Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Molecular modeling of poly(benzoxazole-co-imide) membranes: A structure characterization and performance investigation

Full metadata record
DC Field Value Language
dc.contributor.authorChang, Kai-Shiun-
dc.contributor.authorWu, Zhen-Cheng-
dc.contributor.authorKim, Seungju-
dc.contributor.authorTung, Kuo-Lun-
dc.contributor.authorLee, Young Moo-
dc.contributor.authorLin, Yi-Feng-
dc.contributor.authorLai, Juin-Yih-
dc.date.accessioned2022-02-03T01:36:19Z-
dc.date.available2022-02-03T01:36:19Z-
dc.date.created2021-05-11-
dc.date.issued2014-03-
dc.identifier.issn0376-7388-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/133987-
dc.description.abstractThe molecular simulation technique was adopted to investigate the structure and transport performance of thermally rearranged poly(benzoxazole-co-imide) membranes. A molecular dynamics (MD) technique was used to construct three models: a poly-benzoxazole (PBO) membrane with high free volume; a polyimide (PI) membrane with dense structure; and their co-polymer, PBO-PI membrane. The MD simulation was performed to characterize he membrane models to understand how the very rigid benzoxazole segments affect the micro structure, free volume, cavity size, and gas diffusion of the membrane models. A Monte Carlo method was adopted to investigate the gas sorption behaviors in the three types of membranes. The torsional angle and wide-angle X-ray diffraction analyses suggest that the benzoxazole segments stiffened the polymeric chains, leading to the formation of a looser structure. In free volume and cavity-size studies, the PBO membrane exhibited the highest free volume and largest cavity size, which can be attributed to the presence of the benzoxazole structure constructed by thermal rearrangement. The enlarged free volume in the membranes with benzoxazole segments provided more space for gas sorption and diffusion, which effectively enhanced the gas permeability. In addition, increasing the benzoxazole segments in the membrane structure enhances the gas sorption in accordance with Henry's law, as the PBO membrane provides more inter-polymeric chain space and allows for the larger free volume elements. Fabrication of the poly(benzoxazole-co-imide) membrane with an appropriate PBO/PI composition would help optimize the gas permeability and selectivity in the gas separation process. The results from the simulation agree with the experimental data, indicating that the molecular simulation technique is a useful method in the field of materials design and development for the membrane separation process.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.titleMolecular modeling of poly(benzoxazole-co-imide) membranes: A structure characterization and performance investigation-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Young Moo-
dc.identifier.doi10.1016/j.memsci.2013.11.047-
dc.identifier.scopusid2-s2.0-84890849170-
dc.identifier.wosid000330951200001-
dc.identifier.bibliographicCitationJOURNAL OF MEMBRANE SCIENCE, v.454, pp.1 - 11-
dc.relation.isPartOfJOURNAL OF MEMBRANE SCIENCE-
dc.citation.titleJOURNAL OF MEMBRANE SCIENCE-
dc.citation.volume454-
dc.citation.startPage1-
dc.citation.endPage11-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordPlusHEXAFLUOROPROPANE DIANHYDRIDE 6FDA-
dc.subject.keywordPlusFLUORINATED POLYIMIDE MEMBRANES-
dc.subject.keywordPlusPARA-AROMATIC POLYMERS-
dc.subject.keywordPlusRIGID-ROD POLYMERS-
dc.subject.keywordPlusFREE-VOLUME-
dc.subject.keywordPlus3,3&apos-
dc.subject.keywordPlus-DIHYDROXY-4,4&apos-
dc.subject.keywordPlus-DIAMINO-BIPHENYL HAB-
dc.subject.keywordPlusINTRINSIC MICROPOROSITY-
dc.subject.keywordPlusTHERMAL-PROPERTIES-
dc.subject.keywordPlusGAS SEPARATION-
dc.subject.keywordPlusCO2 CAPTURE-
dc.subject.keywordAuthorMolecular dynamics-
dc.subject.keywordAuthorMonte Carlo-
dc.subject.keywordAuthorThermally rearranged-
dc.subject.keywordAuthorPRO-
dc.subject.keywordAuthorFree volume-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0376738813009435?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE