Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Silicon nanoparticles grown on a reduced graphene oxide surface as high-performance anode materials for lithium-ion batteries

Full metadata record
DC Field Value Language
dc.contributor.authorKannan, Aravindaraj G.-
dc.contributor.authorKim, Sang Hyung-
dc.contributor.authorYang, Hwi Soo-
dc.contributor.authorKim, Dong-Won-
dc.date.accessioned2022-07-15T19:34:35Z-
dc.date.available2022-07-15T19:34:35Z-
dc.date.created2021-05-12-
dc.date.issued2016-
dc.identifier.issn2046-2069-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/155503-
dc.description.abstractThe growth of silicon nanoparticles on a graphene surface without forming the unwanted silicon carbide (SiC) phase has been challenging. Herein, the critical issues surrounding silicon anode materials for lithium-ion batteries, such as electrode pulverization, unstable solid electrolyte interphase and low electrical conductivity, have been addressed by growing silicon nanoparticles smaller than 10 nm, covalently bonded to a reduced graphene oxide (rGO) surface. The successful growth of SiC-free silicon nanoparticles covalently attached to the rGO surface was confirmed by using various spectroscopic and microscopic analyses. The rGO-Si delivered an initial discharge capacity of 1338.1 mA h g(-1) with capacity retention of 87.1% after the 100th cycle at a current rate of 2100 mA g(-1), and exhibited good rate capability. Such enhanced electrochemical performance is attributed to the synergistic effects of combining ultra-small silicon nanoparticles and rGO nanosheets. Here, rGO provides a continuous electron conducting network, whereas, ultra-small silicon particles reduce ionic diffusion path length and accommodate higher stress during volume expansion upon lithiation.-
dc.language영어-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleSilicon nanoparticles grown on a reduced graphene oxide surface as high-performance anode materials for lithium-ion batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Dong-Won-
dc.identifier.doi10.1039/c5ra27877e-
dc.identifier.scopusid2-s2.0-84960907449-
dc.identifier.wosid000372252700041-
dc.identifier.bibliographicCitationRSC ADVANCES, v.6, no.30, pp.25159 - 25166-
dc.relation.isPartOfRSC ADVANCES-
dc.citation.titleRSC ADVANCES-
dc.citation.volume6-
dc.citation.number30-
dc.citation.startPage25159-
dc.citation.endPage25166-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.subject.keywordPlusSI NANOPARTICLES-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusMESOPOROUS SILICON-
dc.subject.keywordPlusMAGNESIOTHERMIC REDUCTION-
dc.subject.keywordPlusNANOSTRUCTURED SILICON-
dc.subject.keywordPlusRICE HUSKS-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusSHEETS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Dong Won photo

Kim, Dong Won
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE