Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Slippery Colloidal Crystal Monolayers for Sustainable Enhancement of Commercial Solar Cell Performance

Authors
Choi, Yeon JaePyun, Seung BeomCho, Eun Chul
Issue Date
Jan-2021
Publisher
American Chemical Society
Keywords
slippery colloidal crystal monolayers; diffuse light transmittance; silicon solar cells; current enhancement; performance sustainability
Citation
ACS Applied Energy Materials, v.4, no.1, pp.303 - 311
Indexed
SCIE
SCOPUS
Journal Title
ACS Applied Energy Materials
Volume
4
Number
1
Start Page
303
End Page
311
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/1449
DOI
10.1021/acsaem.0c02256
ISSN
2574-0962
Abstract
The performance of photovoltaic devices can be improved and sustained when their surfaces are designed to increase light absorption of photoactive layers and minimize contaminant adsorption. Pyramid-/domelike surface structures, generally fabricated via etching/lithography, provide these two characteristics to specific solar cells. Colloid-based photonic crystal (PC) monolayers coated on customized cells, without involving special apparatus, are also known for efficiency enhancement. However, to extend the application of PC monolayers to commercial cells, it should be deeply understood first how their photonic characteristics affect light transmittance of thick windows covering the cells. Herein, the PC monolayers on glass/polymer windows (thickness: 0.45-1 mm) are observed to transmit significantly higher amounts of diffuse light at specific visible frequency ranges than bare windows. The frequencies are tuned with the colloid diameter. The results are explained by an electric field distribution study and calculations on the monolayers. The PC monolayers on these windows enhance the short-circuit currents and power conversion efficiencies of commercial amorphous and polycrystalline Si solar cells. Furthermore, strategies are suggested to fix monolayers for structure stabilization and modify their surfaces with a slippery polymer for contaminant slippage; simulated carbon dusty rains slide off the cell surfaces, sustaining the enhanced cell performance.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Eun Chul photo

Cho, Eun Chul
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE