Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Sang-Hyung-
dc.contributor.authorLee, Dae Hee-
dc.contributor.authorPark, Cheolho-
dc.contributor.authorKim, Dong-Won-
dc.date.accessioned2022-07-11T14:50:59Z-
dc.date.available2022-07-11T14:50:59Z-
dc.date.created2021-05-12-
dc.date.issued2018-08-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/149617-
dc.description.abstractThe development of electrode materials with high capacity and good cycling stability is a challenging prerequisite for improving the energy density of lithium-ion batteries. In this work, we synthesize silicon nano particles embedded in the inactive Al4Cu9, AlFe and TiFeSi2 matrix phases, as an anode material. The silicon alloy material exhibits good high rate performance and delivers a high initial discharge capacity of 1459.3 mAh g(-1) with capacity retention of 85.7% after 200 cycles at a current density of 300 mA g(-1). The superior cycling performance of the silicon alloy compared to that of micro-sized pure silicon can be attributed to the unique structure of the alloy material. Here, the nano-sized silicon particles reduce the ionic diffusion path length and minimize volume expansion during lithiation, while the inactive matrix phases accommodate volume changes during repeated cycling and provide a continuous electronic conduction pathway to the silicon nanoparticles.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER-
dc.titleNanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Dong-Won-
dc.identifier.doi10.1016/j.jpowsour.2018.05.087-
dc.identifier.scopusid2-s2.0-85047788977-
dc.identifier.wosid000438001800037-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.395, pp.328 - 335-
dc.relation.isPartOfJOURNAL OF POWER SOURCES-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume395-
dc.citation.startPage328-
dc.citation.endPage335-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusENCAPSULATION-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusTIME-
dc.subject.keywordAuthorSilicon alloy-
dc.subject.keywordAuthorInactive matrix-
dc.subject.keywordAuthorAnode material-
dc.subject.keywordAuthorLithium-ion battery-
dc.subject.keywordAuthorCycling performance-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0378775318305718?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Dong Won photo

Kim, Dong Won
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE