Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

New Strategy for Finite Element Mesh Generation for Accurate Solutions of Electroencephalography Forward Problems

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Chany-
dc.contributor.authorIm, Chang-Hwan-
dc.date.accessioned2021-08-02T11:51:52Z-
dc.date.available2021-08-02T11:51:52Z-
dc.date.created2021-05-12-
dc.date.issued2019-05-
dc.identifier.issn0896-0267-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/14151-
dc.description.abstractThe finite element method (FEM) is a numerical method that is often used for solving electroencephalography (EEG) forward problems involving realistic head models. In this study, FEM solutions obtained using three different mesh structures, namely coarse, densely refined, and adaptively refined meshes, are compared. The simulation results showed that the accuracy of FEM solutions could be significantly enhanced by adding a small number of elements around regions with large estimated errors. Moreover, it was demonstrated that the adaptively refined regions were always near the current dipole sources, suggesting that selectively generating additional elements around the cortical surface might be a new promising strategy for more efficient FEM-based EEG forward analysis.-
dc.language영어-
dc.language.isoen-
dc.publisherSPRINGER-
dc.titleNew Strategy for Finite Element Mesh Generation for Accurate Solutions of Electroencephalography Forward Problems-
dc.typeArticle-
dc.contributor.affiliatedAuthorIm, Chang-Hwan-
dc.identifier.doi10.1007/s10548-018-0669-0-
dc.identifier.scopusid2-s2.0-85051481290-
dc.identifier.wosid000465224800002-
dc.identifier.bibliographicCitationBRAIN TOPOGRAPHY, v.32, no.3, pp.354 - 362-
dc.relation.isPartOfBRAIN TOPOGRAPHY-
dc.citation.titleBRAIN TOPOGRAPHY-
dc.citation.volume32-
dc.citation.number3-
dc.citation.startPage354-
dc.citation.endPage362-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalWebOfScienceCategoryClinical Neurology-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.subject.keywordPlusNEUROMAGNETIC FIELDS-
dc.subject.keywordPlusSOURCE LOCALIZATION-
dc.subject.keywordPlusERROR ESTIMATION-
dc.subject.keywordPlusHUMAN HEAD-
dc.subject.keywordPlusEEG-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusCOMPUTATION-
dc.subject.keywordPlusPOTENTIALS-
dc.subject.keywordPlusSOLVE-
dc.subject.keywordAuthorElectroencephalography-
dc.subject.keywordAuthorFinite element method-
dc.subject.keywordAuthorError estimation-
dc.subject.keywordAuthorAdaptive mesh generation-
dc.subject.keywordAuthorForward problem-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s10548-018-0669-0-
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Im, Chang Hwan photo

Im, Chang Hwan
COLLEGE OF ENGINEERING (서울 바이오메디컬공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE