Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Performance evaluation of a hybrid dust collector for removing particles during subway train operation

Full metadata record
DC Field Value Language
dc.contributor.authorWoo, Sang-Hee-
dc.contributor.authorCheon, Tae-Won-
dc.contributor.authorLee, Gihyuk-
dc.contributor.authorKim, Jong Bum-
dc.contributor.authorBae, Gwi-Nam-
dc.contributor.authorKwon, Soon-Bark-
dc.contributor.authorJang, Hong Ryang-
dc.contributor.authorYook, Se-Jin-
dc.date.accessioned2021-08-02T11:52:11Z-
dc.date.available2021-08-02T11:52:11Z-
dc.date.created2021-05-12-
dc.date.issued2019-05-
dc.identifier.issn0278-6826-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/14170-
dc.description.abstractA hybrid dust collector attached to a subway train bottom was developed for the effective removal of subway particulate matter (PM), by considering the fluctuating speed of a subway train between stations. It combines an electrostatic precipitator, which has good collection efficiency when the flow velocity is low, and an inertial dust separator, which has good collection efficiency when the flow velocity is high. The electrostatic precipitator and inertial dust separator guarantee a high collection efficiency regardless of the subway train operating speed by compensating for the other's shortcomings. Wind tunnel test and numerical simulation were conducted to verify the performance of the hybrid dust collector. The experiment and simulation results were compared to verify the prediction accuracy of the simulation method. The collection efficiencies of the electrostatic precipitator and inertial dust separator were then simulated for various operating speeds of the subway train to predict the overall collection efficiency of the hybrid dust collector. As a result, when airflow velocity at the hybrid dust collector inlet varied from 2 to 8m/s, subway PM10 or PM2.5 collection rate of a single hybrid dust collector was predicted to be in the range 88 approximate to 123g/s or 30 approximate to 35g/s, respectively. The use of multiple such hybrid dust collectors attached to the subway train bottom is expected to be effective in reducing fine dust concentration in subway tunnels.-
dc.language영어-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.titlePerformance evaluation of a hybrid dust collector for removing particles during subway train operation-
dc.typeArticle-
dc.contributor.affiliatedAuthorYook, Se-Jin-
dc.identifier.doi10.1080/02786826.2019.1578333-
dc.identifier.scopusid2-s2.0-85062338654-
dc.identifier.wosid000466818200008-
dc.identifier.bibliographicCitationAEROSOL SCIENCE AND TECHNOLOGY, v.53, no.5, pp.562 - 574-
dc.relation.isPartOfAEROSOL SCIENCE AND TECHNOLOGY-
dc.citation.titleAEROSOL SCIENCE AND TECHNOLOGY-
dc.citation.volume53-
dc.citation.number5-
dc.citation.startPage562-
dc.citation.endPage574-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalResearchAreaMeteorology & Atmospheric Sciences-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryMeteorology & Atmospheric Sciences-
dc.subject.keywordPlusELECTROSTATIC PRECIPITATOR-
dc.subject.keywordPlusPARTICULATE MATTER-
dc.subject.keywordPlusPM2.5-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusBARCELONA-
dc.subject.keywordPlusDISCHARGE-
dc.subject.keywordPlusEXPOSURE-
dc.subject.keywordPlusSTATIONS-
dc.subject.keywordPlusSYSTEM-
dc.identifier.urlhttps://www.tandfonline.com/doi/full/10.1080/02786826.2019.1578333-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yook, Se Jin photo

Yook, Se Jin
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE