Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Synergistically Interfaced Bifunctional Transition Metal Selenides for High-Rate Hydrogen Production Via Urea Electrolysis

Full metadata record
DC Field Value Language
dc.contributor.authorDesalegn, Bezawit Z.-
dc.contributor.authorHern, Kim-
dc.contributor.authorSeo, Jeong Gil-
dc.date.accessioned2022-07-06T14:35:24Z-
dc.date.available2022-07-06T14:35:24Z-
dc.date.created2021-11-22-
dc.date.issued2021-09-
dc.identifier.issn1867-3880-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/141129-
dc.description.abstractThe realization of carbon-neutral energy is regarded a prime challenge as the environment and energy have become two key issues facing modern society. Here, synergistically interfaced transition metal selenides are studied for hydrogen production via urea electrolysis with concurrent environmental treatment. Extremely low overpotentials of 210 mV, 250 mV, and 1.41 V vs. RHE were observed at 100 mA cm(-2) for HER, OER and UOR, respectively with a 98.3 % faradaic efficiency. A notably low cell voltage of 1.6 and 1.84 V was required at 200 mA cm(-2) for urea and water electrolysis, respectively along with a remarkably stable performance for 4 days. Additionally, A 1.45-fold increase in H-2 production rate was observed for urea electrolysis [26.6 mu mol min(-1)] when compared with water electrolysis [18 mu mol min(-1)] decreasing the power consumption by 37 %. Real human urine electrolysis was conducted with excellent performance requiring a cell voltage of only 1.9 V at 200 mA cm(-2), attributed to the synergistic intermediate-active site interaction, improved charge transfer capability, and slow surface transformation-induced activation.-
dc.language영어-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleSynergistically Interfaced Bifunctional Transition Metal Selenides for High-Rate Hydrogen Production Via Urea Electrolysis-
dc.typeArticle-
dc.contributor.affiliatedAuthorSeo, Jeong Gil-
dc.identifier.doi10.1002/cctc.202100969-
dc.identifier.scopusid2-s2.0-85115108405-
dc.identifier.wosid000697232500001-
dc.identifier.bibliographicCitationChemCatChem, v.13, pp.1 - 12-
dc.relation.isPartOfChemCatChem-
dc.citation.titleChemCatChem-
dc.citation.volume13-
dc.citation.startPage1-
dc.citation.endPage12-
dc.type.rimsART-
dc.type.docTypeArticle; Early Access-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.subject.keywordPlusEVOLUTION REACTION-
dc.subject.keywordPlusELECTROCHEMICAL IMPEDANCE-
dc.subject.keywordPlusNICKEL FOAM-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusELECTROOXIDATION-
dc.subject.keywordAuthorHydrogen evolution reaction-
dc.subject.keywordAuthorOxygen evolution reaction-
dc.subject.keywordAuthorSelenides-
dc.subject.keywordAuthorUrea oxidation reaction-
dc.subject.keywordAuthorUrine electrolysis-
dc.identifier.urlhttps://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202100969-
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seo, Jeong Gil photo

Seo, Jeong Gil
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE