Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Coupling of charge, lattice, orbital, and spin degrees of freedom in charge density waves in 1T-TaS2

Full metadata record
DC Field Value Language
dc.contributor.authorYi, Seho-
dc.contributor.authorZhang, Zhenyu-
dc.contributor.authorCho, Jun-Hyung-
dc.date.accessioned2022-07-12T19:28:46Z-
dc.date.available2022-07-12T19:28:46Z-
dc.date.created2021-05-12-
dc.date.issued2018-01-
dc.identifier.issn2469-9950-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/150763-
dc.description.abstractTwo-dimensional layered transition-metal-dichalcogenide (TMDC) materials often exhibit exotic quantum phases due to the delicate coupling and competitions of charge, lattice, orbital, and spin degrees of freedom. Surprisingly, we here present, based on first-principles density-functional theory calculations, the incorporation of all such degrees of freedom in a charge density wave (CDW) of monolayer (ML) TMDC 1T-TaS2. We reveal that this CDW accompanying the lattice distortion to the "David-star" (DS) superstructure constituted of one cental, six nearest-neighbor, and six next-nearest-neighbor Ta atoms is driven by the formation of quasimolecular orbitals due to a strong hybridization of Ta t(2g) orbitals. The resulting weakly overlapped nonbonding orbitals between the DS clusters form a narrow half-filled band at the middle of the CDW gap, leading to the Stoner-type magnetic instability caused by an intramolecular exchange interaction. It is thus demonstrated that the Stoner parameter I corresponding to the effective on-site Coulomb interaction U opens a Mott gap. Our finding of the intricate charge-lattice-orbital-spin coupling in ML 1T-TaS2 provides a framework for the exploration of various CDW phases observed in few-layer or bulk 1T-TaS2.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER PHYSICAL SOC-
dc.titleCoupling of charge, lattice, orbital, and spin degrees of freedom in charge density waves in 1T-TaS2-
dc.typeArticle-
dc.contributor.affiliatedAuthorCho, Jun-Hyung-
dc.identifier.doi10.1103/PhysRevB.97.041413-
dc.identifier.scopusid2-s2.0-85041112663-
dc.identifier.wosid000423433700003-
dc.identifier.bibliographicCitationPHYSICAL REVIEW B, v.97, no.4-
dc.relation.isPartOfPHYSICAL REVIEW B-
dc.citation.titlePHYSICAL REVIEW B-
dc.citation.volume97-
dc.citation.number4-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusFERMI-SURFACE-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusSTATE-
dc.subject.keywordPlusSUPERCONDUCTIVITY-
dc.subject.keywordPlusLOCALIZATION-
dc.subject.keywordPlusORDER-
dc.identifier.urlhttps://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.041413-
Files in This Item
Go to Link
Appears in
Collections
서울 자연과학대학 > 서울 물리학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Jun Hyung photo

Cho, Jun Hyung
COLLEGE OF NATURAL SCIENCES (DEPARTMENT OF PHYSICS)
Read more

Altmetrics

Total Views & Downloads

BROWSE