Detailed Information

Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads

Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet

Full metadata record
DC Field Value Language
dc.contributor.authorJang, Ji-un-
dc.contributor.authorNam, Hae Eun-
dc.contributor.authorSo, Soon Oh-
dc.contributor.authorLee, Hyeseong-
dc.contributor.authorKim, Geon Su-
dc.contributor.authorKim, Seong Yun-
dc.contributor.authorKim, Seong Hun-
dc.date.accessioned2022-07-06T10:43:49Z-
dc.date.available2022-07-06T10:43:49Z-
dc.date.created2022-01-26-
dc.date.issued2022-01-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/139858-
dc.description.abstractIn this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation behavior of the nanocomposites were induced by the GNP network. Interestingly, as the size of GNPs increased, higher thermal conductivity and a lower percolation threshold were observed. The in-plane thermal conductivity of the nanocomposite containing 30 wt.% M25 GNP (the largest size) was 8.094 W/m·K, and it was improved by 1518.8% compared to the polymer matrix. These experimentally obtained thermal conductivity results for below and above the critical content were theoretically explained by applying Nan’s model and the percolation model, respectively, in relation to the GNP size. The thermal percolation behavior according to the GNP size identified in this study can provide insight into the design of nanocomposite materials with excellent heat dissipation properties.-
dc.language영어-
dc.language.isoen-
dc.publisherMDPI-
dc.titleThermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Seong Hun-
dc.identifier.doi10.3390/polym14020323-
dc.identifier.scopusid2-s2.0-85122979843-
dc.identifier.wosid000757616800001-
dc.identifier.bibliographicCitationPOLYMERS, v.14, no.2, pp.1 - 10-
dc.relation.isPartOfPOLYMERS-
dc.citation.titlePOLYMERS-
dc.citation.volume14-
dc.citation.number2-
dc.citation.startPage1-
dc.citation.endPage10-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordPlusCARBON NANOTUBE-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordAuthorcomposite-
dc.subject.keywordAuthorgraphene nanoplatelet-
dc.subject.keywordAuthorthermal conductivity-
dc.subject.keywordAuthorthermal percolation-
dc.identifier.urlhttps://www.mdpi.com/2073-4360/14/2/323-
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 유기나노공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, Seong Hun photo

KIM, Seong Hun
COLLEGE OF ENGINEERING (DEPARTMENT OF ORGANIC AND NANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE