Detailed Information

Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads

Grain-Controlled Gadolinia-Doped Ceria (GDC) Functional Layer for Interface Reaction Enhanced Low-Temperature Solid Oxide Fuel Cells

Full metadata record
DC Field Value Language
dc.contributor.authorHong, Soonwook-
dc.contributor.authorYang, Hwichul-
dc.contributor.authorLim, Yonghyun-
dc.contributor.authorPrinz, Fritz B.-
dc.contributor.authorKim, Young-Beom-
dc.date.accessioned2021-08-02T10:51:23Z-
dc.date.available2021-08-02T10:51:23Z-
dc.date.created2021-05-12-
dc.date.issued2019-11-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/12352-
dc.description.abstractIn this Research Article, gadolinia-doped ceria (GDC), which is a highly catalyzed oxide ionic conductor, was explored to further improve oxygen surface reaction rates using a grain-controlled layer (GCL) concept. Typically, GDC materials have been used as a cathode functional layer by coating the GDC between the electrode and electrolyte to accelerate the oxygen reduction reaction (ORR). To further improve the oxygen surface kinetics of the GDC cathodic layer, we modified the grain boundary density and crystallinity developed in the GDC layer by adjusting RF power conditions during the sputtering process. This approach revealed that engineered nanograins of GDC thin films directly affected ORR kinetics by catalyzing the oxygen surface reaction rate, significantly enhancing the fuel cell performance. Using this innovative concept, the fuel cells fabricated with a GDC GCL demonstrated a peak power density of 240 mW/cm(2) at 450 degrees C.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleGrain-Controlled Gadolinia-Doped Ceria (GDC) Functional Layer for Interface Reaction Enhanced Low-Temperature Solid Oxide Fuel Cells-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Young-Beom-
dc.identifier.doi10.1021/acsami.9b13999-
dc.identifier.scopusid2-s2.0-85074293430-
dc.identifier.wosid000495769900037-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.11, no.44, pp.41338 - 41346-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume11-
dc.citation.number44-
dc.citation.startPage41338-
dc.citation.endPage41346-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusYTTRIA-STABILIZED ZIRCONIA-
dc.subject.keywordPlusELECTRICAL-PROPERTIES-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusBOUNDARIES-
dc.subject.keywordPlusINTERLAYER-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordAuthorgadolinia-doped ceria (GDC)-
dc.subject.keywordAuthorgrain-controlled layer (GCL)-
dc.subject.keywordAuthorlow-temperature solid oxide fuel cell-
dc.subject.keywordAuthorthin-film electrolyte-
dc.subject.keywordAuthoroxygen reduction reaction-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsami.9b13999-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Beom photo

Kim, Young Beom
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE