Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Surface Plasmon Aided Ethanol Dehydrogenation Using Ag–Ni Binary Nanoparticles

Full metadata record
DC Field Value Language
dc.contributor.authorKim, C-
dc.contributor.authorSuh, BL-
dc.contributor.authorYun, H-
dc.contributor.authorKim, J-
dc.contributor.authorKim, J-
dc.date.accessioned2022-07-14T07:25:13Z-
dc.date.available2022-07-14T07:25:13Z-
dc.date.created2021-05-14-
dc.date.issued2017-04-
dc.identifier.issn2155-5435-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/152528-
dc.description.abstractPlasmonic metal nanoparticles absorb light energy and release the energy through radiative or nonradiative channels. Surface catalytic reactions take advantage of the nonradiative energy relaxation of plasmons with enhanced activity. Particularly, binary nanoparticles are interesting because diverse integration is possible, consisting of a plasmonic part and a catalytic part. Herein, we demonstrated ethanol dehydrogenation under light irradiation using Ag-Ni binary nanoparticles with different shapes, snowman and core-shell, as plasmonic catalysts. The surface plasmon formed in the Ag part enhanced the surface catalytic reaction that occurred at the Ni part, and the shape of the nanoparticles affected the extent of the enhancement. The surface plasmon compensated the thermal energy required to trigger the catalytic reaction. The absorbed light energy was transferred to the catalytic part by the surface plasmon through the nonradiative hot electrons. The effective energy barrier was greatly reduced from 41.6 kJ/mol for the Ni catalyst to 25.5 kJ/mol for the core-shell nanoparticles and 22.3 kJ/mol for the snowman-shaped nanoparticles. These findings can be helpful in designing effective plasmonic catalysts for other thermally driven surface reactions.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleSurface Plasmon Aided Ethanol Dehydrogenation Using Ag–Ni Binary Nanoparticles-
dc.typeArticle-
dc.contributor.affiliatedAuthorYun, H-
dc.identifier.doi10.1021/acscatal.7b00411-
dc.identifier.scopusid2-s2.0-85019706562-
dc.identifier.wosid000398986700005-
dc.identifier.bibliographicCitationACS CATALYSIS, v.7, no.4, pp.2294 - 2302-
dc.relation.isPartOfACS CATALYSIS-
dc.citation.titleACS CATALYSIS-
dc.citation.volume7-
dc.citation.number4-
dc.citation.startPage2294-
dc.citation.endPage2302-
dc.type.rimsART-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.subject.keywordPlusCROSS-COUPLING REACTIONS-
dc.subject.keywordPlusVISIBLE-LIGHT-
dc.subject.keywordPlusPHOTOCATALYTIC ACTIVITY-
dc.subject.keywordPlusEFFICIENT CONVERSION-
dc.subject.keywordPlusHYDROGEN GENERATION-
dc.subject.keywordPlusAU-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusELECTRON-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusRESONANCE-
dc.subject.keywordAuthorplasmonic catalyst-
dc.subject.keywordAuthorbinary nanoparticles-
dc.subject.keywordAuthorethanol-
dc.subject.keywordAuthordehydrogenation-
dc.subject.keywordAuthoreffective energy barrier-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acscatal.7b00411-
Files in This Item
Go to Link
Appears in
Collections
서울 자연과학대학 > 서울 화학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yun, Hongseok photo

Yun, Hongseok
COLLEGE OF NATURAL SCIENCES (DEPARTMENT OF CHEMISTRY)
Read more

Altmetrics

Total Views & Downloads

BROWSE