Detailed Information

Cited 1 time in webofscience Cited 0 time in scopus
Metadata Downloads

Spontaneous Folding Growth of Graphene on h-BN

Full metadata record
DC Field Value Language
dc.contributor.authorFan, Xiaodong-
dc.contributor.authorKim, Sun-Woo-
dc.contributor.authorTang, Jing-
dc.contributor.authorHuang, Xinjing-
dc.contributor.authorLin, Zhiyong-
dc.contributor.authorZhu, Lijun-
dc.contributor.authorLi, Lin-
dc.contributor.authorCho, Jun-Hyung-
dc.contributor.authorZeng, Changgan-
dc.date.accessioned2021-07-30T04:48:09Z-
dc.date.available2021-07-30T04:48:09Z-
dc.date.created2021-07-14-
dc.date.issued2021-03-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/1343-
dc.description.abstractGraphene has been the subject of much research, with structural engineering frequently used to harness its various properties. In particular, the concepts of graphene origami and kirigami have inspired the design of quasi-three-dimensional graphene structures, which possess intriguing mechanical, electronic, and optical properties. However, accurate controlling the folding process remains a big challenge. Here, we report the discovery of spontaneous folding growth of graphene on the h-BN substrate via adopting a simple chemical vapor deposition method. Folded edges are formed when two stacked graphene layers share a joint edge at a growth temperature up to 1300 °C. Using first-principles density functional theory calculations, the bilayer graphene with folded edges is demonstrated to be more stable than that with open edges. Utilizing this novel growth mode, hexagram bilayer graphene containing entirely sealed edges is eventually realized. Our findings provide a route for designing graphene devices with a new folding dimension.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleSpontaneous Folding Growth of Graphene on h-BN-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Sun-Woo-
dc.contributor.affiliatedAuthorCho, Jun-Hyung-
dc.identifier.doi10.1021/acs.nanolett.0c04596-
dc.identifier.scopusid2-s2.0-85101943840-
dc.identifier.wosid000629091100018-
dc.identifier.bibliographicCitationNANO LETTERS, v.21, no.5, pp.2033 - 2039-
dc.relation.isPartOfNANO LETTERS-
dc.citation.titleNANO LETTERS-
dc.citation.volume21-
dc.citation.number5-
dc.citation.startPage2033-
dc.citation.endPage2039-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusEPITAXIAL-GROWTH-
dc.subject.keywordPlusDIRAC FERMIONS-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusORIGAMI-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorfolding growth-
dc.subject.keywordAuthorfolded edge-
dc.subject.keywordAuthorchemical vapor deposition-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c04596-
Files in This Item
Go to Link
Appears in
Collections
서울 자연과학대학 > 서울 물리학과 > 1. Journal Articles
서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sunwoo photo

Kim, Sunwoo
COLLEGE OF ENGINEERING (SCHOOL OF ELECTRONIC ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE