Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Collaborative Adversarial Autoencoders: An Effective Collaborative Filtering Model Under the GAN Framework

Full metadata record
DC Field Value Language
dc.contributor.authorChae, Dong-Kyu-
dc.contributor.authorShin, Jung Ah-
dc.contributor.authorKim, Sang-Wook-
dc.date.accessioned2022-07-10T01:08:19Z-
dc.date.available2022-07-10T01:08:19Z-
dc.date.created2021-05-12-
dc.date.issued2019-03-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/148179-
dc.description.abstractRecently, deep learning has become a preferred choice for performing tasks in diverse application domains such as computer vision, natural language processing, sensor data analytics for healthcare, and collaborative filtering for personalized item recommendation. In addition, the Generative Adversarial Networks (GAN) has become one of the most popular frameworks for training machine learning models. Motivated by the huge success of GAN and deep learning on a wide range of fields, this paper explores an effective way to exploit both techniques into the collaborative filtering task for the accurate recommendation. We have noticed that the IRGAN and GraphGAN are pioneering methods that successfully apply GAN to recommender systems. However, we point out an issue regarding the employment of standard matrix factorization (MF) as their basic model, which is linear and unable to capture the non-linear, subtle latent factors underlying user-item interactions. Our proposed recommendation framework, named Collaborative Adversarial Autoencoders (CAAE), significantly extends the conventional IRGAN and GraphGAN as summarized below: 1) we use Autoencoder, which is one of the most successful deep neural networks, as our generator, instead of using the MF model; 2) we employ Bayesian personalized ranking (BPR) as our discriminative model; and 3) we incorporate another generator model into our framework that focuses on generating negative items, which are items that a given user may not be interested in. We empirically test our framework using three real-life datasets along with four evaluation metrics. Owing to those extensions, our proposed framework not only produces considerably higher recommendation accuracy than the conventional GAN-based recommenders (i.e., IRGAN and GraphGAN), but also outperforms the other state-of-the-art top-N recommenders (i.e., BPR, PureSVD, and FISM).-
dc.language영어-
dc.language.isoen-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleCollaborative Adversarial Autoencoders: An Effective Collaborative Filtering Model Under the GAN Framework-
dc.typeArticle-
dc.contributor.affiliatedAuthorChae, Dong-Kyu-
dc.contributor.affiliatedAuthorKim, Sang-Wook-
dc.identifier.doi10.1109/ACCESS.2019.2905876-
dc.identifier.scopusid2-s2.0-85065231137-
dc.identifier.wosid000464727700001-
dc.identifier.bibliographicCitationIEEE ACCESS, v.7, pp.37650 - 37663-
dc.relation.isPartOfIEEE ACCESS-
dc.citation.titleIEEE ACCESS-
dc.citation.volume7-
dc.citation.startPage37650-
dc.citation.endPage37663-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusBayesian networks-
dc.subject.keywordPlusData Analytics-
dc.subject.keywordPlusData handling-
dc.subject.keywordPlusDeep learning-
dc.subject.keywordPlusDeep neural networks-
dc.subject.keywordPlusFactorization-
dc.subject.keywordPlusLearning algorithms-
dc.subject.keywordPlusMedical computing-
dc.subject.keywordPlusNatural language processing systems-
dc.subject.keywordPlusRecommender systems-
dc.subject.keywordPlusAdversarial networks-
dc.subject.keywordPlusDiscriminative models-
dc.subject.keywordPlusDiverse applications-
dc.subject.keywordPlusEvaluation metrics-
dc.subject.keywordPlusMatrix factorizations-
dc.subject.keywordPlusNAtural language processing-
dc.subject.keywordPlusReal life datasets-
dc.subject.keywordPlusRecommendation accuracy-
dc.subject.keywordPlusCollaborative filtering-
dc.subject.keywordAuthorCollaborative filtering-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorgenerative adversarial networks-
dc.subject.keywordAuthorrecommender systems-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8669749-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 컴퓨터소프트웨어학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chae, Dong Kyu photo

Chae, Dong Kyu
COLLEGE OF ENGINEERING (SCHOOL OF COMPUTER SCIENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE