Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Comparative feasibility study of CO₂ capture in, hollowfiber membrane processes based on process models and heat exchanger analysis

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Seong Hun-
dc.contributor.authorKim, Jin-Kuk-
dc.contributor.authorYeo, Jeong-gu-
dc.contributor.authorYeo, Yeong-Koo-
dc.date.accessioned2022-07-14T20:40:20Z-
dc.date.available2022-07-14T20:40:20Z-
dc.date.created2021-05-12-
dc.date.issued2017-01-
dc.identifier.issn0263-8762-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/153076-
dc.description.abstractCarbon dioxide capture based on membrane separation process is one of the most promising methods to reduce greenhouse gases emissions. Many studies concerning economic competitiveness of membrane separation processes have been conducted. Heat exchangers can be effectively used to reduce the total energy consumption in the membrane separation process. The two-stage membrane separation processes considered in this work include heat exchangers with H2O sweep. The necessity of this work arose from the need to apply the heat exchanger network analysis in order to identify the optimal process configuration based on the process models. Typical multicomponent separation models for the countercurrent flow pattern using hollowfiber membranes are validated with experimental data. Effects of the pressure ratio and membrane area to achieve a target CO2 purity (90%) and recovery (90%) are investigated. Energy analysis including heat recovery and utility power are performed using pinch technology. The results show that significant amount of total energy (1.31 MJ/kg CO2) can be reduced by introducing heat exchangers compared to the two-stage separation process without heat exchangers.-
dc.language영어-
dc.language.isoen-
dc.publisherINST CHEMICAL ENGINEERS-
dc.titleComparative feasibility study of CO₂ capture in, hollowfiber membrane processes based on process models and heat exchanger analysis-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Jin-Kuk-
dc.identifier.doi10.1016/j.cherd.2016.11.022-
dc.identifier.scopusid2-s2.0-84999652137-
dc.identifier.wosid000393535400059-
dc.identifier.bibliographicCitationCHEMICAL ENGINEERING RESEARCH & DESIGN, v.117, pp.659 - 669-
dc.relation.isPartOfCHEMICAL ENGINEERING RESEARCH & DESIGN-
dc.citation.titleCHEMICAL ENGINEERING RESEARCH & DESIGN-
dc.citation.volume117-
dc.citation.startPage659-
dc.citation.endPage669-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusMULTICOMPONENT GAS SEPARATION-
dc.subject.keywordPlusPOSTCOMBUSTION CAPTURE-
dc.subject.keywordPlusFIBER MEMBRANE-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusPERMEATION-
dc.subject.keywordPlusCONTACTORS-
dc.subject.keywordPlusCOST-
dc.subject.keywordAuthorCO2 capture-
dc.subject.keywordAuthorMembrane-
dc.subject.keywordAuthorFlue gas-
dc.subject.keywordAuthorHeat exchanger network synthesis-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0263876216304531?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jin Kuk photo

Kim, Jin Kuk
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE