damping.
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Figure 1. Flexural vibration of nuclear fuel rod bundles subjected to traveling plane wave caused by
external collisions.

2. Equation of Motion for Nuclear Rod Bundles Surrounded by Viscous Fluid

2.1. Flexural Vibration of Nuclear Rod Bundles

The nuclear rod bundles were assumed to be cylindrical beams, as shown in Figure 2. The flexural
vibration for the i–th cylinder was obtained, as

EI
∂4wi

∂x4
+ ρsAs

∂2wi

∂t2 = Fυ,i + Fp,i (1)

where E is Young’s modulus, I is the inertia, ρs is the mass density, As is the cross-sectional area, and i
ranges from 1 to N. Fυ is the viscous hydrodynamic force induced by the presence of fluid, and Fp

is the external force that is caused by the propagating pressure waves. The viscous hydrodynamic
force was determined by the density and damping of the fluid. The hydrodynamic forces analyzed
the effect of the added mass and fluid coupling with each structure. If the surrounding fluid was air,
hydrodynamic forces could be neglected because of the low density. The pressure wave and fluid flow
induced by turbulence in the water pipe system caused the vibration of the nuclear rod bundles as
well as pressure scattering.
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2.2. Flexural Vibration of Nuclear Rod Bundles

To calculate the viscous hydrodynamic force acting on the nuclear rod bundles, the bi–Helmholtz
equation using the linearized Navier–Stokes equation and continuity equations of the surrounding
unbounded fluid for its structures presented in Figure 3 were obtained, as [1]

∇
2
(
∇

2 + k2
υ

)
ϕ = 0, (2)

where ϕ is the streamline, kυ is the viscous wavenumber kυ = (1 + i)
√
ω/2υ, ν is the kinematic viscosity

of the fluid, and ω is the radial frequency variable. From Equation (2), we obtain the streamline ϕi of
the surrounding fluid for cylinder i using

ϕi = ϕi
1 + ϕi

2,ϕi
1 =

N∑
i=1

∞∑
n=1

{
C1

n,ir
−n
i cos nθ+ C2

n,ir
−n
i sin nθ

}
,ϕi

2 =
N∑

i=1

∞∑
n=1

C3
n,iH

(1)
n (kri)einθ, (3)

where H(1)
n is the Hankel function of the first kind and constants Cn,i are determined from the boundary

conditions. The boundary conditions were applied, as

1
r
∂ϕ

∂θi

∣∣∣∣∣
ri=Ri

= 0, i = 1, 2, · · · , N, i , l; (4)

1
r
∂ϕ

∂θi

∣∣∣∣∣
ri=Ri

=
.

wl cosθl, (5)

for l = 1, 2, 3, . . . , N, where Rl is the radius of cylinder l, and
.

wl is the velocity of cylinder l, as shown in
Figure 3. The viscous hydrodynamic forces on cylinder i are

Fυ,i = −iωe−iωtρ f Ri

∫ 2π

0

ri
∂ϕi

1

∂ri
+ ϕi

2

 sinθidθi, (6)

where ρf is the fluid density. Substituting Equation (6) into (4) and (5), the viscous hydrodynamic
forces were rewritten, as

Fυ,i = −ρ fπR2
i

N∑
l=1

αi,l
..
wl, (7)

where αi,l is the dimensionless added mass of cylinder i from the vibration of cylinder l. To determine
the dimensionless added mass αi,l, added mass Mi,l was obtained by

Mi,l = ρ fπR2
i αi,l. (8)

When i = l, added mass acts as the inertia loading to the cylinder vibration. The fluid coupling
between the cylinders was analyzed similar to the influences by coupled viscoelastic spring. One
cylinder vibration induced coupling to those of adjacent cylinders. The imaginary part of the added
mass acts as the viscous damping. The vibration of cylinders coupled with viscous fluid induced a
phase difference. The viscosity of fluid coupling improves the damping effect for the behaviors of
nuclear rod bundles.



Appl. Sci. 2020, 10, 2282 5 of 15

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 14 

was calculated while using the scattering wave solution of the surrounding fluid. The flexural 
vibration of the single nuclear rod induced by point force was simulated and the transient decay of 
displacement was confirmed in order to investigate the viscous damping of the surrounding fluid. 
With the plane sound wave incident on the nuclear rod bundles, the flexural displacement and phases 
of each cylindrical beam was calculated to investigate the characteristics of viscoelastic damping. 

2. Equation of motion for nuclear rod bundles surrounded by viscous fluid 

2.1. Flexural vibration of nuclear rod bundles 

The nuclear rod bundles were assumed to be cylindrical beams, as shown in Figure 2. The 
flexural vibration for the i–th cylinder was obtained, as 

∂ ∂
+ = +

∂ ∂

4 2

, ,4 2
i i

s s υ i p i

w w
EI ρ A F F

x t
, (1) 

where E is Young’s modulus, I is the inertia, ρs is the mass density, As is the cross-sectional area, and 
i ranges from 1 to N. Fυ is the viscous hydrodynamic force induced by the presence of fluid, and Fp is 
the external force that is caused by the propagating pressure waves. The viscous hydrodynamic force 
was determined by the density and damping of the fluid. The hydrodynamic forces analyzed the 
effect of the added mass and fluid coupling with each structure. If the surrounding fluid was air, 
hydrodynamic forces could be neglected because of the low density. The pressure wave and fluid 
flow induced by turbulence in the water pipe system caused the vibration of the nuclear rod bundles 
as well as pressure scattering. 

 
(a) 

 
(b) 

Figure 2. Nuclear fuel rod bundles consisting of 25 cylinders: (a) schematics and (b) cross section A. 

2.2. Flexural vibration of nuclear rod bundles 

To calculate the viscous hydrodynamic force acting on the nuclear rod bundles, the bi–
Helmholtz equation using the linearized Navier–Stokes equation and continuity equations of the 
surrounding unbounded fluid for its structures presented in Figure 3 were obtained, as [1] 

 
Figure 3. Definition diagram, coordinate systems and symbols used in the determination of the
streamline and pressure of the surrounding fluid of the cylinders.

2.3. External Force Induced by the Pressure Wave

The pressure wave that was generated by the turbulent flow in the nuclear power reactors and
the impacts of the external force were assumed to be of impulsive plane wave [20–22]. It is difficult
to predict the magnitude of the pressure wave in real operating condition. Therefore, by calculating
the transfer function of nuclear rod bundles applied to the pressure wave, the structural vibration
can be simply predicted. When the pressure wave arrived at the nuclear rod bundles that consisted
of multiple cylinders, the scattered wave interacted with the boundary surfaces of the structures.
A multiple scattering analysis that was based on superposition using Graf’s addition theorem was
assumed [23]. After considering the interactions between the incident wave and the scattered waves
from each cylinder, the total pressure in the unbounded fluid was expressed as

p(r,θi) =
∞∑

n=−∞

[
p0e−ik f γin Jn(k f ri)einθi + Dn,iH

(1)
n (k f ri)einθi ..+

K∑
j = 1

j , i

Dn, j

∞∑
n=−∞

H(1)
n−m(k f Ri j)ei(n−m)ψi j Jm(k f ri)eimθi

]
, ri < Ri, (9)

where p0 is the pressure of the incident traveling wave, γ is the start position of the wave, Jn is the
Bessel function of the first kind, and constants Dn are determined from the boundary conditions. The
boundary conditions at the cylinder wall were used to obtain the unknown coefficients in Equation (9).
For each surrounding cylinder, the wall pressure conditions are given as

∂p
∂ri

∣∣∣∣∣
ri=Ri

= 0, i = 1, 2, · · · , N. (10)

In order to simulate the scattering induced by the incident wave, the external forces from the
incident wave and scattered waves were calculated as

Fp,i =

∫ 2π

0
pi
∣∣∣
ri=Ri

Ri cosθidθi. (11)

2.4. Numerical Model of Nuclear Rod Bundles

Flexural wave propagations were calculated using SEM to evaluate the structural instability of
nuclear rod bundles in the fluid medium. The spectral element equation of the weak form based on
a weighted–integral statement was derived. An eigenvalue problem was solved to determine the
wavenumber of the flexural wave for the nuclear rod bundles in the fluid medium. The effects of added
mass and fluid damping were investigated by changing the number of structures. The transfer function
of the flexural vibration that was induced by incident pressure wave was calculated to evaluate the
structural instability of the nuclear rod bundles.



Appl. Sci. 2020, 10, 2282 6 of 15

Deriving the dynamic shape functions depended on the frequency domain, and the general
solution of Equation (1) was assumed as

wi(x, t) = βiCe−ikxeiωt, (12)

where β is the proportional coefficient for each general solution and k is the wavenumber. Substituting
Equation (1) into (12), the eigenvalue problem was obtained by

(k4EII−ω2(ρsAsI + Ma))β = 0, (13)

where I is the unit matrix of N by N, β =
{
β1 β2 · · · βN

}T
and Ma is the matrix of added masses

as

Ma =


M1,1 M1,2 · · · M1,N
M2,1 M2,2 M2,N

...
. . .

...
MN,1 MN,2 · · · MN,N

.
Equation (13) was rewritten in a linearized form by

Cx = kJx, (14)

where
x =

{
βT kβT k2βT k3βT

}T
,

C =


0 I 0 0
0 0 I 0
0 0 0 I

ω2(ρsAsI + Ma) 0 0 0

,
and

J =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 EII

.
After the QR algorithm was applied to numerically solve Equation (14) using MATLAB, 4N

wavenumbers ki, proportional coefficients βi determined by the material properties and frequency were
obtained. While using the 4N wavenumbers, the general solutions of Equation (1) were obtained as

Wi(x) = e(x,ω)Bi(ω)a, (15)

where
e(x,ω) =

{
e−ik1x e−ik2x e−ik3x

· · · e−ik4Nx
}T

,

a =
{

a1 a2 a3 · · · a4N
}T

,

and

Bi(ω) =


βi,1

βi,2
. . .

βi,4N

.
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The spectral nodal displacement of the multiple-beam element in the flexural direction is
expressed by

d =
{

W1(0) W′1(0) · · · WN(0) W′N(0) W1(L) W′1(L) · · · WN(L) W′N(L)
}T

. (16)

Substituting Equation (15) into (16),

d = H(ω)a, (17)

where

H(ω) =



β1,1 β1,2 · · · β1,4N
−ik1β1,1 −ik2β1,2 −ik4Nβ1,4N

...
...

...
β4N,1 β4N,2 β4N,4N
−ik1β4N,1 −ik2β4N,2 · · · −ik4Nβ4N,4N
β1,1e−ik1β1,1L β1,2e−ik2β1,2L

· · · β1,4Ne−ik4Nβ1,4NL

−ik1β1,1e−ik1β1,1L
−ik2β1,2e−ik2β1,2L

−ik4Nβ1,4Ne−ik4Nβ1,4NL

...
...

...
β4N,1e−ik1β4N,1L β4N,2e−ik2β4N,2L β4N,4Ne−ik4Nβ4N,4NL

−ik1β4N,1e−ik1β4N,1L
−ik2β4N,2e−ik2β4N,2L

· · · −ik4Nβ4N,4Ne−ik4Nβ4N,4NL



.

Using Equations (15) and (17), the flexural vibrations of the nuclear rod bundles in terms of the
nodal displacement were obtained by

Wi(x) = Nw,i(x,ω)d, (18)

where Nw,i(x,ω) = e(x,ω)BiH−1(ω). In order to obtain the spectral element equations for Equation
(1), the weak form was derived from the weighted–integral statement by

∫ L

0

 4N∑
i=1

EIW′′
iδW′′

i −ω
2ρsAsWiδWi −ω

2
4N∑
j=1

Mi, jW jδW j − Fi,2δWi


dx=

4N∑
i=1

FW,i(x)δWi

∣∣∣∣∣∣∣
L

0

+
4N∑
i=1

FΘ,i(x)δW′i

∣∣∣∣∣∣∣
L

0

, (19)

where δW is the arbitrary variation in W, and FW,i and FΘ,i are the transverse shear force and bending
moment, respectively, as

FW,i(x) = −EI
∂3Wi(x)
∂x3 ,

FΘ,i(x) = EI
∂2Wi(x)
∂x2 .

Substituting Equation (18) into (19), the spectral element equation was obtained, as

S(ω)d = f(ω) + f2(ω), (20)

where S is the symmetric spectral element matrix for the flexural vibration of the nuclear rod bundles
in the fluid as

S(ω) = H−T

 N∑
i=1

EIBiK2EK2Bi − ρsAsω
2BiEBi −ω

2
N∑

j=1

Mi, jBiEB j


H−1.
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Here, E(ω) =
∫ L

0 eT(x,ω)e(x,ω)dx and K is the wavenumber matrix as

K2 =


k2

1
k2

2
. . .

k2
4N

.
f is the spectral nodal force component for the beam element given as

f(ω) =
{

fb(0,ω)
fb(L,ω)

}
,

where fb(x,ω) =
{

FW,1(x,ω) FΘ,1(x,ω) · · · FW,N(x,ω) FΘ,N(x,ω)
}T

, and f2 is the spectral nodal
force component induced by the pressure wave, as

f2(ω) =

∫ L

0

N∑
i=1

Fi,2(ω)NT
w, j(x,ω)dx.

3. Results and Discussion

When considering the single cylinder in the presence of an inviscid fluid, the dimensionless added
mass α is equal to one, regardless of the vibrating frequencies. For a single cylinder in viscous fluid,
the exact dimensionless added mass was calculated as [24]

αext = 1 +
4iK1(−i

√
iRe)

√
iReK0(−i

√
iRe)

, (21)

where K0 and K1 are the modified Bessel functions of the third kind, and Re = ρfωR2/µ. The
dimensionless added mass of a single cylinder in the fluid medium was calculated, as shown in
Figure 4. The radius of the cylindrical beam R was 0.005 m. The fluid was assumed to be water, at 4 ◦C
( ρf = 1,000 kg/m3 and µ = 1.519 × 10-3 Ns/m2 ). When compared with Lin’s method, the results of the
exact solution (Figure 3) were in good agreement. The dimensionless added masses of the 25 cylinders
were calculated using Lin’s method presented in Figure 5. The gap between each cylinder was 0.001 m.
The start position of the traveling wave is 0.05 m. As the number of cylinders increased, the added
mass and fluid damping also increased due to more interactions between the multiple cylinders. The
fluid coupling effects became significant when the structures were concentrated.

Figure 6 shows the real part of the pressure that was obtained for propagating plane waves. The
scattering is more significant when the frequency of the incident wave is larger. The increasing number
of cylinders induced more significant scattering.

Figure 7 shows the external forces from the unit pressure of the incident wave. The external forces
were proportional to the input frequency of the incident wave. The forces acting on cylinders 1, 6, 11,
16, and 21 were higher than those acting on other cylinders. The external forces acting on cylinders
located outside of the complex structures were influenced by the instability of the nuclear rod bundles
in the fluid.
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The point force was applied to the fixed beam, as shown in Figure 8a. The displacement responses
for the flexural vibration of a single cylindrical beam in the fluid medium were predicted, as shown
in Figure 8b,c. The single cylindrical beam without water vibrated having not a time decay. Fluid
damping did not occur without the presence of water, and only structural damping influenced vibration.
Otherwise, the vibration magnitude of cylindrical beam considering the added mass and fluid coupling
induced fast decay in comparison with only structural damping. The application of the added mass
increased the total damping because of the viscous effects. The increased decay in the predicted
responses was observed when the beam was placed in the water.

The impact response of the nuclear rod bundles consisting of multiple cylinders was predicted,
as shown in Figure 9. The resonant response of the nuclear rod bundles consisting of multiple cylinders
occurred at lower frequencies. When the number of cylindrical beams N increased, the total damping
of nuclear rod bundles also increased. The fluid coupling that was caused by the viscous damping of
the fluid gaps between each structure was increased when the number of cylindrical beam increased.
The fluid damping increased in the presence of surrounding structures due to small gaps between the
vibrating structures.
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The modes shapes of the nuclear rod bundles in the fluid medium were predicted to confirm the
viscous fluid in the gaps between each multiple cylinders, as shown in Figure 10. The mode for each
cylindrical beams overlapped with modes of other cylindrical beams, depending on the number of
cylinders, but in various phases. The complex structure with nine cylinders had nine overlapping
modes and the complex structure with 25 cylinders had 25 overlapping modes. When the number of
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the cylindrical beams increased, the interacted surface areas became larger. Moreover, the different
phases of the cylindrical beams caused the reaction of mass coupling of each cylinders having viscous
effects. The effective damping increased with the increase in number of cylinders.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 14 
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Figure 11 shows the calculated transfer functions for the nuclear rod bundles that consisted of
multiple cylinders that were subjected to a pressure wave together with its first mode shape. When
the propagating pressure was acting on the nuclear rod bundles, viscous damping was insignificant
because the phases of all the beams were identical. In the case of water, the wavelength at the frequency
of 100 Hz is 44.8 m. The wavelength in water is larger than the distance between the cylinders in
the low frequency range. The distances between cylinders were identical. Thus, the fluid couplings
induced negligible viscous effects to the vibrating structures. The phase difference of the structures
caused the viscous fluid damping to increase. When the distance of each fuel rods is smaller than the
cross-sectional dimensions, the fluid coupling that causes the vibration modes in viscous fluid medium
is more important.
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4. Conclusions

The structural vibration of nuclear rod bundles that are induced by propagating pressure waves
was simulated by using SEM. Added mass and fluid coupling of the surrounding fluid were calculated
using the viscous fluid theory to investigate the fluid forces acting on the nuclear rod bundles in
the viscous fluid. The external forces that were caused by the incident wave and scattering pressure
fields were predicted from the solution of the acoustic wave equation. The spectral element equation
for the flexural vibration of nuclear rod bundles in the fluid medium subjected to external force
was derived while using the weighted–integral statement. The structural damping of nuclear rod
bundles in the fluid medium increased due to viscous effects in the mass coupling. Furthermore, the
natural frequency of the nuclear rod bundles was decreased by the added mass. When the number
of cylinders increased, the total damping also increased, because the number of the viscous fluid
coupling dissipating the vibration energy was larger. The flexural vibrations of the nuclear rod bundles
that were induced by the propagating pressure wave exhibited smaller damping due to same phase
responses of each cylindrical beam. When the wavelength was longer than the gaps of the nuclear rod
bundles, the effective damping of the underwater structure tended to decrease. The proposed method
can be utilized for designing the underwater structure of the nuclear rod bundles, water pipe systems,
and vessels conveying fluid, as well as the development of damping treatment for the reduction of
vibration induced by the fluid effect.
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