Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Simultaneously intensified plasmonic and charge transfer effects in surface enhanced Raman scattering sensors using an MXene-blanketed Au nanoparticle assembly

Authors
Yoo, Seong SooHo, Jeong-WonShin, Dong-InKim, MinjunHong, SunghwanLee, Jun HyukJeong, Hyeon JunJeong, Mun SeokYi, Gi-RaKwon, S. JoonYoo, Pil J.
Issue Date
Feb-2022
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.10, no.6, pp.2945 - 2956
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY A
Volume
10
Number
6
Start Page
2945
End Page
2956
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/139623
DOI
10.1039/d1ta08918h
ISSN
2050-7488
Abstract
Surface enhanced Raman spectroscopy (SERS) is an ultrasensitive tool for detecting a wide range of analytes. The signal amplification is generally attributed to two different mechanisms, localized surface plasmonic resonance (LSPR) and short-range charge transfer (CT) effect between the analyte molecule and the surface of the substrate. Therefore, an assembly of metallic nanoparticles (NPs) has been employed as a basic SERS substrate. Conventional approaches based on metallic NPs for the SERS platform, however, have limitations in simultaneously eliciting both mechanisms as the energy level of most analytes is not aligned with the Fermi level of the metallic surface. Herein, this study presents the development of an ultrasensitive SERS platform utilizing a two-dimensional (2D) assembly of Au NPs conformally coated with a few-atom-thick MXene layer. The MXene layer enables the Fermi level of the substrate to be located between the HOMO and LUMO levels of analytes, thus efficiently facilitating the CT effect. In addition, wrinkled surface structures generated from conformal blanketing of the MXene layer over the Au NP assembly would help to increase the EM effect by guiding the analyte to be captured near the hotspot center between Au NPs. Thanks to this unique structural design using MXene layer deposition, the presented SERS platform exhibits a large analytical enhancement factor up to 1.6 x 10(10). Furthermore, it is proven to detect Cr(vi) with a low detection limit down to 13 ng L-1. Therefore, the present SERS platform can be generalized and extended for quantitative detection of a wide range of analytes including molecules of interest in biomedical and environmental aspects.
Files in This Item
Go to Link
Appears in
Collections
서울 자연과학대학 > 서울 물리학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeong, Mun Seok photo

Jeong, Mun Seok
COLLEGE OF NATURAL SCIENCES (DEPARTMENT OF PHYSICS)
Read more

Altmetrics

Total Views & Downloads

BROWSE