Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Li alloy-based non-volatile actuators

Full metadata record
DC Field Value Language
dc.contributor.authorNoh, Myoung-Sub-
dc.contributor.authorLee, Hyunseok-
dc.contributor.authorSong, Young Geun-
dc.contributor.authorJung, Inki-
dc.contributor.authorNing, Ruiguang-
dc.contributor.authorPaek, Sung Wook-
dc.contributor.authorSong, Hyun-Cheol-
dc.contributor.authorBaek, Seung-Hyub-
dc.contributor.authorKang, Chong-Yun-
dc.contributor.authorKim, Sang tae-
dc.date.accessioned2021-08-02T11:54:29Z-
dc.date.available2021-08-02T11:54:29Z-
dc.date.created2021-05-14-
dc.date.issued2019-03-
dc.identifier.issn2211-2855-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/14313-
dc.description.abstractConventional artificial muscles induce bending by aligning large-sized ions within the electrolyte upon bias application. Such design, alike many other actuator types, suffer from volatile actuation where the actuated position gets lost upon switch-off. Here, we develop a non-volatile artificial muscle with ion insertion electrode materials. Upon bias application, the inserted ions pose stress on the electrodes that sustain even after power shut-off. The demonstrated actuator consists of lithium germanide (LixGe) thin films deposited on both sides of a flexible polyimide (PI) substrate. The device exhibits 35.2 mm displacement when operated at 2 V and generates the blocking force of 0.67 mN. The observed stress and volume expansion reach 248 MPa and 8.2% for the 284 nm Li3Ge thin films, respectively. The actuated position is maintained against gravity with 12.1% decay in the actuated distance after 10 min. The novel actuator type proves the potential use of lithium insertion materials as actuation materials and shows that non-volatile actuation can be realized with ion-insertion electrodes.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.titleLi alloy-based non-volatile actuators-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Sang tae-
dc.identifier.doi10.1016/j.nanoen.2018.12.095-
dc.identifier.scopusid2-s2.0-85059532397-
dc.identifier.wosid000458419000069-
dc.identifier.bibliographicCitationNANO ENERGY, v.57, pp.653 - 659-
dc.relation.isPartOfNANO ENERGY-
dc.citation.titleNANO ENERGY-
dc.citation.volume57-
dc.citation.startPage653-
dc.citation.endPage659-
dc.type.rimsART-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry-
dc.relation.journalWebOfScienceCategoryPhysical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science-
dc.relation.journalWebOfScienceCategoryMultidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusLITHIUM-ION BATTERY-
dc.subject.keywordPlusMECHANICAL STRESSES-
dc.subject.keywordPlusGERMANIUM-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusLITHIATION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorArtificial Muscles-
dc.subject.keywordAuthorElectrochemistry-
dc.subject.keywordAuthorLi Alloys-
dc.subject.keywordAuthorNon-Volatile Actuation-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S2211285518310085?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 원자력공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sang tae photo

Kim, Sang tae
COLLEGE OF ENGINEERING (DEPARTMENT OF NUCLEAR ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE